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Motivation

Voting scenarios arise in many situations:

political elections

committees: decisions about job applicants

web site rankings

recommender systems

choice of restaurant

. . .
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Motivation

Typical voting scenario for joint decision making:

Voters give preferences over a set of candidates as linear orders.

Example: candidates: C = {a, b, c , d}
profile: vote 1: a > b > c > d

vote 2: a > d > c > b
vote 3: b > d > c > a

Aggregate preferences according to a voting rule

Voting rules mainly considered in this work: Scoring rules
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Scoring rules

Examples:

plurality: (1, 0, . . . , 0)

2-approval: (1, 1, 0, . . . , 0)

veto: (1, . . . , 1, 0)

Borda: (m − 1,m − 2, . . . , 0)

Formula 1 scoring: (25, 18, 15, 12, 10, 8, 6, 4, 2, 1, 0, . . . , 0)

For m candidates, a scoring vector (α1, α2, . . . , αm) provides a
scoring value for every position.

The scoring values of every candidate are summed up and the
candidate with the highest score wins.
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Partial information

In the typical model, votes need to be presented as linear orders.

Realistic settings: voters may only provide partial information.

For example:

not all voters have given their preferences yet

new candidates are introduced

a voter cannot compare several candidates because of lack of
information

How to deal with partial information?
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How to deal with partial information?

Previous work [Konczak and Lang 2005], [Walsh, AAAI 2007], [Xia and

Conitzer, AAAI 2008], [Betzler, Hemman, and Niedermeier, IJCAI 2009], ...

Possible Winner problem:
Is there an extension in which a designated candidate wins?

Necessary Winner problem:
Does a designated candidate win in every extension?

This work

In how many extensions does a designated candidate win?
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Partial vote

A partial vote is a transitive and antisymmetric relation.

Example: C = {a, b, c , d}
partial vote: a � b � c , a � d bd

a

c

possible extensions:

1 a > d > b > c

2 a > b > d > c

3 a > b > c > d

An extension of a profile of partial votes extends every partial vote.
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Problems

Setting: unweighted votes

#Possible Winner

Given: Voting rule r , a partial profile on a set of candidates, a
designated candidate.
Question: In how many extensions of the partial profile does the
designated candidate win according to r?

Special case: #Manipulation
Input consists of a set of linear and a set of empty votes.
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Overview of Main Results

Exact solutions

#Possible-Winner:
#P-hardness (or NP-hardness) for all scoring rules.

#Manipulation:
Polynomial-time dynamic programming algorithm for a class
of scoring rules.

Randomized approximation
Polynomial-time sampling algorithm approximating the proportion
of the number of extensions in which the designated candidate
wins.

(In contrast: other works investigate how likely manipulation is “in
general” for a specific voting system [Xia and Conitzer, EC 2008],
[Friedgut et al., FOCS 2008], ... )
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#Possible Winner

Necessary Winner can be solved in polynomial time for all
scoring rules. [Xia and Conitzer, AAAI 2008]

Possible Winner can be solved in polynomial time for
plurality and veto and is NP-hard for every other reasonable
scoring rule. [Baumeister and Rothe, ECAI 2010], [Betzler and

Dorn, JCSS], [Xia and Conitzer, AAAI 2008]

New results for the counting version:

Theorem

#Possible Winner is #P-hard for plurality and veto even if
there is only one partial vote, or
at most one undetermined pair per vote.
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#Manipulation

Manipulation under scoring rules for unweighted votes and
unbounded number of candidates:

NP-hardness for a specific scoring rule [Xia et al., EC 2010]

some easy-to-see polynomial-time solvability results

open cases such as Borda

Many results for other voting systems and other scenarios.

Theorem

For constant k , #Manipulation can be solved in polynomial
time for k-valued scoring rules.

k-valued scoring rule: all but k candidates get the same number of
points in a vote
Examples: k-approval, (25, 18, 15, 12, 10, 8, 6, 4, 2, 1, 0, . . . , 0)
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Randomized approximation

Input:

polynomial-time computable voting rule

a partial profile and a designated candidate

positive rational numbers δ (error probability) and ε
(approximation guarantee)

Output:
a value α such that the proportion of extensions in which the
designated candidate wins is within [α− ε, α + ε] with probability
at least 1− δ.

Running time:
polynomial in “size of partial profile”, 1/ε, and log 1/δ
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Sampling algorithm

Input: Partial profile, a designated candidate, δ, ε
Output: “randomized approximation” of the propertion of
“winning extensions”

x := 0

for i = 1 to r :=

⌈
ln 2

δ

2 ε2

⌉
choose a random linear extension of the partial profile
if the designated candidate wins

x = x + 1
Return x

r

uniformly sampling linear votes can be done in O(n3 log n) time
[Huber, Disrete Mathematics 2006]

performance guarantee: follows from Hoeffding’s inequality
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Overview Results

#Possible-Winner:

#P-hardness for plurality and veto

Polynomial-time sampling algorithm approximating the
proportion of the number of extensions in which the
designated candidate wins.

#Manipulation:

Polynomial-time dynamic programming algorithm for k-valued
scoring rules.

(Polynomial-time solvability results for #Manipulation
under plurality with run-off, cup voting with a fixed agenda in
general and scoring rules in case of coalition size one.)

Nadja Betzler (Universität Jena) 14/16



Introduction Main Results Conclusion

Open questions

dynamic programming algorithm for k-valued scoring rules has a
running time of O(s f (k)) for a profile of size s:
Can this be improved to sO(1) · f (k)?

Study of #Possible Winner for other scoring rules such as Borda,
Bucklin, or Copeland

The sampling algorithm assumes that all extensions appear with
the same probability. What about more realistic models?
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Thank You
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