How similarity helps to efficiently compute Kemeny rankings.

Nadja Betzler
Friedrich-Schiller-Universität Jena

joint work with
Michael R. Fellows, Jiong Guo, Rolf Niedermeier, and Frances A. Rosamond

AAMAS 2009
Rank aggregation/Kemeny rankings

- **Meta-search engines**
 How to aggregate the results of several search engines into a consensus ranking?

- **Recommendation scenarios**
 How to aggregate viewers’ rankings of movies?
 How to aggregate rankings based on different criteria, like price, quality, . . . ?

- **Sports and competitions**
 How to aggregate the results of different competitions to determine the winner of a season?

- **Data base middleware**
 How to aggregate results from multiple databases?

- . . .
Kemeny ranking

Election

Set of votes V, set of candidates C.
A vote is a ranking (total order) over all candidates.

Example: $C = \{a, b, c\}$
- vote 1: $a > b > c$
- vote 2: $a > c > b$
- vote 3: $b > c > a$

How to aggregate the votes into a “consensus ranking”?
KT-distance (between two votes v and w)

$$
\text{KT-dist}(v, w) := \sum_{\{c,d\} \subseteq C} d_{v,w}(c, d),
$$

where $d_{v,w}(c, d)$ is 0 if v and w rank c and d in the same order, 1 otherwise.

Example:

$v : a > b > c$

$w : c > a > b$

$$
\text{KT-dist}(v, w) = d_{v,w}(a, b) + d_{v,w}(a, c) + d_{v,w}(b, c)
= 0 + 1 + 1
= 2
$$
Kemeny Consensus

Kemeny score of a ranking r:
sum of KT-distances between r and all votes

Kemeny consensus r_{con}:
a ranking that minimizes the Kemeny score

$v_1 : a > b > c$ \hspace{1cm} KT-dist(r_{con}, v_1) = 0
$v_2 : a > c > b$ \hspace{1cm} KT-dist(r_{con}, v_2) = 1 because of $\{b, c\}$
$v_3 : b > c > a$ \hspace{1cm} KT-dist(r_{con}, v_3) = 2 because of $\{a, b\}$ and $\{a, c\}$

$r_{con} : a > b > c$ \hspace{1cm} Kemeny score: $0 + 1 + 2 = 3$
Motivation

Applications:

- internet: meta search engines, spam detection
 [Dwork et al., WWW 2001]
- databases
 [Fagin et al., SIGMOD, 2003]
- bioinformatics
 [Jackson et al., IEEE/ACM Transactions on Computational Biology and Bioinformatics 2008]

Kemeny is the only voting system that is
- neutral,
- consistent, and
- Condorcet.
Known results

Kemeny Score is NP-complete (even for 4 votes)
[Dwork et al., WWW 2001]

 Algorithms:

- randomized factor $11/7$-approximation
 [Ailon et al., J. ACM 2008]
- factor $8/5$-approximation
 [van Zuylen and Williamson, WAOA 2007]
- PTAS [Kenyon-Mathieu and Schudy, STOC 2007]
- Heuristics; greedy, branch and bound
 [Davenport and Kalagnanam, AAAI 2004],
 [Conitzer et al., AAAI 2006]
Parameterized Complexity

Given an NP-hard problem with input size n and a parameter k

Basic idea: Confine the combinatorial explosion to k

A problem of size n is called *fixed-parameter tractable* with respect to a parameter k if it can be solved in $f(k) \cdot n^{O(1)}$ time.
Parameterizations of Kemeny Score

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of votes n</td>
<td>[Dwork et al. WWW 2001]</td>
<td>NP-c for $n = 4$</td>
</tr>
<tr>
<td>Number of candidates m</td>
<td>[Betzler et al. AAIM 2008]</td>
<td>$O^*(2^m)$</td>
</tr>
<tr>
<td>Kemeny score k</td>
<td>[Betzler et al. AAIM 2008]</td>
<td>$O^*(1.53^k)$</td>
</tr>
</tbody>
</table>

Further "structural" parameters:

- Maximum range

 $r_m := \max_{c \in C} \text{range}(c)$

 $O^*(32^{r_m})$

- Average range r_a

 $O^*(2^{r_a})$ for $r_a \geq 2$

- Average KT-distance

 $O^*(1.53^k)$
Parameterizations of Kemeny Score

Number of votes n [Dwork et al. WWW 2001] \[\text{NP-c for } n = 4\]
Number of candidates m [Betzler et al. AAIM 2008] \[O^*(2^m)\]
Kemeny score k [Betzler et al. AAIM 2008] \[O^*(1.53^k)\]

Further “structural” parameters:

Maximum range $r_m := \max_{c \in C} \text{range}(c)$ \[O^*(32^{r_m})\]
Average range r_a \[\text{NP-c for } r_a \geq 2\]
Parameterizations of Kemeny Score

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula/Description</th>
<th>Complexity/Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of votes n</td>
<td>n</td>
<td>NP-c for $n = 4$</td>
</tr>
<tr>
<td>Number of candidates m</td>
<td>$O^*(2^m)$</td>
<td></td>
</tr>
<tr>
<td>Kemeny score k</td>
<td>$O^*(1.53^k)$</td>
<td></td>
</tr>
</tbody>
</table>

Further “structural” parameters:

- Maximum range $r_m := \max_{c \in C} \text{range}(c)$
 - $O^*(32^{r_m})$
- Average range r_a
 - NP-c for $r_a \geq 2$

Average KT-distance
Average KT-distance

Recall: The KT-distance between two votes is the number of inversions or “conflict pairs”.

Definition

For an election \((V, C)\) the average KT-distance \(d_a\) is defined as

\[
d_a := \frac{1}{n(n-1)} \cdot \sum_{\{u,v\} \in V, u \neq v} \text{KT-dist}(u, v).
\]

In the following, we show that KEMENY SCORE is fixed-parameter tractable with respect to the “average KT-distance”.

Nadja Betzler (Universität Jena) How similarity helps to efficiently compute Kemeny rankings. 10/17
Complementarity of parameterizations

- Number of candidates m: $O^*(2^m)$
- Maximum range r of candidate positions in the input votes: $O^*(32^r)$
- Average distance of the input votes: $O^*(16^d_a)$

($m \geq r$, but corresponding algorithm has a better running time)
Complementarity of parameterizations

- Number of candidates m: $O^*(2^m)$
- Maximum range r of candidate positions in the input votes: $O^*(32^r)$
- Average distance of the input votes: $O^*(16^d_a)$

($m \geq r$, but corresponding algorithm has a better running time)

Example 1: small range, large number of candidates and average distance

Example 2: small average distance, large number of candidates and range

\Rightarrow check size of parameter and then use appropriate strategy
Basic idea

Average distance d_a.

Crucial observation

In every Kemeny consensus every candidate can only assume a number of consecutive positions that is bounded by $2 \cdot d_a$.

Dynamic programming

making use of the fact that every candidate can be “forgotten” or “inserted” at a certain position.
Crucial observation

Let the average position of a candidate c be $p_a(c)$.

Lemma

Let d_a be the average KT-distance of an election (V, C). Then, in every optimal Kemeny consensus r_{con}, for every candidate $c \in C$ we have $p_a(c) - d_a < r_{con}(c) < p_a(c) + d_a$.
Crucial observation

Let the average position of a candidate \(c \) be \(p_a(c) \).

Lemma

Let \(d_a \) be the average KT-distance of an election \((V, C)\). Then, in every optimal Kemeny consensus \(r_{\text{con}} \), for every candidate \(c \in C \) we have \(p_a(c) - d_a < r_{\text{con}}(c) < p_a(c) + d_a \).

Idea of proof:

1. “The Kemeny score of \((V, C)\) is smaller than \(d_a \cdot |V| \).”

 We show that one of the input votes has this Kemeny score.

2. Contradiction: Assume a candidate has a position outside the given range. Then, we can show that the Kemeny score is greater than \(d_a \cdot |V| \), a contradiction.
Dynamic programming

One can show that the set P_i of candidates that can take a position i has size at most $4d_a$.

$P_i = \{a, b, c, d, e, f\}$

Observation:
For any position i and a subset P_i of candidates that can assume i:

- One candidate of P_i must assume position i in a consensus.
- Every other candidate of P_i must be either left or right of i.
Running time

n votes
m candidates

$P_i = \{a, b, c, d, e, f\}$

<table>
<thead>
<tr>
<th>consensus</th>
<th>${a, b}$</th>
<th>c</th>
<th>${d, e, f}$</th>
</tr>
</thead>
</table>

We have $|P_i| \leq 4d_a$, thus there are at most 2^{4d_a} subsets of P_i.

\Rightarrow Table size is bounded by $16^{d_a} \cdot \text{poly}(n, m)$.

Theorem

Kemeny Score can be solved in $O(16^d \cdot \text{poly}(n, m))$ time with average KT-distance d_a and $d := \lceil d_a \rceil$.
Overview of parameterized complexity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of votes n [Dwork et al. WWW 2001]</td>
<td>$\text{NP-c for } n = 4$</td>
</tr>
<tr>
<td>Kemeny score k</td>
<td>$O^*(1.53^k)$</td>
</tr>
<tr>
<td>Number of candidates m</td>
<td>$O^*(2^m)$</td>
</tr>
<tr>
<td>Maximum range of candidate positions r</td>
<td>$O^*(32^r)$</td>
</tr>
<tr>
<td>Average range of candidate positions r_a</td>
<td>$\text{NP-c for } r_a \geq 2$</td>
</tr>
<tr>
<td>Average KT-distance d_a</td>
<td>$O^*(16^{d_a})$</td>
</tr>
</tbody>
</table>
Outlook

- Average distance: investigate typical values.
- Improve the running time for the parameterizations “average distance” and “maximum candidate range”.
- Implementation of the algorithms is under way.
- Consider generalizations like incomplete votes and ties.
- NP-completeness of KEMENY SCORE with 3 votes?