Parameterized Complexity of Voting Systems

Nadja Betzler
Friedrich-Schiller-Universität Jena

joint work with
Michael R. Fellows, Jiong Guo, Rolf Niedermeier,
and Frances A. Rosamond

Theorietag, Februar 2009, Ulm
Applications

Voting scenarios:

- political elections
- committees: decisions about job applicants, grant proposals
- meta search engines, recommender systems
- daily life: choice of restaurant
Applications

Voting scenarios:
- political elections
- committees: decisions about job applicants, grant proposals
- meta search engines, recommender systems
- daily life: choice of restaurant

Different goals:
- single winner
- set of winners
- ranking of all candidates
- decisions on several (dependent) subjects
How to determine a winner?

Election

Set of votes V, set of candidates C.

A vote is a ranking (total order) over all candidates.
How to determine a winner?

Election

Set of votes V, set of candidates C.

A vote is a ranking (total order) over all candidates.

many different kinds of **voting systems**

2 important groups:

positional scoring protocols

Borda, plurality, . . .

based on pairwise head-to-head contests

Condorcet, Copeland, sequential majority voting, . . .
Computational problems

Examples:

Computation of a/the winner

“Behavior” of voting systems
- Strategic voting/Manipulation (Gibbarth-Satterwaith Theorem)
- Electoral control
- Bribery, lobbying, . . .

Dealing with incomplete information
Possible Winner and Necessary Winner
Kemeny ranking

Election

Set of votes V, set of candidates C.
A vote is a ranking (total order) over all candidates.

Example: $C = \{a, b, c\}$

- vote 1: $a > b > c$
- vote 2: $a > c > b$
- vote 3: $b > c > a$

How to aggregate the votes into a “consensus ranking”?
KT-distance (between two votes v and w)

$$KT\text{-}dist(v, w) := \sum_{\{c,d\} \subseteq C} d_{v,w}(c, d),$$

where $d_{v,w}(c, d)$ is 0 if v and w rank c and d in the same order, 1 otherwise.

Example:

$v : a > b > c$

$w : c > a > b$

$$KT\text{-}dist(v, w) = d_{v,w}(a, b) + d_{v,w}(a, c) + d_{v,w}(b, c)$$
$$= 0 + 1 + 1$$
$$= 2$$
Kemeny Consensus

Kemeny score of a ranking \(r \):
sum of KT-distances between \(r \) and all votes

Kemeny consensus \(r_{con} \):
a ranking that minimizes the Kemeny score

\[\begin{align*}
 v_1 : & \quad a > b > c \quad \text{KT-dist}(r_{con}, v_1) = 0 \\
 v_2 : & \quad a > c > b \quad \text{KT-dist}(r_{con}, v_2) = 1 \quad \text{because of } \{b, c\} \\
 v_3 : & \quad b > c > a \quad \text{KT-dist}(r_{con}, v_3) = 2 \quad \text{because of } \{a, b\} \text{ and } \{a, c\}
\end{align*} \]

\[r_{con} : \quad a > b > c \quad \text{Kemeny score: } 0 + 1 + 2 = 3 \]
Motivation

Applications:

- ranking of web sites (meta search engines), spam detection
 [Dwork et al., WWW 2001]
- databases
 [Fagin et al., SIGMOD, 2003]
- bioinformatics
 [Jackson et al., IEEE/ACM Transactions on Computational Biology and Bioinformatics 2008]

Only voting system that is
- neutral,
- consistent, and
- Condorcet.
Decision problems

Kemeny Score

Input: An election \((V, C)\) and a positive integer \(k\).

Question: Is the Kemeny score of \((V, C)\) at most \(k\)?

Kemeny Winner

Input: An election \((V, C)\) and a distinguished candidate \(c\).

Question: Is there a Kemeny consensus in which \(c\) is at the “best” position?

\[
\begin{align*}
\text{vote 1:} & \quad a > b > c \\
\text{vote 2:} & \quad a > c > b \\
\text{vote 3:} & \quad b > c > a \\
\text{Kemeny consensus:} & \quad a > b > c
\end{align*}
\]

Kemeny score = 0 + 1 + 2 = 3
Kemeny winner: a
Known results

- **Kemeny Score** is NP-complete (even for 4 votes)
 [Dwork et al., WWW 2001]
- **Kemeny Winner** is P^{NP}-complete
 [E. Hemaspaandra et al., TCS 2005]

Algorithms:

- randomized factor 11/7-approximation
 [Ailon et al., J. ACM 2008]
- factor 8/5-approximation
 [van Zuylen and Williamson, WAOA 2007]
- PTAS [Kenyon-Mathieu and Schudy, STOC 2007]
- Heuristics; greedy, branch and bound
 [Davenport and Kalagnanam, AAAI 2004],
 [Conitzer et al. AAAI, 2006]
Given an NP-hard problem with input size n and a parameter k

Basic idea: Confine the combinatorial explosion to k

Definition

A problem of size n is called *fixed-parameter tractable* with respect to a parameter k if it can be solved exactly in $f(k) \cdot n^{O(1)}$ time.
Parameterizations of Kemeny Score

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of votes n</td>
<td>n [Dwork et al. WWW 2001]</td>
</tr>
<tr>
<td>NP-c for $n = 4$</td>
<td>$O^*(2^m)$</td>
</tr>
<tr>
<td>Number of candidates m</td>
<td></td>
</tr>
<tr>
<td>Kemeny score k</td>
<td>$O^*(1.53^k)$</td>
</tr>
</tbody>
</table>

Further "structural" parameters:

- Position range
- Maximum range
- Average range
- Average KT-distance

Max range $r_m := \max_{c \in C} \text{range}(c) \leq O^*(32r_m)$
Parameterizations of Kemeny Score

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of votes n</td>
<td>$\text{NP-c for } n = 4$ $O^*(2^m)$</td>
</tr>
<tr>
<td>Number of candidates m</td>
<td>$O^*(1.53^k)$</td>
</tr>
<tr>
<td>Kemeny score k</td>
<td></td>
</tr>
</tbody>
</table>

Further “structural” parameters:

- **Maximum range** $r_m := \max_{c \in C} \text{range}(c)$ $O^*(32^{r_m})$
- **Average range** r_a $\text{NP-c for } r_a \geq 2$

Diagram:

Position 1 2 i $i+r$ m

Range of c
Parameterizations of Kemeny Score

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of votes n</td>
<td>$\text{NP-c for } n = 4$</td>
</tr>
<tr>
<td>Dwork et al. WWW 2001</td>
<td>$O^*(2^m)$</td>
</tr>
<tr>
<td>Number of candidates m</td>
<td>$O^*(1.53^k)$</td>
</tr>
<tr>
<td>Kemeny score k</td>
<td></td>
</tr>
</tbody>
</table>

Further "structural" parameters:

- **Maximum range** $r_m := \max_{c \in C} \text{range}(c)$ $O^*(32^{r_m})$
- **Average range** r_a $\text{NP-c for } r_a \geq 2$
- **Average KT-distance**

![Diagram](image.png)

- **Position**: 1 2 i $i + r$ m
- **Range of c**
Recall: The KT-distance between two votes is the number of inversions or "conflict pairs".

Definition

For an election \((V, C)\) the average KT-distance \(d_a\) is defined as

\[
d_a := \frac{1}{n(n-1)} \cdot \sum_{\{u,v\} \in V, u \neq v} \text{KT-dist}(u, v).
\]

In the following, we show that KEMENY SCORE is fixed-parameter tractable with respect to the "average KT-distance".
Complementarity of parameterizations

- Number of candidates \(m \): \(O^*(2^m) \)
- Maximum range \(r \) of candidate positions in the input votes: \(O^*(32^r) \)
- Average distance of the input votes: \(O^*(16^d_a) \)

\((m \geq r \), but corresponding algorithm has a better running time\)

Example 1: small range, large number of candidates and average distance

\[\begin{align*}
 a &> c > b > e > d > f &\ldots \\
 b &> a > c > d > e > f &\ldots \\
 b &> c > a > e > f > d &\ldots
\end{align*} \]

⇒ check size of parameter and then use appropriate strategy

Example 2: small average distance, large number of candidates and range

\[\begin{align*}
 a &> b > c > d > e > f &\ldots \\
 b &> c > d > e > f > a &\ldots \\
 a &> b > c > d > e > f &\ldots
\end{align*} \]
Basic idea

Average distance d_a.

Crucial observation

In every Kemeny consensus every candidate can only assume a number of consecutive positions that is bounded by $2 \cdot d_a$.

Dynamic programming

making use of the fact that every candidate can be “forgotten” or “inserted” at a certain position.
Crucial observation

Let the average position of a candidate c be $p_a(c)$.

Lemma

Let d_a be the average KT-distance of an election (V, C). Then, in every optimal Kemeny consensus l, for every candidate $c \in C$ we have $p_a(c) - d_a < l(c) < p_a(c) + d_a$.

average position of a

input votes

consensus

$\begin{bmatrix}
 \text{a} & \text{a} & \text{a} \\
 \text{a} & \text{a} & \text{a} \\
 \text{a} & \text{a} & \text{a} \\
 \text{a} & \text{a} & \text{a} \\
\end{bmatrix}$
Crucial observation

Let the average position of a candidate c be $p_a(c)$.

Lemma

Let d_a be the average KT-distance of an election (V, C). Then, in every optimal Kemeny consensus l, for every candidate $c \in C$ we have $p_a(c) - d_a < l(c) < p_a(c) + d_a$.

Idea of proof:

1. “The Kemeny score of (V, C) is smaller than $d_a \cdot |V|$.”
 We show that one of the input votes has this Kemeny score.

2. Contradiction: Assume a candidate has a position outside the given range. Then, we can show that the Kemeny score is greater than $d_a \cdot |V|$, a contradiction.
Number of candidates per position

For a position i, let P_i denote the set of candidates that can assume i in an optimal consensus.

Lemma

Let d_a be the average KT-distance of an election (V, C). For a position i, we have $|P_i| \leq 4 \cdot d_a$.

Proof: Position “range” of every candidate is at most $2 \cdot d_a$. Every candidate of P_i must have a position smaller than $i + 2d_a$ and greater than $i - 2d_a$.

$$P_i = \{a_1, \ldots, a_{2d}, b_1, \ldots, b_{2d}\}$$
consensus

\[P_i = \{a, b, c, d, e, f\} \]

Observation:
For any position \(i \) and a subset \(P_i \) of candidates that can assume \(i \):

- One candidate of \(P_i \) must assume position \(i \) in a consensus.
- Every other candidate of \(P_i \) must be either left or right of \(i \).
Dynamic programming table

Position i, a candidate $c \in P_i$, a subset of candidates $P'_i \subseteq P_i \setminus \{c\}$

Definition

$T(i, c, P'_i) :=$ optimal partial Kemeny score if c has position i and all candidates of P'_i have positions smaller than i

$P_i = \{a, b, c, d, e, f\}$

<table>
<thead>
<tr>
<th>consensus</th>
<th>{a,b}</th>
<th>c</th>
<th>{d,e,f}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P'_i = {a, b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Computation of partial Kemeny scores:

- Overall Kemeny score can be decomposed (just a sum over all votes and pairs of candidates)
- Relative orders between c and all other candidates are already fixed
Running time

n votes
m candidates

$P_i = \{a, b, c, d, e, f\}$

<table>
<thead>
<tr>
<th>consensus</th>
<th>{a, b}</th>
<th>c</th>
<th>{d, e, f}</th>
</tr>
</thead>
</table>

We have $|P_i| \leq 4d_a$, thus there are at most 2^{4d_a} subsets of P_i.

\Rightarrow Table size is bounded by $16^{d_a} \cdot \text{poly}(n, m)$.

Theorem

\textsc{Kemeny Score} can be solved in $O(n^2 \cdot m \log m + 16^d \cdot (16d^2 \cdot m + 4d \cdot m^2 \log m \cdot n))$ time with average KT-distance d_a and $d := \lceil d_a \rceil$.
Overview of parameterized complexity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of votes n [Dwork et al. WWW 2001]</td>
<td>NP-c for $n = 4$</td>
</tr>
<tr>
<td>Kemeny score k</td>
<td>$O^*(1.53^k)$</td>
</tr>
<tr>
<td>Number of candidates m</td>
<td>$O^*(2^m)$</td>
</tr>
<tr>
<td>Maximum range of candidate positions r</td>
<td>$O^*(32^r)$</td>
</tr>
<tr>
<td>Average range of candidate positions r_a</td>
<td>NP-c for $r_a \geq 2$</td>
</tr>
<tr>
<td>Average KT-distance d_a</td>
<td>$O^*(16^{d_a})$</td>
</tr>
</tbody>
</table>
Outlook

- Average distance: investigate typical values.
- Improve the running time for the parameterizations “average distance” and “maximum candidate range”.
- Implementation of the algorithms.
- Consider generalizations like incomplete votes and ties.
- NP-completeness of Kemeny Score with 3 votes?