
Graphana - program extension

Several parts of Graphana can be extended. All extensions are done through Java
classes. This manual focusses on various types of Graphana extensions as well as
the usage of Graphana as a framework.

Contents

1 The framework 2

2 Operations 6
2.1 Operation types . 6
2.2 Signatures . 6
2.3 Execute method . 7

2.3.1 Operation arguments . 7
2.3.2 Operation return . 8

2.4 Subclasses of Operation . 9
2.4.1 Commands . 9
2.4.2 Graph operations . 10
2.4.3 Graph algorithms . 13

2.5 Operation groups . 14

3 Graph libraries 17
3.1 Create binding . 17
3.2 Register . 18

4 Graph layouts 19

5 Descriptions 20
5.1 XML file structure . 21
5.2 Generating latex code . 23

1

1 The framework

This section deals with using the framework in order to develop operations, espe-
cially algorithms. The basics of using Graphana as a framework are also described
in ’graphana_manual.pdf’, where the focus is rather on using existing functional-
ity of Graphana, instead of extending it.
To try out what is described in this section, a new Java project with a main class
should be created.
Firstly, the framework has to be imported. When writing a Java application in
eclipse, Graphana can be imported by clicking Project → Properties → Java
build path → Libraries → Add external jars and choosing the ’graphana.jar’
file.
The easiest way to initialize the framework and to execute operations is to create
a GraphanaAccess instance. This class initializes Graphana and automatically
registers all the default operations and libraries:

GraphanaAccess graphanaAccess = new GraphanaAccess () ;

This can be done within the main method. Now in order to add operations, firstly,
a class which extends from a subclass of Operation must be created. Especially to
add an algorithm, a class which extends GraphAlgorithm must be created. This
should be done in a separate Java file.
The following example is a graph algorithm, which sums up the edge weights of
all incident edges of a given vertex. The implementation details of the sample
are not important at the moment. They will become clear after reading the other
subsections. The focus is on creating and using own algorithms:

public class AlgoEdgeWeightSum extends GraphAlgorithm{

// Signature o f the a l gor i thm to c a l l i t dur ing runtime
@Override
protected St r ing ge tS i gna tu r eS t r i ng () {

return "getEdgeWeightSum␣ (ver tex : Vertex) ␣ : ␣ Float " ;
}

// Implementation o f the a l gor i thm
@Override
protected <VertexType , EdgeType> ExecutionReturn execute (

GraphLibrary<VertexType , EdgeType> graph ,
Us e r In t e r f a c e u s e r I n t e r f a c e ,
OperationArguments args)

{
// S ta r t wi th zero

2

f loat weightSum = 0 ;
// Extrac t the v e r t e x g iven by the user
VertexType ver tex = args . getVertexArg (0) ;
// I t e r a t e over a l l i n c i d en t edges o f the g iven v e r t e x
for (EdgeType edge : graph . get Inc identEdges (ver tex)) {

//Add the we igh t o f the curren t edge to the r e s u l t
weightSum += graph . getEdgeWeight (edge) ;

}

//Return the f l o a t wrapped wi th in a GFloat
return new GFloat (weightSum) ;

}
}

Now back in the main class, the algorithm can be registered by calling the following
GraphanaAccess-method:

public void r e g i s t e rOpe r a t i on (Operation opera t i on)

In the case of the example above, the call would look like this:

graphanaAccess . r e g i s t e rOpe r a t i on (new AlgoEdgeWeightSum ()) ;

Afterwards, the algorithm can be called within a Graphana statement using the key
defined in the signature. The following main method creates a constant testcase
for the algorithm: After initialization and registration, the example creates a test
graph instance by adding constant vertices and edges. Afterwards, the graph is
visualized and the result is printed and finally the user interface main loop is
started.

public stat ic void main (St r ing [] a rgs)
{

// I n i t i a l i z e
GraphanaAccess graphanaAccess = new GraphanaAccess () ;
// Reg i s t e r the a l gor i thm
graphanaAccess . r e g i s t e rOpe r a t i on (new AlgoEdgeWeightSum ()) ;

//Create t e s t graph ins tance
graphanaAccess . execute (" createGraph (true , t rue) ; ") ;
// c rea t e v e r t i c e s v0 , v1 , v2 , v3 , v4
graphanaAccess . execute ("addVertexRow (5 , 0 , ’ v ’) ") ;
graphanaAccess . execute ("addEdge ($v1 , $v0 , ␣ 2) ") ;
graphanaAccess . execute ("addEdge ($v2 , $v1 , ␣ 3) ") ;
graphanaAccess . execute ("addEdge ($v1 , $v4 , ␣ 4) ") ;

3

graphanaAccess . execute ("addEdge ($v2 , $v0 , ␣ 1) ") ;
graphanaAccess . execute ("addEdge ($v3 , $v4 , ␣ 5) ") ;

// V i s ua l i z e the graph , a l l ow graph mod i f i ca t i on
graphanaAccess . g e tUs e r I n t e r f a c e () . showGraph (true) ;

//Print the a l gor i thm r e s u l t
System . out . p r i n t l n (

"Sum␣ o f ␣weights ␣ o f ␣ i n c i d en t ␣ edges ␣ o f ␣v1 : ␣"
+ graphanaAccess . executeF loat ("getEdgeWeightSum($v1) ")
+ "␣ (expected : ␣ 9 . 0) "
) ;

// S ta r t user i n t e r f a c e main loop
graphanaAccess . g e tUs e r I n t e r f a c e () . mainLoop () ;

}

The example ignores error handling which is described in the Graphana manual.
Therefore, if an error occurs, the stack trace will be printed and the program will
be interrupted.
After printing the result, the program is still running. To further test the algorithm
during runtime, the following steps can be done for example:

• Right click on an empty area within the visualization window to create a
new vertex.

• Right press onto the new vertex and release the right mouse button on ’v1’
to add a new edge, which initially has weight 1.

• Switch to the console, type ’setEdgeWeight($v5->$v1, 6)’ and press enter.
This changes the weight of the new edge to 6.

• Type getEdgeWeightSum($v1) (or try any other vertex) and press enter.
Verify the result with the visual output.

This visual way of testing algorithms works well for small test graphs. For larger
graphs, Java assertions or Graphana assertions should be preferred.

Now the implementation is finished and the algorithm is ready to be provided.
When compiling the application, the file ’AlgoEdgeWeightSum.class’ is generated.
This file can now for example be copied into a ’plugins’ folder in the graphana.jar
directory. After starting the jar, the class can be imported. The following shell
commands (in the graphana.jar directory) demonstrate this:

4

java -jar graphana.jar
>import("plugins/AlgoEdgeWeightSum.class")

With this, any Graphana user can call the operation by only retrieving the class
and not the whole test application.

The test application can now be used to test out the concepts of the next sec-
tion.

5

2 Operations

This section contains a detailed description on implementing operations.

2.1 Operation types

For a users view on operations, see ”graphana_manual.pdf”. This subsection deals
with a programmers view.
The basic class for operations is Operation. As already mentioned in the user man-
ual, there are three types of operations. All of them are subclasses of Operation:

• Graph operations: When derivating from GraphOperation, the main in-
put is a graph. This graph can then be manipulated for example.

• Graph algorithms: When derivating from GraphAlgorithm, which is a
subclass of GraphOperation, a graph is still the main input but is not sup-
posed to be modified, but to calculate a result, like a graph parameter.

• Commands: Classes which derivate from Command usually do not operate on
a graph, but do some general settings, like for example configure algorithms
before executing them. Some commands calculate something which does not
have to do anything with graphs, like for example the square root of a given
number.

To add a new Graphana operation, a class, which extends one of the three
Operation-subclasses must be implemented and then an instance must be regis-
tered in the program. One way to register operations was explained in the previous
section. Other possibilities will be explained later.

2.2 Signatures

At runtime, every operation is identified by a unique key, can receive arguments
and can return a result. All Operation-subclasses have this in common. They
must define a signature to determine key, parameters and return type. The fol-
lowing method must be implemented:

protected St r ing ge tS i gna tu r eS t r i ng () ;

The signature must be returned as a string in the following syntax (simplified):

operationKey[|alias1|alias2...] [(
parameterName:ParameterType1;
paramName2:ParamType2;
...

6

paramNameN:paramTypeN
)] [: ReturnType]

Everything in square brackets is optional. Whitespaces, including linebreaks, are
ignored when evaluating the signature. The signature will be shown to the user
when he types HELP and the operation key or one of the aliases.
One example for a signature is the following one:

edgeExists|connected (vertex1:Vertex; vertex2:Vertex) : Boolean

The operation of the sample signature can be called either with ’edgeExists’ or
with the alias ’connected’. It receives two vertices and returns a boolean.

2.3 Execute method

Every type of operation has an execute method, which is called, when the op-
eration is called by the user or within a script. The execute method is not the
same for every operation type. However, all types can receive arguments and can
return a result. For example, the execute method of a command has the following
signature:

protected ExecutionReturn execute (MainControl mainControl ,
OperationArguments args)

Commands will be explained later in particular.

2.3.1 Operation arguments

An execute method receives an argument args of type OperationArguments. It
contains the evaluated arguments of the operation call. The particular arguments
can be read using the getXArg methods, where X is the respective argument
type, for example getFloatArg. The arguments are identified with their index
whereas the first argument has the index 0. If the type is not determined in the
signature (Any) then the argument can be accessed with getArg(Integer index)
which returns the argument as a Java Object.
So for example, to get the third argument, assuming that this argument is of type
Integer, then the call within the execute method would look like this:

I n t e g e r arg = args . getIntArg (2) ;

The getXArg call must be consistent to the signature. Otherwise a Java excep-
tion is thrown.

It is also possible to define operations which can receive an arbitrary number
of arguments by writing three dots (”. . . ”) at the end of the parameter list. In

7

this case, the caller can pass arguments of the type of the last parameter in the
list at any number. The args.count() method gives the overall number of given
arguments.
For example, an operation with the signature

printObjects (separator:String; objects:Any ...)

can be called by the user for example with:

printObjects(";", "A string", 56, "Another string")

The arguments can be accessed like this within the execute method:

S t r ing s epa ra to r = args . getStr ingArg (0) ;
for (int i =1; i<args . count () ; i++)

System . out . p r i n t (args . getArg (i) . t oS t r i ng () + separa to r) ;

The output would be:

A string;56;Another string;

It is possible to define default values for the parameters of a signature by writing a
= and the value in Graphana-syntax after the type of the parameter. If a parameter
has a default value then the caller does not need to pass the respective argument
and the default value is used instead. For example such a signature could look like
this:

addEdge (vertex1:Vertex; vertex2:Vertex; weight:Integer=1)

With the sample signature, the caller can optionally give an edge weight.
If a parameter of the list has a default value then all following parameters also need
a default value consequently. In the executemethod when using the args instance,
it is not distinguished between arguments which were explicitly passed in the call
and arguments which were passed as default values. Especially, args.count also
counts the default values in.

2.3.2 Operation return

Every execute method must return a value of type ExecutionReturn. If the
operation actually shall not return a result, then ExecutionReturn.VOID must
be returned. If the operation computes a result, then an instance of a subclass of
ExecutionResult must be returned. There are several predefined subclasses, one
for each Graphana type. Examples are GInteger, GBoolean and GString. Every
instance holds a value of the respective type.
For example, if an operation returns a String then the return statement of the
execute method could look like this:

8

return new GString ("This ␣ i s ␣a␣ s t r i n g . ")

If an error occurs during execution then an instance of an ExecutionError or a
subclass like ExecutionErrorMessage can be returned:

i f (getFloatArg (0)>1)
return new ExecutionErrorMessage (

"Only␣ va lue s ␣ sma l l e r ␣ than␣1␣ al lowed . ")

The following image depicts an extract of the structure of the ExecutionReturn
subclasses:

The figure shows an extract of the relation between the ExecutionReturn subclasses.
GInteger, GFloat etc. are just samples.

One special case is the GBoolean class: It cannot be instantiated directly, but by
using GBoolean.create(boolean), GBoolean.TRUE or GBoolean.FALSE.

2.4 Subclasses of Operation

This subsection deals with the different types of operations and with the differences
between them.

2.4.1 Commands

The signature of the execute method of a command is the following:

protected ExecutionReturn execute (MainControl mainControl ,
OperationArguments args)

The parameter mainControl gives access to the configuration and dates of
the program. Especially, it gives access to the UserInterface by calling

9

mainControl.getUserInterface(). Using the returned interface a string can
be printed with the method UserInterface.userOutput(String message).
For example, a simple command which divides an Integer with a Float could
look like this:

private class Div i s i on extends Command
{

@Override
protected St r ing ge tS i gna tu r eS t r i ng ()
{

//The s i gna tu r e as a cons tant S t r ing
return " d iv id e | div ␣ (d iv idend : In t eg e r ; ␣ d i v i s o r : Float) ␣ : ␣ Float " ;

}

@Override
protected ExecutionReturn execute (MainControl mainControl ,

OperationArguments args)
{

int div idend = args . getIntArg (0) ;
f loat d i v i s o r = args . getFloatArg (1) ;

//Check , whether the d i v i s o r i s zero
i f (d i v i s o r == 0)

return new ExecutionErrorMessage (" D iv i s i on ␣by␣ 0 . ") ;
else

return new GFloat (d iv idend / d i v i s o r) ;
}

}

After registration, which was explained in the very first section, the sample com-
mand can either be called with divide or with div. The signature ensures, that
the operation only can be called if an integer is given as the first and a float is
given as the second argument. So for example the command can be used like this
in the running program:

res = divide(78, 0.5);

2.4.2 Graph operations

Graph operations operate on graphs to modify it or to extract informations. There-
fore the execute method receives a GraphLibrary including the generic types:

protected <VertexType , EdgeType> ExecutionReturn execute (
GraphLibrary<VertexType , EdgeType> graph ,
Us e r In t e r f a c e u s e r I n t e r f a c e , OperationArguments args)

10

The userInterface and the args parameters are already explained in the prior
subsection. The given graph contains a set of basic graph operations like
insertion, deletion and iteration of vertices. If the graph operation is writ-
ten for a special graph library, then the internal graph can be accessed using
graph.getInternalGraph(), which returns an Object so a type cast to the re-
spective graph class must be done explicitely. Alternatively, a graph operation can
use the higher level methods of the given graph to be independent of the internal
graph library.

This sample graph operation simply adds a vertex with the given identifier to
the graph:

p r i va t e c l a s s ExecAddVertex extends GraphOperation
{

@Override
pro tec ted St r ing ge tS i gna tu r eS t r i ng ()
{

//The s i gna tu r e s t r i n g o f the a lgor i thm
return "addVertex (i d e n t i f i e r : S t r ing) : void " ;

}

@Override
pro tec ted <VertexType , EdgeType> ExecutionReturn execute (

GraphLibrary<VertexType , EdgeType> graph ,
Us e r In t e r f a c e u s e r I n t e r f a c e ,
OperationArguments args)

{
//add a ver tex to the g iven graph
graph . addVertex (args . getStr ingArg (0)) ;

//This opera t i on does not re turn a r e s u l t
r e turn ExecutionReturn .VOID;

}
}

The operation works for every graph library, because it only uses the higher level
method GraphLibary.addVertex and therefore never accesses the internal graph
directly.

Graph preconditions

A graph operation can set up some graph preconditions. This means, that in

11

addition to the fact that the operation cannot be called with the invalid argument
types, a graph operation cannot be called if the respective graph does not full-
fill the graph preconditions. Therefore, there is no need to check the conditions
within the execute method and to do error handling. Furthermore, the graph
preconditions are automatically listed in the documentation of the operation. The
graph preconditions of a graph operation can be configured by calling the respec-
tive methods in the super class, which will be explained in the following.

The following method determines, with which graph libraries the operation can be
called:

protected f ina l void setCompat ib leLibs (
GraphLibrary <? ,?>[] compat ib leLibs)

If setCompatibleLibs is never called then the operation is assumed to be com-
patible with every graph library, which means that it does not access the internal
graph directly but work with the higher level methods offered by GraphLibary.

In addition, an operation can allow and disallow graph configurations by calling
the following method:

protected f ina l void setAllowedGraphConfig (
boolean directedAl lowed ,
boolean loopsAllowed ,
boolean emptyAllowed)

If directedAllowed is false then the given graph is always undirected. If
loopsAllowed is false then the graph does not have loops. If emptyAllowed is
false then the graph has at least one vertex.

If the following method is called then the received graph is always directed:

protected f ina l void setAlwaysConvertToDirected ()

A graph will automatically be converted into an equivalent directed graph when
the operation is called with an undirected graph.

If the following method is called then the received graph is always a deep copy of
the original graph:

protected f ina l void setAlwaysCopy ()

This is useful, if the graph operation for example modifies the graph temporally
to compute something. The original graph will not be affected.

The configuration methods can be called within the getSignature method or

12

within the constructor, but never within the execute method. An example will
be shown in the next subsection.

2.4.3 Graph algorithms

Algorithms are special graph operations so everything that was explained in the
previous subsection is also true for algorithms. The execute method has the same
signature as the execute method of graph operations and the graph preconditions
are working the same way. There are only a few differences. For example the
algorithm counter does not measure the time of graph operations but only of al-
gorithms.

The following sample is the vertex cover size GraphAlgorithm. Basically, the
class only calls the vertex cover algorithm of JGraphT:

public class AlgoVertexCoverSize extends GraphAlgorithm {

@Override
public St r ing ge tS i gna tu r eS t r i ng ()
{

//GRAPH PRECONDITIONS
//The a l gor i thm can only be c a l l e d wi th JGraphT
this . setCompatibleLib (new JGraphTLib ()) ;
//The graph must be und i rec t ed and s imple .
//Theres no r e s t r i c t i o n f o r we igh ted /unweighted
this . setAllowedGraphConfig (false , true , fa l se) ;

//The s i gna tu r e s t r i n g o f the a l gor i thm
return

" ver texCoverS ize | vertexCover ␣ (useGreedy : Boolean) ␣ : ␣ In t eg e r " ;
}

@Override
protected <VertexType , EdgeType> ExecutionReturn execute (

GraphLibrary<VertexType , EdgeType> graph ,
Us e r In t e r f a c e u s e r I n t e r f a c e ,
OperationArguments args)

{
//The i n t e r n a l graph can only be o f the JGraphT type
//UndirectedGraph because o f the graph pre cond i t i on s
UndirectedGraph<VertexType , EdgeType> interna lGraph =

(UndirectedGraph<VertexType , EdgeType>)graph . get Interna lGraph () ;

13

Set<VertexType> cover ;
//The argument determines , which h e u r i s t i c i s to be used
i f (args . getBoolArg (0))

cover = VertexCovers . f indGreedyCover (interna lGraph) ;
else

cover = VertexCovers . f ind2ApproximationCover (interna lGraph) ;
//Return the r e s u l t as an In t e g e r
return new GInteger (cover . s i z e ()) ;

}
}

The thing to note here, is that this algorithm obviously only runs on a JGraphT
graph. Graphana automatically ensures, that a JGraphT graph will be passed.

The GraphLibrary class contains methods to get and set vertex and edge states,
which can be useful for many algorithms. For example, a vertex can be marked as
grey, by calling:
graph.setVertexStatus(vertex,Color.GRAY);
The color can then be retreived using:
Color vColor = (Color)graph.getVertexStatus(vertex);
The status can be of any type, so type casting must be done explicitly.

2.5 Operation groups

Operations can be gathered in groups by derivating from OperationGroup. The
following method must be implemented:

public Operation [] getOperat ions () ;

The method must return an array of instances of the operations which are to be
registered when registering the group. The registration of a group works the same
way as with single operations.

For example the commands startCounter and getCounter are subclasses gath-
ered in one group so they can easily share a variable:

public class CmdsCounter extends OperationGroup{

long t imer ;

private class ExecStartCounter extends Command
{

@Override

14

protected ExecutionReturn execute (MainControl mainControl ,
OperationArguments args)

{
t imer = System . cur r entT imeMi l l i s () ;
return ExecutionReturn .VOID;

}

@Override
protected St r ing ge tS i gna tu r eS t r i ng ()
{

return " startCounter | r e s ta r tCounte r | setCounter ␣ : ␣ void " ;
}

}

private class ExecGetCounter extends Command
{

@Override
protected ExecutionReturn execute (MainControl mainControl ,

OperationArguments args)
{

i f (timer<=0)
return new ExecutionErrorMessage

("Counter␣not␣ s e t ␣ yet . ␣ Ca l l ␣ ’ s t a r t c oun t e r ’ ␣ f i r s t . ") ;
else

return new GInteger
((int) (System . cur r entT imeMi l l i s ()− t imer)) ;

}

@Override
protected St r ing ge tS i gna tu r eS t r i ng ()
{

return " getCounter ␣ : ␣ In t eg e r " ;
}

}

@Override
public Command [] getOperat ions ()
{

return new Command [] {
new ExecStartCounter () ,

15

new ExecGetCounter ()
} ;

}

Both commands are inner classes and share the variable timer. To register the
two commands, only the group CmndsCounter has to be registered. When using
GraphanaAccess, the registration looks like this:

graphanaAccess . r e g i s t e rOpe r a t i on s (new CmdsCounter ()) ;

16

3 Graph libraries

In Graphana it is possible to bind existing graph libraries and to leave the inner
graph structure, memory usage etc. up to these. This also means, that algorithms,
which usually are part of the packages of the libraries, can also be directly used.
For example, JGraphT includes Vertex Cover algorithms, which can be called in
Graphana as demonstrated in previous sections. Graphana automatically handles
converting graph libraries into each other if it is necessary, for example because a
certain algorithm only runs on a specific graph library or because the user directly
specifies, which library to use. This section describes the steps that are necessary
to bind a graph library into Graphana.
Starting point for a new graph library is the generic abstract class
graphana.graphs.GraphLibrary<VertexType,EdgeType>. To bind a certain ex-
ternal graph library, a class must be created extending GraphLibrary. The extend-
ing class internally holds an instance of the graph library to bind and translates
the basic graph accessing calls, like e.g. adding and removing vertices and edges,
to the inner instance by implementing the abstract methods. Furthermore, the
generic Parameters VertexType and EdgeType need to be specified.
The Javadoc of GraphLibrary explains, what the methods are doing and espe-
cially for the abstract methods, what they are expected to do. So the provided
information can be useful when implementing the abstract methods. Furthermore,
it is recommended to use the libraries.jgrapht.JGraphTLib class as a reference
implementation for a specific library binding. All parts in the code, that are not
self explanatory, have comments. Therefore, the implementation of every abstract
method will not be explained in this section. It rather deals with some terms and
principles.

3.1 Create binding

To be fully functional, a graph library binding must provide some crucial data.
Every vertex needs to have a string identifier. The easiest and fastest way to
create a vertext to identifer association is to store a string within the VertexType.
The other direction, which is the association of identifier to vertex, is handled
by Graphana. This is used to quickly access the vertices by name. Graphana
automatically handles renaming, name clashes, non-existent identifiers and so on.
Also edges can have names, but this is rarely used and it is therefore up to the
graph library binding to support this by overriding the optional methods.
Furthermore, every vertex and every edge needs to have a data object and a status
object of arbitrary type. Vertex and edge dates are meant to be persistent and can
be set and changed at runtime by the user or by respective graph operations. As

17

opposed to data, vertex and edge states are temporal. They are used in algorithms
for example to mark vertices for the runtime of the algorithm. The assigning and
accessing of states must be as fast as possible. For data and states, the best way is
to create Object members within the VertexType and EdgeType to quickly access
it, given the respective reference. The JGraphTWeightedEdge class of the reference
implementation for example just stores a status and a date within the edge to
access it within the getter and setter methods in JGraphTLib. For vertices, the
reference implementation uses the default StdVertex as VertexType which holds
an identifier, a status and a date to access it with the respective vertex getters and
setters of JGraphTLib.
In Graphana the graph libraries are associated with key strings. Every graph
library sets its key through the getLibName method. This is used for example so
that the user can use the setLibrary(”libraryKey”) command to set the library
with the given key. Therefore it is very important that the returned string in
getLibName is unique and does that there are no conflicts with already registered
libraries.

3.2 Register

Once all methods are implemented, the library binding has to be registered. The
easiest way to do this is to register it where the other libraries are registered: in
the registerStdLibraries method of the system.GraphanaInitializer. The
following call within this method registers a new graph library:
graphLibManager.addGraphLibrary(MyLib.class) Optionally, some algorithms
related to the library can be registered within the method by using this call:
addOperation(MyOperation.class) Once Graphana is compiled and started
now, the library will be available.

18

4 Graph layouts

The standard visualizer of Graphana is flexible in the layout to use. To create
a new Layout, a class, which extends visualizations.stdlayout.StdLayout
<VertexType,EdgeType> must be created. The generic types must be kept. The
class needs to implement the arrangeVertices method. The method receives
iterators for the vertices and edges each wrapped into classes with additional visual
data. The task of the layout is to iterate over the vertex visual data set and set
the positions. As an example, this is the implementation of the cycle layout:

@Override
protected void a r rangeVer t i c e s (

S t r ing layoutParams ,
I t e r ab l e <VisVertex> ve r t i c e s ,
I t e r ab l e <EdgeVisualData<VertexType , EdgeType>> edges)

{
int vCount = graph . getVertexCount () ;
f loat rad iu s = 0 .8 f ;
double omega = 2∗Math . PI/vCount ;
double a = 0 ;
for (VertexVisualData<VertexType , EdgeType> vi sVertex : v e r t i c e s)
{

v i sVer tex . s e tPo s i t i o n (
Math . s i n (a)∗ radius , Math . cos (a)∗ rad iu s) ;

a += omega ;
}

}

The layout ignores the edges completely. It just iterates over the vertex visual data
and sets the positions onto a circle. The radius is given by the layout parameters,
which is always given as a string and need to be parsed. If no layout key is given,
a default radius is used.

After the layout class is implemented, it needs to be registered. The easiest way
to do this is to register the layout where the other layouts are registered: in the
registerStdVisualizers method of the system.GraphanaInitializer.

19

5 Descriptions

Graphana contains a help system to create documentations for operations, terms
and types. The user can access these informations at runtime. In addition, latex
documents can be generated automatically to create a document which contains
all descriptions. This section deals with the concept of the help system and about
how to add descriptions.

A description either describes an operation, a term or a type. The descriptions
and meta informations are read from XML files. These are stored within the de-
scriptions directory of Graphana. A description XML file contains one or multiple
sections, each consisting of one or multiple descriptions. Each description has a
globally unique key. For operations the key is equal to the operation key. For
types it is equal to the type name. For terms a key can be chosen within the XML
file, but it has to be unique as well. At runtime, the user can access a description
by typing help followed by the respective key, for example help maxFlow. For
operations, the path and filename of the XML file where to find the description
must be given relative to the descriptions directory. This is done by setting the
descFilename member variable within the constructor. However, since it often
makes sense to include every operation description of an operation group in the
same XML file, the getDescriptionFilename can be overwritten in the respective
OperationGroup subclass to set all description filenames of the respective opera-
tion group to the returned filename.

When describing an operation, much additional information like the signature
do not need to be described. These informations are created using the declaration.

20

5.1 XML file structure

The following example depicts the structure and some tags of a description XML
file:

<explanations>

<section key="My Section">

<command key="myCommand">
Description of a command

</command>

<algorithm key="myAlgorithm">
Description of an algorithm.

</algorithm>

<operation key="myGraphOperation">
Description of a graph operation.

</operation>

</section>

<section key="Another Section">

<text>
Optional text, for example to introduce the section.

</text>

<term key="myTerm">
Explanation of a term, for example from graph theory
or just a term which is often used within the section.

</term>

<algorithm key="myOtherAlgorithm">
Description of another algorithm.

</algorithm>

</section>

</explanations>

21

The algorithm, command and graph operation keys must match with the opera-
tion they describe.
Additional information, like the graph preconditions and the signature are gen-
erated automatically using the declaration of the operation. So for example a
description does not need to mention that an algorithm only works on undirected
graphs and/or only with a certain graph library. Of course, this is only true, if the
operation was declared properly.

For algorithms, it is recommended to use the <runtime> tag within the description
text, if the runtime is known. For example:

<runtime><O>n + <graphsize/></O></runtime>

This generates a standardized output.

Descriptions can reference each other:

Reference to a term: <see><refterm>myTerm</refterm></see>.
Mentioning the <refop>myCommand</refop> command within a sentence.

In the latex version, respective labels and clickable texts are generated.

To explicitly distinguish the output depending on the version, the <plain> and
<latex> tags can be used within a description:

<plain>This is the plain version.</plain>
<latex>This is the \textit{latex} version.</latex>

In order to avoid explicitly writing two versions when for example using format-
ting, tags can be used in many cases, which will create the output automatically
depending on the version:

This is <i>any</i> version.

The formatting will be ignored in the plain version and a \textit will be inserted
into the latex version.
Furthermore, there are constants, like the <graphsize\> tag shown above. All
supported tags are listed in the descriptions/description_doc.txt file.

As an important side note: Once a XML file was loaded at runtime, the descrip-
tions will not be read from the file again when requesting one of the descriptions
again during the whole runtime. So Graphana must be restarted in order that
changes in the files will have an effect.

22

5.2 Generating latex code

There is a Graphana script to generate latex code out of the all description XML
files. This script can be found at scripts/manual_creator_all.txt. The script needs
to know which sections to include and in which order. For each operation type
there is a text file containing the sections line wise in a certain order:
descriptions/operations/commands/sections_commands.txt
descriptions/operations/algorithms/sections_algorithms.txt
descriptions/operations/graph_operations/sections_graphoperations.txt
To add a new section or to change the order, the respective file has to be changed.
The script can then be executed within Graphana for example by executing the
following statement:
script(’scripts/manual_creator_all.txt’)

If an error occurs, it is printed in the user interface. If nothing is printed,
then the source generation was successful. The script generates three latex files:
all_commands.tex, all_algorithms.tex and all_graphoperations.tex. They cannot
be compiled individually. They have the purpose to be included within another
latex file, like the graphana_ops.tex file. When compiling this file, a document
containing all descriptions, a table of contents and some additional texts is gener-
ated.

23

	The framework
	Operations
	Operation types
	Signatures
	Execute method
	Operation arguments
	Operation return

	Subclasses of Operation
	Commands
	Graph operations
	Graph algorithms

	Operation groups

	Graph libraries
	Create binding
	Register

	Graph layouts
	Descriptions
	XML file structure
	Generating latex code

