
Graphana - user manual
The main functionality of Graphana is the analysis of graphs concerning structual properties.
These are measured using graphparameters. The main input of Graphana are graphs and
user inputs. The main output are analysis results.

In addition, Graphana is able to:

• generate graphs:

� per random graph generators

� per script

� per GUI

• visualize graphs and algorithms

• load external java classes to import algorithms and graph libraries.

• do time measurements on algorithms

If you only want to use the standard analysis functionality of Graphana, take a look at the
'quickstart.txt'. This manual goes deeper into the usage and the di�erent functionalities of
Graphana.

Contents

1 Program �ow 2

1.1 Simple session . 2
1.2 Operations . 2
1.3 Syntax (examples) . 3
1.4 Program parameters . 6
1.5 Advanced usage . 7

2 Using graphana as framework 9

Appendix A: Syntax 12

Appendix B: Types 14

1

1 Program �ow

Within a shell, the graphana.jar can be started as follows:

java -jar graphana.jar

The running program is controlled via console inputs.

1.1 Simple session

When a > is shown in the console, the program waits for an user input. The typed input can
be executed by pressing enter.
The following sequence of inputs is a simple use case:

>loadDIMACS("sample.dim")

>vertexCount

6700

>edgeCount

21274

>QUIT

Firstly a graph is loaded from the given DIMACS �le. Afterwards, the vertex and edge count of
the loaded graph are printed and in the end the program is closed. Other operations, including
algorithms, are called the same way as in this simple example.

1.2 Operations

The user inputs (and other inputs that will be described later), as the ones of the simple session
example, contain so called statements. In simple cases, statements only contain operation
calls to modify the current graph or to run algorithms. Operations are called using the following
syntax:

operationKey (argument_1, argument_2, ...argument_n)

The most important operations are listed in 'graphana_ops.pdf'. The signature (keyword,
parameters, return type) and the description of a particular operation can also be printed at
runtime with the HELP keyword:

HELP operationKey

If only HELP is typed in, then a runtime help is printed.
If an operation does not need any arguments then no brackets need to be written, but it is
recommended.

For example, the vertex cover size algorithm has the following signature:

vertexCoverSize (useGreedy:Boolean) : Integer

That means, the algorithm is called via 'vertexCoverSize' and needs one argument of type

2

Boolean (to decide, which heuristic to use). Furthermore, the signature indicates that the re-
turn value is of type Integer.
Calling the algorithm looks like this:

vertexCover(true)

In the example, true is passed as argument and therefore, a greedy algorithm is used.
If an operation returns a result then the result can be shown for example as a console output,
which is the default, or can be written into a text �le. The latter will be described later. Some
types of results can also be visualized.
Some operations have optional parameters. Within the operation signature, these are denoted
with a = and a default value behind the parameter type:

operationKey (parameter_1 [= default_1], parameter_2 [= default_2], ...)

If no argument is given for these then the respective default value will be used.

There are three di�erent types of operations:

• Graph operations: During the whole runtime of the program, there is exactly one
current graph to operate on (more graphs can be managed in the background, but that is
not important for the beginning). Graph operations are working on this current graph.
For example loading a graph or adding vertices are graph operations.

• Algorithms: Algorithms are special graph operations, which compute graphparameters
in most cases. A sample for a simple algorithm is the average vertex degree of a graph.

• Commands: These are used to con�gure the program or to get some system informa-
tion. Commands do not operate on graphs. For example there are commands for time
measurements.

Graphana internally uses various graph libraries to create graphs and operate on them. Every
graph is built up in exactly one graph library. At runtime the user can chose which library to
use. The chosen library in�uences the performance and the set of available algorithms. Some
algorithms do not depend on the internal graph library, others are specialised on particular
ones. If it is necessary, Graphana automatically converts from one graph library to the one
which is needed.
Some libraries do not allow every graph con�guration. For example, in JGraphT it is not
possible to create graphs which are directed and not simple. Initially, the JUNG2-library is set.
It allows every con�guration.

1.3 Syntax (examples)

Statements may not only contain operation calls. However, these are su�cient for the basic
usage of Graphana. In this subchapter, the underlying Graphana-syntax is explained with the
use of examples.

The �rst syntax example deals with handling variables:

3

>greetingVar = 'Hello';

>PRINT greetingVar + " World!\n";

Hello World!

Firstly a variable is created and assigned by writing the identi�er 'greetingVar' followed by a
= and the value 'Hello', which is a constant string. Therefore, the variable greetingVar is a
string from now on. Every variable is global and (usually) lives until quitting the program.
String constants can be surrounded either by quotation marks or by tick marks (� or '). The
values and also the types of variables can be changed at any time by assigning the variable to
a new value.
Afterwards, console output is done by writing the keyword PRINT (attention: PRINT is not an
operation, but a keyword of the syntax which does not need brackets to pass the argument).
The printed sample string is concatenated with the + symbol. The '\n' yields a linebreak.

The next example deals with handling numbers:

>number = 5;

>PRINTLN number*(3+5) + 16%3;

41

>PRINTLN ++number;

42

>number+5

47

The variable number is set to 5, therefore it's type is Integer. In the second line, a mathematical
term is calculated and printed. The % symbol stands for modulo. The next input increases
number and prints out the new value. If the ++ symbol would have been placed after the number
then it still would be increased, but the non-increased value would have been printed. The last
input has no PRINTLN but still the result is printed. The reason is, that the result of the input,
if it has one, is always printed. In this case, the result of 'number+5' is 47. Even an assignment
has a result: the assigned value. To prevent printing the result, the input must end with a ;
(like it was done in the previous inputs). Leaving out the semicolon is a comfortable way for
quickly printing results (as seen in the very �rst example).

The semicolon is also necessary to execute more than one statement within one line. In the
following example, the statement contains several sub statements seperated by semicola:

>PRINTLN " 'number' before:\t"+number; number*=2; PRINT " 'number' after:\t"; number

'number' before: 42

'number' after: 84

>quit

In this example, four statements are executed iterativly:

• Print the value of the number with no changes.

• Multiply the number with 2.

• Print � 'number' after:� but not number

• Execute number, which means in this case just take the value of number

The last statement is not closed with a semicolon so the value of number is the end result of
the input and is printed even without a PRINT keyword.

Statements also can be read from a script �le. This is done with the 'script' command:

4

script("scripts/operations.txt");

Scripts are written with the same syntax as console inputs, but they are not read linewise. So
a statement with no semicolon followed by another statement in the next line is a syntax error
in most cases. Line comments begin with //. Block comments are surrounded with /* and */
and can be nested. Comments are completely ignored when executing the script.

For example a script looks like the following one:

//Create and load graph

createGraph(false,false,true,JGraphT);

loadGraph("graphs/sample.dim");

//Print some properties

PRINTLN "Graph size: " + graphSize();

PRINTLN "Vertex cover: " + vertexCoverSize(false);

PRINTLN "Max flow between 'pita' and 'fan': " + maxFlow($pita,$fan);

At �rst, the graph is created using the 'createGraph' command. This command initializes an
empty graph with the given con�guration: In the example, the �rst three arguments determine
that the graph is undirected, unweighted and always simple. The fourth argument determines
the graph library which is to be used internally. In this case, the JGraphT library is set. As
a reminder for the arguments to pass, HELP createGraph can be typed in. After the graph is
created and initialized, it is constructed by loading a DIMACS �le. The graph is unweighted
and therefore weights are ignored when reading the �le.
After the graph was loaded, some data and graphparameters are printed. The PRINTLN key-
word prints the given String. In the example, some graph operations and algorithms are
called. Firstly, graphSize is called. This graph operation does not need any arguments so the
brackets are empty. In this case, the brackets may be omitted (like it was done in the very
�rst example). The operation maxFlow needs two arguments. In the example, two vertices are
given as arguments. Vertex constants are written with $vertexIdentifier . A vertex with
the respective identi�er must exist in the current graph.
As already mentioned above, PRINT and PRINTLN are no operations, but keywords, which do
not need any brackets. The result of the whole Expression will be printed.

The next sample script demonstrates, how to write some graphparameters into a formatted
text �le:

//Write graphparameters into a file

setOutputFile("Graphparameters.txt",true);

WRITE "Vertex count: " + vertexCount() + ", ";

WRITE "Edge count: " + edgeCount() + "\n";

WRITELN "Average Degree: " + avrgDegree();

PRINT "Diameter: " + diameter();

closeFile();

PRINTLN "Wrote into 'Graphparameters.txt'";

//Save degree distribution as a CSV file

distribution = degreeDistribution();

writeWholeFile("degrees.txt",distribution);

At �rst, the output �le is set. The �le writing will be done into the chosen �le from then on.
The second argument of the setOutputFile determines, whether (almost) every console output
(including warnings and errors) is also to be written into the output �le. The WRITE keyword

5

works in a similar way as the PRINT keyword, but writes into the �le, which was set previously,
instead of the console output. In the example, three strings are explicitely written into the �le.
Afterwards, there is a PRINT keyword. The given string will be printed in the console output
as always, but since the second argument of the setOutputFile at the beginning is set to true,
the string will also be written into the output �le. When the �le writing is complete, the �le
must be closed using closeOutputFile. Now the �le is complete and can be read in the �le
system. After the call, there is no output �le set and therefore it is not allowed to call WRITE
until a new output �le is set.
The last part of the example demonstrates how to create a whole text �le at once. At �rst, a
Histogram is created representing the degree distribution of the current graph. The operation
writeWholeFile only needs two arguments: The �rst one is the target �le and the second one
any object. The text representation of the given object will be written into the target �le.
The �le will be closed automatically. In the example, a Histogram is passed. The string
representation of a histogram is a CSV string. So the resulting �le is a CSV �le and can be
used in respective external programs for example.

1.4 Program parameters

Graphana can be started with certain program arguments. All program parameters are op-
tional. The �rst program parameter can be used to pass a �lename of a script �le. This script
�le will be executed before the �rst user input is possible. If the �le ends with a QUIT, then
Graphana closes without any user input. After the �rst argument, an arbitary number of state-
ments can be given in Graphana-syntax. These arguments will be executed prior to the given
script. This can be used for example to set global variables which are used inside the script.
If the keyword -post is passed instead of a statement, then all following arguments will be
executed after the script is �nished. Note that since graphana is not running yet, the syntax of
the shell has to be regarded, especially the fact, that whitespaces are seperators for arguments.
It is recommended to put the arguments in quotation marks.
In addition to the script that is passed as argument, the script 'init.txt' is always executed if
the respective �le exists in the current directory.

So all in all the order of execution when starting the program is the following:

1. The 'init.txt' - script �le

2. The second and following arguments interpreted as statements until the -post keyword

3. The script �le, given as the �rst argument

4. The arguments that come after the -post keyword as statements

The following example shows a sample program call of the standard analysis script:

java -jar graphana.jar analysis "graphDir='graphs/'"

"output='graphparameters.txt'" -post QUIT

The �rst argument of the example is the �le 'analysis'. The script accesses some global variables
some of which are set in the following two statements (before the script execution starts). So
semantically, these are arguments for the script call. The �rst one determines the directory
from which the graph �les are to be loaded. The second one determines the relative path of

6

the output �le in which the graphparameters are to be written into. What follows is the -post
keyword. Hence the QUIT keyword is executed after the script execution is completed so the
program closes instead of waiting for user input.

The use of the analysis script, which is quite important, is described more detailed in 'quick-
start.txt'.

1.5 Advanced usage

What follows in this subsection is necessary to write more complex script �les.

The �rst example deals with conditions:

if(averageDegree()<=5 && maxDegree()<=10)

setCVDHeuristics("SUCCESSIVE - MAXDEGREE");

else

setCVDHeuristics("CONNECTEDCOMPONENT - ALL");

PRINTLN cvdSize();

The example takes the average degree and the maximum degree of the current graph to decide
which cvd heuristic (see 'graphana_ops.pdf') might be the most applicable for the graph.

The next example deals with for-loops:

for(i=1;i<=120;i++)

{

createRandomGraph(i,0.5);

writeWholeFile("graphs/random_graph_"+i+".dim", graphAsDimacs());

};

Note the semicolon at the very end of the sample. In Graphana also statement blocks are closed
with semicola.
In the loop, 120 graphs are created with a simple random graph generator and saved as partic-
ular dimacs �les.

Another loop is the for-each-loop. The loop iterates over a Set or a Vector.
The following example iterates over a constant set:

foreach(x in {3,7,10,11})

{

PRINTLN x*2;

};

The for-each-loop is useful when working with multiple input �les (in most cases graph �les).
The following example uses the getFiles command, which returns a set of �les that are con-
tained in the given directory (non-recursive) and have one of the given �le extensions ("`.dim"'
in this case):

foreach(file in getFiles("graphs/","dim"))

{

7

loadGraph(file);

PRINTLN "--- " + file + " ---";

PRINTLN "Vertices: " + vertexCount + ", edges: " + edgeCount;

PRINTLN "Average degree: " + averageDegree

+ ", max degree: " + maxDegree;

};

8

2 Using graphana as framework

The functionality of Graphana can also be accessed within a java application. This section
demonstrates the easiest way to do this.

To use the framework in an eclipse project, the 'graphana.jar' must be added as external
jar. This can be done by clicking Project → Properties → Java build path → Libraries
→ Add external jars and choosing 'graphana.jar'.

The easiest way to initialize the framework and to execute operations is to create a
GraphanaAccess instance. This class initializes Graphana and automatically registers all the
default operations and libraries:

GraphanaAccess graphanaAccess = new GraphanaAccess () ;

After the framework is initialized, operations can be called by using the executeX methods
where X stands for the type which is expected to be returned. So for example, if an operation,
which returns an integer, is executed, then executeInt must be called. The methods expect a
string in graphana syntax as input argument.

The following example initializes the framework, creates a random graph and prints the average
degree:

GraphanaAccess graphanaAccess = new GraphanaAccess();

graphanaAccess.execute("createErdosRenyiGraph(10,0.5)");

float averageDegree = graphanaAccess.executeFloat("averageDegree()");

System.out.println(averageDegree);

The next example loads a graph instead of creating one and prints the number of connected
components:

graphanaAccess.execute("loadgraph('graphs/sample.dim')");

int ccCount = graphanaAccess.executeInt("getConnectedComponentCount()");

System.out.println(ccCount);

If there is already a graph instance within the application, it is also possible to apply graph op-
erations on this graph by using the method GraphanaAccess.setCurrentGraph. The method
can either be called with a JUNG2 graph, a JGraphT graph or an instance of GraphLibrary
(the latter is described in 'graphana_extension.pdf'). All graph operation calls which follow
after the setCurrentGraph call will use the given graph.
The following example demonstrates the usage of the framework with a externally created graph
instance:

public stat ic void main (St r ing [] a rgs)
{

//Construct sample JGraphT−graph
SimpleWeightedGraph<Str ing , Object> jGraphTgraph =
new SimpleWeightedGraph<Str ing , Object >(

JGraphTWeightedStatusEdge . class
) ;

9

jGraphTgraph . addVertex ("V1") ;
jGraphTgraph . addVertex ("V4") ;
jGraphTgraph . addVertex ("V8") ;
jGraphTgraph . addVertex ("TT") ;
jGraphTgraph . addVertex ("X") ;
jGraphTgraph . setEdgeWeight (jGraphTgraph . addEdge ("V1" , "V4") , 7) ;
jGraphTgraph . addEdge ("V8" , "V4") ;
jGraphTgraph . addEdge ("TT" , "X") ;

//Use framework
GraphanaAccess graphanaAccess = new GraphanaAccess () ;

graphanaAccess . setGraph (jGraphTgraph) ;
System . out . p r i n t l n (

graphanaAccess . execute In t (" vertexCover (t rue) ")
) ;

}

The sample �rstly creates a small JGraphT graph using the methods of JGraphT. Afterwards,
the framework is initialized and the just created graph is given in to compute the vertex cover
size of the graph.
If no graph is given in (like in the �rst two examples) then an empty JUNG2 graph is set.

Note that only one GraphanaAccess instance should be created per application, since the
constructor invokes a complete initialization of the framework. Furthermore, if graphs are not
passed as GraphLibrary, they are converted within setCurrentGraph so this method should
only be called, if the graph changed.

All previous samples did not do error handling. Therefore, if errors would occur, the stack
trace would be printed and the program would be closed. The GraphanaAccess methods throw
GraphanaRuntimeExceptions. These can be catched to extract detailed error informations
and to print appropriate error messages. The following sample tries to create a graph and to
visualize it, whereas some exceptions are thrown:

public stat ic void main (St r ing [] a rgs)
{

// I n i t i a l i z e
GraphanaAccess graphanaAccess = new GraphanaAccess () ;

//Output a s t r i n g
try{

// f a i l s because o f incomple te s ta tement
graphanaAccess . execute ("PRINT ' He l lo ") ;

}catch (GraphanaRuntimeException except ion) {
System . e r r . p r i n t l n (except ion . getMessage ()) ;

}

//Create some v e r t i c e s and edges
try{

10

graphanaAccess . execute (" createGraph (true , t rue) ; ") ;
// f a i l s because o f f o r g o t t e n second i n t e g e r argument :
graphanaAccess . execute ("addVertexRow (10 , ' ve r tex ') ") ;
//not execu ted :
graphanaAccess . execute ("addEdge ($vertex1 , $vertex2) ") ;
graphanaAccess . execute ("addEdge ($vertex4 , $vertex7) ") ;

}catch (GraphanaRuntimeException except ion) {
System . e r r . p r i n t l n (

"Error @" + except ion . getInputKey () + " : " +
except ion . getExecut ionError () . g e tS t r ingRepre s en ta t i on ()
) ;

//or s imply : System . err . p r i n t l n (excep t i on . getMessage ()) ;
}

// V i s ua l i z e the graph
try{

graphanaAccess . g e tUs e r I n t e r f a c e () . showGraph ("GRD" , true) ;
}catch (ArrangeException except ion) {

// f a i l s because o f i n v a l i d l a you t key :
System . out . p r i n t l n ("Graph v i s u a l i z a t i o n f a i l e d : "

+ except ion . g e tS t r ingRepre s en ta t i on ()) ;
}

//Print a sum
try{

// f a i l s because o f wrong re turn type :
System . out . p r i n t l n (
graphanaAccess . execute In t (" 1 .0 + 3 .2 ")
) ;

}catch (GraphanaRuntimeException except ion) {
System . e r r . p r i n t l n (except ion . getMessage ()) ;

}
}

Furthermore, it is possible to simply start the user interface by calling

graphanaAccess . g e tUs e r I n t e r f a c e () . mainLoop () ;

This will start the same user interface as the one of the execution of graphana.jar. The method
is blocking until the user quits.

11

Appendix A: Syntax

The following table describes the whole syntax of the Graphana script language. Syntax which
is written in bold square brackets is optional:

Name Syntax Description
Application Ide(x1,x2, ...xn) Executes the operation with the key Ide with the

given arguments. Returns the result of the exe-
cution

Addition x + y Returns the sum of x and y or the concatenation
if x or y is a String

Subtraction x - y Returns the di�erence of x and y
Multiplication x * y Returns the product of x and y
Division x / y Returns the quotient of x and y. If x and y are

integers then integer division is done
And x && y Returns true if and only if x and y are both true.

If x is false then y is not evaluated
Or x || y Returns true if and only if x or y is true. If x is

true then y is not evaluated
Unary Minus -x Returns the negative value of x
Not !x Returns true if and only if x is false
Equal to x == y Returns true if and only if x is equal to y
Not equal to x != y Returns true if and only if x is not equal to y
Less than x < y Returns true if and only if x is smaller than y
Greater than x > y Returns true if and only if x is greater than y
Less than
or equal

x <= y Returns true if and only if x is smaller than or
equal to y

Greater than
or equal

x >= y Returns true if and only if x is greater than or
equal to y

Assignment Ide = X Assigns X to the variable Ide. Creates the vari-
able if it does not exist. Returns X

Post�x
increment

Ide++ Increases the value of the (existing) variable Ide
by 1. Returns the value of Ide before it was in-
creased

Pre�x
increment

++Ide Increases the value of the (existing) variable Ide
by 1. Returns the value of Ide after it was in-
creased

Post�x
decrement

Ide−− Decreases the value of the (existing) variable Ide
by 1. Returns the value of Ide before it was de-
creased

Pre�x
decrement

−−Ide Decreases the value of the (existing) variable Ide
by 1. Returns the value of Ide after it was de-
creased

Statements X1;X2; ...;Xn Executes X1 to Xn. Returns result of Xn

12

Name Syntax Description
If-then-else if(Cond)

ThenStmnt
[else

ElseStmnt]

Executes ThenStmnt if Cond is true. Executes
ElseStmnt if it is given and Cond is false.

Returns:

• Result of ThenStmnt if Cond is true

• Unde�ned if Cond is false and no else is
given.

• Result of ElseStmnt if Cond is false and
an else is given.

While loop while(Cond)
Stmnt

Executes Stmnt as long as Cond (Boolean) is full-
�lled.

For loop for(Init;Cond;Iter)
Stmnt

Firstly executes Init and then repeatedly Stmnt
and Iter as long as Cond (Boolean) is full�lled.

Vector (x1,x2, ... xn) Returns a vector with the given entries.
Vector access Ide[i] Returns the i-th entry of the (existing) vector

Ide. The �rst entry is at i=0. The last entry
is size(Ide)-1.

Set {x1,x2, ... xn} Returns a set containing the given values.
Try-catch try

TryStmnt
[catch(ErrIde)

CatchStmnt]

Executes TryStmnt. If an error occurs, execu-
tion is aborted, the error is stored in ErrIde
and CatchStmnt is executed. Returns true if
and only if there was no error in the execution
of TryStmnt

Further information:

• The Graphana language is not case sensitive, but the identi�ers of vertices are.

• Whitespaces can be inserted arbitrarily.

• It is not possible to declare variables with the same identi�er as a pre�x keyword of the
syntax, an operation or a type.

• Identi�ers must not start with a digit.

13

Appendix B: Some types

As already demonstrated in the previous subsection, some operations are called with one or
more arguments of various types. A list of the most important types for a quick overview is
given below.

Type Description Examples (in Graphana-syntax)
Integer Integral number 67 -45

PositiveInteger Natural number 32 0
Float Floating point number 5.6 -3.0

Boolean Truth value true false
String Character string �Long Text� 'Name'
File A �le or a �lename as string �directory/new_�le.txt�

ExistingFile An existing �le �directory/�le.txt�
Graph A whole graph getCurrentGraph()

Histogram Histogram or CSV-string distanceDistribution() newHistogram()

Color RGB-Color color(255, 128, 0)

Vertex A vertex of the graph $v1

Edge An edge of the graph $v1−−$v2

To lookup operations, terms and all types you can read the �graphana_ops.pdf� or type HELP

followed by the operation, the term or the type in the running program.

14

	Program flow
	Simple session
	Operations
	Syntax (examples)
	Program parameters
	Advanced usage

	Using graphana as framework
	Appendix A: Syntax
	Appendix B: Types

