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Abstract. For directed and undirected graphs, we study the problem
to make a distinguished vertex the unique minimum-(in)degree vertex
through deletion of a minimum number of vertices. The corresponding
NP-hard optimization problems are motivated by applications concern-
ing control in elections and social network analysis. Continuing previous
work for the directed case, we show that the problem is W[2]-hard when
parameterized by the graph’s feedback arc set number, whereas it be-
comes fixed-parameter tractable when combining the parameters “feed-
back vertex set number” and “number of vertices to delete”. For the so
far unstudied undirected case, we show that the problem is NP-hard and
W[1]-hard when parameterized by the “number of vertices to delete”. On
the positive side, we show fixed-parameter tractability for several param-
eterizations measuring tree-likeness, including a vertex-linear problem
kernel with respect to the parameter “feedback edge set number”. On
the contrary, we show a non-existence result concerning polynomial-size
problem kernels for the combined parameter “vertex cover number and
number of vertices to delete”, implying corresponding nonexistence re-
sults when replacing vertex cover number by treewidth or feedback vertex
set number.

1 Introduction

Making a distinguished vertex minimum degree by vertex deletion is a natural
though widely unexplored graph problem. We contribute new insights into the
algorithmic complexity of the corresponding computational problems, providing
intractability as well as fixed-parameter tractability results.

Formally, we studied the following two decision problems.
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Min-Indegree Deletion (MID)
Given: A directed graph D = (W,A), a distinguished vertex wc ∈ W ,

and an integer k ≥ 1.
Question: Is there a subset W ′ ⊆ W \ {wc} of size at most k such that

wc is the only vertex that has minimum indegree in D[W \W ′]?

Whereas MID has been studied in one previous paper [2], its undirected coun-
terpart seems completely unexplored:

Min-Degree Deletion (MDD)
Given: An undirected graph G = (V,E), a distinguished vertex wc ∈ V ,

and an integer k ≥ 1.
Question: Is there a subset V ′ ⊆ V \ {wc} of size at most k such that wc

is the only vertex that has minimum degree in G[V \ V ′]?

MID directly emerges from a problem concerning electoral control with respect
to so-called “Llull voting” [2,9], one of the well-known voting systems based on
pairwise comparision of candidates. Concerning MDD, in undirected social net-
works the degree of a vertex relates to its popularity or influence [18, pages 178–
180]. Then, making a distinguished vertex minimum degree (equivalently, making
it maximum degree in the complement graph) corresponds to activities or cam-
paigns where a single agent shall be transformed to the least or most important
agent in its community. Minimum vertex deletion, hence, can be interpreted as
making “competing agents” disappear at minimum cost. A problem related to
MDD is Bounded Degree Deletion (BDD) and its dual problem (consid-
ering the complement graph) Maximum s-plex. For BDD the goal is to bound
the maximum vertex degree by a prespecified value d (the case d = 0 is equiv-
alent to the well-known Vertex Cover problem) using a minimum number
of vertex deletions. Other than MDD, BDD and its dual Maximum s-plex
have been studied quite intensively in recent years [1,10,14] which is due to their
applications in social and biological network analysis.

Although both MID and MDD are simple and natural graph problems,
we only know one previous publication concerning these problems. MID has
been shown W[2]-complete for parameter solution size k even when restricted
to tournament graphs and it is polynomial-time solvable on directed acyclic
graphs [2].

We initiate a thorough theoretical analysis of MID and MDD mainly fo-
cussing on “tree-likeness” parameterizations. We employ several basic structural
parameters measuring the tree-likeness of graphs. The most famous parameter
is the treewidth tw of the input graph, which comes along with the concept of
tree decompositions of graphs.1 The feedback vertex set number sv of a graph
is the minimum number of vertices to delete from a graph to make it acyclic.
Correspondingly, the feedback edge set number se and the the feedback arc set
number sa, respectively, denote the minimum number of edges or arcs to delete
from an undirected or directed graph to make it acyclic. While the computation

1 We omit any details because we will not need the formal definition in this work.
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Table 1. Overview of the parameterized complexity of Min-Indegree Deletion and
Min-Degree Deletion. The considered parameters are tw :=“treewidth of the input
graph”, sv :=“size of a feedback vertex set”, sa :=“size of a feedback arc set”, s∗v :=
“size of a feedback vertex set not containing wc”, se :=“size of a feedback edge set”,
k :=“number of vertices to delete”, and d :=“maximum degree”. New results are in
boldface. The remaining results are from [2].

parameter Min-Indegree Deletion Min-Degree Deletion

tw — FPT, no polynomial kernel
sv W[2]-hard FPT, no polynomial kernel

s∗v W[2]-hard O((2s∗v + 4)s
∗
v · n6), no polynomial kernel

sa, se W[2]-hard O(2se · n3), vertex-linear kernel
k W[2]-complete W[1]-hard
d FPT FPT

(sv, k) O(sv · (k + 1)sv · n2), no polynomial kernel

of tw, sv and sa leads to NP-hard problems, se can be quickly determined by a
spanning tree computation. Note that a small value of se means that the network
is very sparse—however, there are several sparse social networks [13,16,17].

Table 1 summarizes our results. We extend the previous results for MID [2]
by showing that MID is W[2]-hard even when parameterized by sa whereas it
turns fixed-parameter tractable for the combined parameter (k, sv). Note that
this also implies fixed-parameter tractability with respect to the combined pa-
rameter (k, sa) since sa is a weaker parameter than sv in the sense that sv ≤ sa.
As to MDD, we show that it is NP-complete as well as W[1]-hard with respect
to the parameter k, devising a parameterized many-one reduction from the In-
dependent Set problem. In addition, we show that MDD is fixed-parameter
tractable for each of the tree-likeness parameters treewidth, size s∗v of a feed-
back vertex set not containing the distinguished vertex, and feedback edge set
number se. Herein, our fixed-parameter tractability result for treewidth is of
purely theoretical interest whereas the one for the feedback edge set number
comes along with a 2se-vertex problem kernel and a size-O(2se) search tree.
The result for s∗v relies on dynamic programming and bears a combinatorial ex-
plosion of O((2s∗v + 4)s

∗
v ). Finally, building on a recent framework for proving

non-existence of polynomial-size problem kernels [3], we also show that there is
presumably no polynomial-size problem kernel for MDD even for the combined
parameter (k, s∗c), where s∗c denotes the size of a vertex cover not containing the
distinguished vertex. This directly implies the non-existence of polynomial-size
problem kernels for the parameters feedback vertex set number and treewidth.
Due to the lack of space, several details are deferred to a full version of this
paper.

Preliminaries. Parameterized complexity is a two-dimensional framework for
studying the computational complexity of problems [8,11,15]. One dimension is
the input size n (as in classical complexity theory), and the other one is the
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parameter k (usually a positive integer). A problem is called fixed-parameter
tractable (fpt) if it can be solved in f(k) · nO(1) time, where f is a computable
function only depending on k. The complexity class consisting of all fpt problems
is denoted by FPT. A core tool in the development of fixed-parameter algorithms
is polynomial-time preprocessing by data reduction [4,12]. Here, the goal is for a
given problem instance x with parameter k, to transform it into a new instance x′

with parameter k′ such that the size of x′ is upper-bounded by some function
only depending on k, the instance (x, k) is a yes-instance if and only if (x′, k′)
is a yes-instance, and k′ ≤ k. The reduced instance, which must be computable
in polynomial time, is called a problem kernel, and the whole process is called
reduction to a problem kernel or kernelization.

Downey and Fellows [8] developed a formal framework for showing fixed-
parameter intractability by means of parameterized reductions. A parameterized
reduction from a parameterized problem P to another parameterized problem P ′

is a function that, given an instance (x, k), computes in f(k) · nO(1) time an in-
stance (x′, k′) (with k′ only depending on k) such that (x, k) is a yes-instance
of problem P if and only if (x′, k′) is a yes-instance of problem P ′. The ba-
sic complexity class for fixed-parameter intractability is called W [1]. There is
good reason to believe that W [1]-hard problems are not fpt [8,11,15]. In this
sense, W [1]-hardness is the parameterized complexity analog of NP-hardness.
The class W[2] means the next higher degree of parameterized intractability.

We assume familiarity with basic graph-theoretic concepts. Let G = (V,E)
be an undirected graph. Unless stated otherwise, let n := |V | and m := |E|. For
V ′ ⊆ V we denote the subgraph induced by V ′ as G[V ′]. Furthermore, we write
G− V ′ for G[V \ V ′]. The open neighborhood of a vertex v is denoted by N(v)
and the degree of v is deg(v) := |N(v)|. We use analogous terms for directed
graphs and differentiate between in- and out-(degree, neighborhood, etc.) by a
subscript in the notation (e.g., degin(v) denotes the indegree of v).

2 Min-Degree Deletion

In this section, we study parameterizations of Min-Degree Deletion by the
solution size, that is, the number of vertices to delete, and structural graph
parameters measuring the tree-likeness. By devising a parameterized reduction
from the W[1]-complete Independent Set problem we obtain the following.

Theorem 1. Min-Degree Deletion is NP-complete and W[1]-hard for the
parameter “number of vertices to delete”.

For the “tree-likeness” parameterizations, we show fixed-parameter tractabil-
ity results (Subsection 2.1) and refute the existence of some polynomial-size
problem kernels (Subsection 2.2).

2.1 Fixed-parameter tractability results

In the following, all structural graph parameters are related to measuring the
tree-likeness of the underlying graph. More specifically, we provide results for the
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treewidth tw, the size s∗v of a feedback vertex set not containing the distinguished
vertex, and the feedback edge set number se. By definition, (tw +1) ≤ s∗v ≤ se.
Hence, our fixed-parameter tractability result for MDD for the parameter tw
implies fixed-parameter tractability for the parameters s∗v and se. However,
since our corresponding result for tw only provides a classification and not
an efficient fixed-parameter algorithm, we subsequently present specific fixed-
parameter tractability results for each parameterization.

Parameter treewidth. For treewidth, the “strongest” tree-likeness parameter
we consider in this section, we obtain the following.

Theorem 2. Min-Degree Deletion is fixed-parameter tractable for the pa-
rameter treewidth.

The proof of Theorem 2 relies on expressing MDD by a monadic second-
order logic (MSO) sentence and making use of Courcelle’s famous theorem [6].
Due to the huge constants coming along with Courcelle’s machinery this result
is of purely theoretical interest. The following observation is crucial to obtain
Theorem 2 as well as for some of our other results.

Observation 1 Let G = (V,E) be a graph of treewidth tw and let M∗ be any
solution set for MDD. Then, wc has degree at most tw−1 in G−M∗.

Parameter distinguished feedback vertex set number. We investigate
the parameter distinguished feedback vertex set number s∗v denoting the “size of
a feedback vertex set not containing the distinguished vertex wc”. Since for a
graph with treewidth tw it holds that s∗v ≥ sv ≥ (tw +1), Theorem 2 implies that
MDD is fixed-parameter tractable with respect to s∗v. However, Theorem 2 does
not come with a direct combinatorial algorithm and hence such an algorithm
with running time O((2s∗v +4)s

∗
v ·n4 ·deg(wc)

2) will be provided in the following.
Let (G = (V,E), wc, k) be an MDD-instance and let Vf be a feedback vertex

set that does not contain wc. Our algorithm basically branches into all possible
subsets V ∗f of Vf and investigates whether there is a solution containing all
vertices from V ∗f and not containing any vertex from Vf \ V ∗f . Furthermore, the
algorithm iterates over the “final” degree that wc might assume in the graph G
after deleting a set of “solution vertices”. Additionally applying some simple
branching and preprocessing steps it remains to solve the following problem.

Annotated Min-Degree Deletion (AMDD)
Given: An undirected graph G = (V,E), a distinguished vertex wc, a

feedback vertex set Vf of G with Vf ⊆ V \ {wc}, and two non-
negative integers k and i.

Question: Is there a subset M ⊆ V \ (Vf ∪ {wc}) of size at most k such
that, in G −M , deg(wc) = i and every other vertex has degree at
least i + 1?
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The branching and the preprocessing giving an AMDD-instance can be car-
ried out in O(2|Vf | ·n2) time. Moreover, due to the preprocessing, in the following
we can assume that every vertex in V \{wc} has degree at least i+1 and wc has at
most i neighbors in Vf . Now, for an AMDD-instance (G = (V,E), wc, Vf , k, i),
the algorithm makes use of the following property of VS := V \ (Vf ∪ {wc}), the
set consisting of all vertices that can be part of the solution.

Observation 2 Let n1, . . . , nd denote the neighbors of wc in G − Vf . In the
graph G[VS ], every vertex nx belongs to a connected component T (x) such that T (x)
is a tree and does not contain any vertex ny with nx 6= ny.

Observation 2 can be seen as follows. Consider two neighbors nx and ny

of wc. First, assume that there would be a path from nx and ny that does not
contain wc. Adding wc to this path would induce a cycle and hence Vf would not
be a feedback vertex set of G. Hence, every connected component can contain at
most one neighbor of wc. Second, a cycle within a connected component would
also violate that Vf is a feedback vertex set. Hence, all connected components
induce trees.2

Now, we take a look at an arbitrary solution set M of our MDD-instance.
Since the final degree of wc is i, M must contain degG(wc)− i neighbors of wc.
Putting a vertex x ∈ N(wc) \ Vf into the solution may decrease the degree of
other vertices from T (x) so that they also must be part of the solution. The
set A(x) of affected vertices that need to be deleted when x is deleted can be
computed iteratively as follows. Start with A(x) := {x}. While there is vertex v
with degree at most i in T (x) − A(x), add v to A(x). Since we have to put all
vertices of A(x) into a solution when choosing x into the solution, we define
the cost of x as cost(x) := |A(x)|. Moreover, we will make use of the following
easy-to-verify observation.

Observation 3 A vertex v ∈ Vs \ (
⋃

x∈N(wc)\Vf
A(x)) cannot be part of any

minimal solution.

For the graph not containing vertices from the feedback vertex set Vf , a
solution could easily be computed by choosing a set of deg(wc) − i neighbors
of wc such that the sum of the corresponding costs is minimal. The critical point
is that putting a vertex x into the solution set may also decrease the degree of
vertices from Vf . By definition, we cannot remove any vertex from Vf . Thus,
we must ensure that we “keep” enough vertices from Vs such that the final
degree of every vertex from Vf is at least i + 1. For every vertex v ∈ Vf , we
can easily compute the number nfixed(v) of neighbors which it has “for sure” in
every minimal solution. More specifically, nfixed(v) is the number of neighbors
of v in Vf and in Vs \ (

⋃
x∈N(wc) A(x)) (see Observation 3).

We introduce some notation measuring how many neighbors of a vertex
from Vf must be kept under the assumption that a certain subset Vr ⊆ Vs

2 Observation 2 does not hold for a feedback vertex set containing the distinguished
vertex. Hence, the following approach cannot be transferred to this more general
case.
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is not part of a solution. More specifically, for a vertex v ∈ Vf , let nVr
(v) be the

number of neighbors of v in Vr. Then, the number of additional neighbors that
are not allowed to be deleted is defined as s(v, Vr) := i + 1− nfixed(v)− nVr (v).
This can be generalized as follows.

Definition 1. For Vf = {v1, . . . , v|Vf |}, the remain-tuple with respect to Vr ⊆
VS is S = (s1, . . . , s|Vf |) where sj := s(vj , Vr).

Recall that the task is to search for a set N ⊆ N(wc) \ Vf of deg(wc) − i
neighbors of wc of minimum cost such that the degree of every vertex from Vf

is at least i + 1. Now, for every subset N ′ ⊆ N(wc) \ Vf , the effect of choosing
that N ′ is not part of a solution can be described by a remain-tuple. More
specifically, a subset N ′ ⊆ N(wc) \ Vf realizes a remain-tuple (s′1, . . . , s

′
|Vf |)

when, for every v ∈ Vf , the number of neighbors of v in
⋃

x∈N ′ A(x) is at least
i + 1 − nfixed(v) − s′i. Then, a cost-k set N ⊆ N(wc) containing deg(wc) − i
neighbors of wc such that set N(wc) \ N realizes the remain-tuple (0, . . . , 0)
corresponds to a solution.

Dynamic programming table. Based on the previous definitions, the dynamic
programming table is defined as D(x, z, S′) with x ∈ {1, . . . , d} where d :=
|N(wc)∩ Vs|, z ≤ min{x, d− i}, and S′ ⊆ S := {(s′1, . . . , s′|Vf |) | 0 ≤ s′j ≤ i + 1}.
The entry d(x, z, S′) contains the minimum cost of deleting a size-z subset N ′ ⊆
{ni ∈ N(wc) | i ≤ x} such that N ′r := N(wc) \ N ′ “realizes” the remain-
tuple S′. It follows that D(deg(wc),deg(wc) − i, (0, . . . , 0)) ≤ k if and only if
(G,Vf , wc, k, i) is a yes-instance of AMDD. It is easy to verify that the size of

the D is bounded by deg(wc)
2 · (s∗v + 2)

s∗v (see also Observation 1).
One can show that the initialization and update step per entry can be ac-

complished in O((s∗v +2)s
∗
v ·n2 ·deg(wc)

2) time. Hence, together with the running
time for the overall branching into all subsets of a feedback vertex set, one ends
up with the following.

Theorem 3. Min-Degree Deletion can be solved in O((2s∗v + 4)s
∗
v · n4 ·

deg(wc)
2) time with s∗v being the size of a feedback vertex set not containing wc.

Parameter feedback edge set number. As discussed in the beginning of
this section, the feedback edge set number is the weakest of our parameters
measuring the tree-likeness of graphs. Hence, not surprisingly, we achieve our
best running time bounds here, based on kernelization and a simple search tree.

Our problem kernel result relies on the following “low-degree removal” proce-
dure. Let G = (V,E) be an undirected graph and k be a positive integer. Denote
by RLD(G, k) the graph resulting from the following data reduction: If deleting
all or all but one neighbors from wc leads to a solution (by iteratively deleting
all further vertices with degree at least zero/one), then return “yes”. Otherwise,
wc has degree at least two for every solution. Hence, iteratively remove every
vertex with degree at most two and decrease k accordingly. It is easy to verify
that RLD(G, k) is sound and can be executed in O(n2 · k) time. Note that every
vertex different from wc in RLD(G, k) has degree at least three.
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Theorem 4. Parameterized by the feedback edge set number se, Min-Degree
Deletion admits a 2se-vertex problem kernel which can be computed in O(n2 ·k)
time.

Proof. Let (G′, k′) := RLD(G, k), and let Ed be a size-se-feedback edge set for
G. The graph G−Ed is a forest. Since each vertex in G′ has degree at least three,
each leaf in G′−Ed must be incident to at least two edges in Ed. It follows that
G′ − Ed contains l ≤ se leaves because each leaf must be incident to two edges
of the feedback edge set and each edge of the feedback edge set can be incident
to at most two leaves. Furthermore, the number of incidences of the edges in Ed

is bounded from above by 2se. Each inner vertex of degree two in G′ −Ed must
be incident to at least one edge in Ed. Since there are l leaves in G′ − Ed, only
2se − 2l incidences are left over. Hence, G′ −Ed contains at most 2se − 2l inner
vertices with degree two. Moreover, all remaining vertices must have degree at
least three and a tree with l leaves can clearly have at most l such vertices.
Altogether, G′ consists of at most l + 2se − 2l + l = 2se vertices. ut

Finally, we complement Theorem 4 by a simple search tree algorithm which
can be interleaved with the data reduction procedure RLD(G, k). This yields the
following theorem.

Theorem 5. Min-Degree Deletion can be solved in O(2se ·se3 +n2 ·k) time,
where se is the feedback edge set number of the input graph.

2.2 Non-existence of a polynomial kernel

We show that, unless coNP ⊆ NP / poly, there is no polynomial kernel for MDD
with respect to the parameter s∗c :=“size of a vertex cover that does not contain
wc”. Since the treewidth tw and the feedback vertex set number sv of a graph
are bounded from above by s∗c , this non-kernelizable result carries over to these
two parameterizations.

Theorem 6. MDD does not admit a polynomial kernel with respect to the com-
bined parameter (s∗c , k), with s∗c being the size of a vertex cover not containing
wc and k being the solution size, unless coNP ⊆ NP / poly.

Proof. Our proof relies on a reduction from Hitting Set (HS) defined as fol-
lows. Given a set family S := {S∗1 , . . . , S∗m} over a universe U := {u∗1, . . . , u∗d}
and an integer k′ ≥ 0, HS asks for a subset U ′ ⊆ U with |U ′| ≤ k′ such that
S∗i ∩ U ′ 6= ∅ for every i, 1 ≤ i ≤ m. Herein, U ′ is called a hitting set.

Dom et al. [7] have shown that HS does not admit a problem kernel of size (d+
k′)O(1), unless coNP ⊆ NP /poly. Since HS and MDD are NP-complete, it di-
rectly follows from a result of Bodlaender et al. [5] that if there is a polynomial-
time reduction from HS to MDD such that (s∗c+k) ≤ (d+k′)O(1), then MDD does
not admit a polynomial kernel with respect to (s∗c , k) unless coNP ⊆ NP / poly.
In the following, we provide such a reduction.

Let (U, S, k′) be an HS-instance. We construct an undirected graph G =
(V,E) with a distinguished vertex wc as follows. The vertex set V is the disjoint
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union of the sets {wc}, VU , VS , C, and L. Herein, VU := {ui | u∗i ∈ U}, VS :=
{sj | S∗j ∈ S}, C := {c1, . . . , ck′+1}, and L := {l1, . . . , ld}. The edge set is
constructed as follows. There is an edge between ui and sj if and only if u∗i ∈ S∗j .
Moreover, the following edges are added to adjust the degree of wc to d and, for
each other vertex, to at least k′ + 1. First, wc is made adjacent to every vertex
in VU . Furthermore, C is transformed into a clique, and each li, 1 ≤ i ≤ d, is
made adjacent to each vertex in C. Finally, each vertex x ∈ VU ∪ VS is made
adjacent to k′ arbitrarily chosen vertices of C. This completes the construction.

Now, observe that each edge of G is incident to a vertex in C ∪VU . Hence, G
has a vertex cover of size k′+1+d which does not contain wc. For the correctness
of the reduction it remains to show that (U,S, k′) is a yes–instance of HS if and
only if (G,wc, d− k′) is a yes–instance of MDD.
“⇒”: Let U ′ ⊆ U with |U ′| = k′ denote a hitting set of S. We show that
M := {uj | u∗j ∈ U \ U ′} is a solution for (G,wc, d− k′). First, observe that wc

has degree k′ in G −M . Moreover, since U ′ is a hitting set, every vertex in VS
has at least one neighbor in VU \M , and, hence, degree at least k′+ 1 in G−M .
For this reason and since we do not delete a neighbor of L ∪ C, each vertex
in V \ {wc} has degree at least k′ + 1. Hence, (G,wc, d− k′) is a yes-instance of
MDD.
“⇐”: Let M ⊆ V with |M | ≤ d− k′ denote a solution for (G,wc, d− k′). First,
we argue that wc has degree k′ in G−M . Clearly, wc cannot have degree smaller
than k′. Furthermore, wc cannot have degree more than k′ in G−M ; otherwise,
since wc is the only vertex with minimum degree in G−M and each vertex in L
has degree k′+ 1, M must contain every vertex in L. However, |L| = d > d− k′.
Thus, degG−M (wc) = k′ and, as a consequence, M ⊆ VU and |M | = d− k′.

Next, we show that U ′ := {u∗i ∈ U | ui ∈ VU \M} is a hitting set of size k′.
By the observation above, |U ′| = k′. Assume towards a contradiction that there
is a set S∗j , 1 ≤ j ≤ m, with S∗j ∩ U ′ = ∅. Thus, for each element u∗i ∈ S∗j the
corresponding vertex ui is in M . Due to the construction of G, vertex sj has
degree k′ in G−M ; since degG−M (wc) = k′ this contradicts the fact that wc is
the only vertex with minimum degree. ut

Since the treewidth and the feedback vertex set of a graph are bounded from
above by s∗c , we arrive at the following.

Corollary 1. MDD has no polynomial problem kernel with respect to the pa-
rameters feedback vertex set and treewidth, respectively, unless coNP ⊆ NP / poly.

3 Min-Indegree Deletion

In this section, we show that MID is W[2]-hard with respect to the parameter
feedback arc set number sa. We provide a parameterized reduction from the
W[2]-complete Dominating Set (DS) problem [8]. Given an undirected graph
and an integer k, DS asks whether there is a size-k subset V ′ ⊆ V such that
every vertex from V is contained in V ′ or has a neighbor in V ′. A corresponding
subset is denoted as dominating set.
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Theorem 7. Min-Indegree Deletion is W[2]-hard with respect to the feed-
back arc set number sa.

Proof. Given a DS-instance (G∗ = (V ∗, E∗), k) with V ∗ = {v∗1 , v∗2 , . . . , v∗n}, we
construct a directed graph G = (W,E) with feedback arc set number at most (k+
1)2 such that (G,wc, n − k) is a yes-instance of MID if and only if (G∗, k) is a
yes-instance of DS.

The vertex set W of G consists of wc and the union of the following disjoint
vertex sets. The sets V := {vi | v∗i ∈ V ∗} and D := {di | v∗i ∈ V ∗} representing
the vertices of G and four sets of auxiliary vertices, namely a set S containing
n vertices and three sets X, Y , and Z, each containing k + 1 vertices. The arcs
of G are as follows.

– One arc from vi to dj if and only if v∗j ∈ N [v∗i ].
– One arc from each vertex in V to wc.
– One arc from each vertex in X to each vertex in Y , from each vertex in Y

to each vertex in Z, and from each vertex in Z to each vertex in X.
– One arc from each of k arbitrarily chosen vertices in Y to each vertex in D.
– One arc from each vertex in Y to each vertex in V .
– One arc from each vertex in X to each vertex in S.

It follows directly from the construction that the distinguished vertex wc has
indegree n and each vertex in V ∪ X ∪ Y ∪ Z ∪ S has indegree k + 1. Since
each vertex di has one ingoing arc from vi and k ingoing neighbors from Y , the
vertices in D have indegree at least k + 1.

Furthermore, it is easy to verify that (W,E \ (X × Y )) is acyclic and, since
|X| = |Y | = k + 1, the feedback arc set number sa is at most (k + 1)2. This
finishes the description of the construction. It remains to prove the correctness.

Claim: (G∗, k) is a yes-instance of DS if and only if (G,wc, n−k) is a yes-instance
of MID.

“⇒”: Let V ∗d ⊆ V ∗ be a size-k dominating of G∗. We show that Md := {vi ∈
V | v∗i /∈ V ∗d } is a solution for MID. Since |Md| = n − k and wc has indegree n
in G, wc has indegree k in G−Md. We show that all other vertices have degree
at least k + 1. By construction, every vertex in G has indegree at least k + 1.
Since from the vertices in V ∗d there are only arcs to D ∪ {wc}, only vertices
from D∪{wc} can have smaller indegrees in G−Md than in G. Because V ∗d is a
dominating set, every di has at least one in-neighbor within V \Md. Moreover,
every di has k further in-neighbors in Y . Hence, each vertex in D has indegree
at least k + 1. Thus, (G,wc, n− k) is a yes-instance of MID.

“⇐”: Consider a yes-instance (G,wc, n−k) of MID with solution Md. We show
that V ∗d := {v∗i ∈ V ∗ | vi ∈ V \Md} is a size-k dominating set of G∗.

We first prove that V ∗d has cardinality k. To this end, we show by contradic-
tion that the indegree of wc in G−Md is k and hence Md contains only vertices
from V . Assume that wc has indegree at least k + 1 in G −Md. Then, every
other vertex must have indegree greater than k+1 in G−Md. Since every vertex
in S has indegree exactly k + 1, it follows that S ⊆ Md and hence |Md| ≥ n; a
contradiction. Consequently, |V ∩Md| = n− k and, hence, V ∗d has cardinality k.
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It remains to show that V ∗d is a dominating set. Assume that there is a
vertex v∗i ∈ V ∗ not dominated by any vertex in V ∗d . This implies that di has
no in-neighbor from V in G − Md. Moreover, by construction, di has only k
in-neighbors in G− V . As argued above, di is not in Md since Md contains only
vertices from V . Hence, di and wc have indegree k in G−Md; a contradiction.

In the remainder of this section, we show fixed-parameter tractability of MID
with respect to the combined parameter feedback vertex set number sv and
number k of vertices to be deleted. The corresponding branching algorithm relies
on the following lemma.

Lemma 1. For a yes-instance (G = (V,E), wc, k) of MID, the indegree of wc

in G is at most k + sv, where sv denotes the feedback vertex set number of G.

Proof. The proof is by contradiction. Let Vf ⊆ V be a feedback vertex set of
size sv. Assume that degin(wc) > sv +k. For every subgraph G′ of G obtained by
deleting k vertices from G−{wc}, one can make the following two observations.
First, since G′ − Vf is acyclic, there must be a vertex v with indegree zero
in G′ − Vf . Hence, the indegree of v in G′ is at most sv (in case that v has one
ingoing arc from every vertex in Vf ). Second, since degin(wc) > sv + k in G,
it follows that degin(wc) > sv in G′. Consequently, there is no size-k subset of
vertices that can be deleted from G such that wc is a vertex with minimum
indegree; a contradiction to the fact that (G = (V,E), wc, k) is a yes-instance.

ut

Now, by applying an algorithm branching on all up-to-size-k subsets of the
in-neighborhood of wc and checking whether a corresponding subset can be ex-
tended to a solution, one arrives at the following theorem.

Theorem 8. Min-Indegree Deletion can be solved in O((k + 1)sv · sv · n2)
time.

4 Conclusion

We introduced the NP-hard vertex deletion problem Min-Degree Deletion
on undirected graphs. For Min-Degree Deletion and its directed counter-
part Min-Indegree Deletion we provided several results concerning their
fixed-parameter tractability with respect to the parameter solution size and sev-
eral parameters measuring the input graph’s tree-likeness (see Table 1 in the
introductory section for an overview). There remain numerous opportunities for
future research. For example, the fixed-parameter tractability results for Min-
Degree Deletion for the parameter treewidth as well as for the parameter
feedback vertex set are far from any practical relevance. For these parameteri-
zations it would be interesting to complement our classification results by direct
combinatorial algorithms. Moreover, we are not aware of studies concerning the
polynomial-time approximability of both problems.
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