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Motivation

Voting scenarios arise in many situations:

political elections

committees: decisions about job applicants
web site rankings

recommender systems

choice of restaurant
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Motivation

Typical voting scenario for joint decision making:

Voters give preferences over a set of candidates as linear orders.
Example: candidates: C = {a, b, c,d}
profile: wvotel: a > b > c

>
vote2: a > d > ¢ > b
vote3: b > d > ¢ >

Aggregate preferences according to a voting rule

Kind of voting rules considered in this work: Scoring rules
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Scoring rules

Examples:
plurality: (1,0,...,0)
2-approval: (1,1,0,...,0)

°
e veto: (1,...,1,0)
°
°

Borda: (m—1,m—2,...,0)
Formula 1 scoring: (10,8,6,5,4,3,2,1,0,...,0)

For m candidates, a scoring vector (a1, ag, ..., am) with
ay > ap > - > ap and ap, = 0 provides a scoring value for every
position.

The scoring values of every candidate are summed up and the
candidate with the highest score wins.
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Scoring rules

m candidates: scoring vector (a1, ag, ..., am) with
a1 > ag, > > amand an =0

Scoring rule

provides a scoring vector for every number of candidates.

@ non-trivial: a3 # 0

@ pure: the scoring vector for i candidates can be obtained from
the scoring vector for i — 1 candidates by inserting an
additional score value at an arbitrary position

Example:

3 candidates: (6, 3,0)

4 candidates: pure: (6,3,3,0), (6,5,3,0), (8,6,3,0),...
not pure: (6,6,0,0)
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Partial information

Recall: In the typical model, votes need to be presented as linear
orders.

Realistic settings: voters may only provide partial information.
For example:

@ not all voters have given their preferences yet

@ new candidates are introduced

@ a voter cannot compare several candidates because of lack of
information

How to deal with partial information?

We consider the question if a distinguished candidate can still win.
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Partial vote

A partial vote is a transitive and antisymmetric relation.

Example: C ={a, b, c,d} a

partial vote: a> b > c,a>d d g O/Ob

C

possible extensions:

Q@a>d>b>c
Q@ a>b>d>c
©@ a>b>c>d

An extension of a profile of partial votes extends every partial vote.
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Computational Problem

PossiBLE WINNER

Input: A voting rule r, a set of candidates C, a profile of partial
votes, and a distinguished candidate c.

Question: |s there an extension profile where ¢ wins according
to r?

The NECESSARY WINNER problem asks for a candidate that wins
in every extension.

For scoring rules, NECESSARY WINNER can be solved in
polynomial time [Xia anp Conrrzer, AAAT 2008] for unweighted voters.
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Known results for scoring rules

Two studied scenarios for POSSIBLE WINNER:

© weighted voters:
Dichotomy for the special case of MANIPULATION
[HEMASPAANDRA AND HEMASPAANDRA, JCSS 2007]
= NP-complete for all scoring rules except plurality (holds
even for a constant number of candidates)

@ unweighted voters:
a) constant number of candidates: always polynomial time
[CONITZER, SANDHOLM, AND LANG, JACM 2007]
b) unbounded number of candidates:
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Known results for scoring rules

unweighted voters + unbounded number of candidates:

@ NP-complete for scoring rules that fulfill the following:
[X1a AND CONITZER, AAAT 2008]
there is a position b with

Qp — Qpt1 = Opy1 — Apy2 = Opy2 — Opy3
and
Qpy3 > Qpyg

Examples: (...,6,5,4,3,0,...), (...,17,14,11,8,7,...)
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Known results for scoring rules

unweighted voters + unbounded number of candidates:

@ NP-complete for scoring rules that fulfill the following:
[X1a AND CONITZER, AAAT 2008]
there is a position b with

Op — Opy] = Opyl — Apy2 = Opy2 — Apy3
and
Qpy3 > Qpyg
Examples: (...,6,5,4,3,0,...), (...,17,14,11,8,7,...)
@ Parameterized complexity study for some scoring rules:
[BETZLER, HEMMANN, AND NIEDERMEIER, [LJCAI 2009]
k-approval is NP-hard for two partial votes when k is part of
the input
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Theorem
For non-trivial pure scoring rules, POSSIBLE WINNER is

@ polynomial-time solvable for plurality and veto,
@ open for (2,1,...,1,0), and

@ NP-complete for all other cases.

Examples for new results:
@ 2-approval: (1,1,0,...)
@ voting systems in which one can specify a small group of

favorites and a small group of disliked candidates, like
(2,2,2,1,...,1,0,0) or (3,1,...,1,0)
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Example: C = {a, b, ¢, d}, distinguished candidate ¢

Vi
V2
V3

Vs o

ra=c-d,b>c
cc=a=b
ta-d>b
Vg .

a-b=c
a-c,b>d
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Example: C = {a, b, ¢, d}, distinguished candidate ¢

Vi

V3

Vg .
Vs o

ra=c-d,b>c
Vo o

cc=a=b =c>a>b>d
ra=-d>=b =c>a>d>b
a-b=c

a-c,b>d

Step I: Maximize score of ¢
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Plurality

Example: C = {a, b, ¢, d}, distinguished candidate ¢
vw:a-c>=d,b>c

w:c=a>b =c>a>b>d
vs:a-d=b =c>a>d>b
vs:ar-b>c

Vs :a>=c,b-d
Step |: Maximize score of ¢
Step Il: Network flow Vi 1 a

score(c) - 1

source target

(c)-1

score(c) - 1
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Plurality

Example: C = {a, b, ¢, d}, distinguished candidate ¢
vw:a-c>=d,b>c

w:c=a=b
vz:a>=d>=b
vs:ar-b>c
Vvs:a-c,b>=d
Step |: Maximize score of ¢

Step II: Network flow
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source

Results
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=>a>b>c>d
=c>a>b>d
=c>a>d>b
=d>a>b>c
=b>a>c>d

Vi

Conclusion
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2-approval

Example: C = {a, b, ¢, d}, distinguished candidate ¢
vi:as=c>=d,b>c
w:c=a=b
vs:a-d>b source
vs:a-b=c
vs:a=-c,b>=d

target

Why does the network flow strategy not work for 2-approval, that
is (1,1,0,...)? l
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2-approval

Example: C = {a, b, ¢, d}, distinguished candidate ¢

vi:a=c>=d,b>c g 1 .2

score(c) - 1
vwic>=as=b 1 o
V3. a b d ~ b source target

vs:a-b>c
vs:a=-c,b>=d

(,1

Why does the network flow strategy not work for 2-approval, that ’

Vs

is (1,1,0,...)?

The two “one-point positions” within a partial vote cannot be
chosen independently

for example, in vs:

setting d to a one-point position implies that candidate a must
also take a one-point position
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Basic idea of the NP-hardness proofs

Different types of many-one reductions are combined to one
reduction that works for all of the stated scoring rules.

Types of reductions:

© for an “unbounded number of positions with different score
values”,
eg. (m—1,m—-2,...,1,0)

@ for an “unbounded number h of equal positions”,
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Basic idea of the NP-hardness proofs

Different types of many-one reductions are combined to one
reduction that works for all of the stated scoring rules.

Types of reductions:

© for an “unbounded number of positions with different score
values”,
eg. (m—1,m—-2,...,1,0)
@ for an “unbounded number h of equal positions”,
that is, there must be a position / such that one of the
following cases hold
a) Qf 2 Qjp] > Qg2 = Qjtp, €.8. (1, 1,0,.. )
b) aj_p = i > ajy1 > @i, eg. (1,...,1,0,0)
C)ar #£ap=am-1#amar #2-az, eg. (3,1,...,1,0)
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What about non-pure scoring rules?

Theorem
For non-trivial pure scoring rules, POSSIBLE WINNER is

@ polynomial-time solvable for plurality and veto,
@ open for (2,1,...,1,0), and

@ NP-complete for all other cases.

Problem: scoring rules which have “easy” scoring vectors for nearly
all number of candidates and still “hard” scoring vectors for some
unbounded numbers of candidates

Property of pure scoring rules: can never go back to an easy vector
Examples: (1,0,0), (1,1,0,0) — not (1,0,0,0,0)
(1,1,1,0), (2,1,1,1,0),...

Nadja Betzler (Universitat Jena) 16/17



What about (2,1,...,1,0)?

In how many extension does a distinguished candidate win?

Parameter number of candidates: combinatorial algorithm?
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