
Graphana - Operations and types

Contents

1 Commands 3
1.1 Program configuration . 3
1.2 System operations . 4
1.3 Time and date . 5
1.4 Counters . 5
1.5 Execution . 6
1.6 System alerts . 7
1.7 File output . 7
1.8 File input . 8
1.9 Graph visualization . 8
1.10 Histogram creation . 10
1.11 Histogram visualization . 11
1.12 Colors . 12
1.13 User interactions . 13
1.14 Variables . 13
1.15 Assertions . 13
1.16 Bounds . 14
1.17 Converting primitives . 14
1.18 String operations . 15
1.19 Complex type operations . 15
1.20 Math functions . 16

2 Graph operations 18
2.1 Graph creation . 18
2.2 General graph properties . 19
2.3 Graph loading . 19
2.4 Graph libraries . 20
2.5 Random graphs . 21
2.6 Graph editing . 21
2.7 Graph conversions . 24

3 Algorithms 26
3.1 Vertex degrees . 26
3.2 Flows . 28
3.3 Connected Components . 28
3.4 Trees . 29
3.5 Treewidth . 30
3.6 Connectivity . 31
3.7 Clusters . 32
3.8 Cluster vertex deletion . 32
3.9 Cluster Editing . 34
3.10 Feedback Sets . 35
3.11 Miscellaneous graph parameters . 36

4 Types 39
4.1 Primitive types . 39

1

4.2 Graph types . 40
4.3 Complex types . 41
4.4 File types . 42
4.5 Miscellaneous types . 42

2

1 Commands

Every box in this section depicts one operation. The boxes are structured as follows:

operationKey
parameterName1: ParameterType1
parameterName2: ParameterType2
...
parameterNameN: ParameterTypeN
[...]
returns ReturnType

The operation’s description text.

Default values are denoted with a = after the parameter type followed by the value. If a pa-
rameter has a default value then passing an argument is optional. Some operations have three
dots at the end of their parameter lists. These operations can receive arguments of the type of
the last parameter in the list at any number.

Besides operations, some subsections contain descriptions of terms. These are not written
in boxes.

1.1 Program configuration

getCurrentGraph
deepCopy: Boolean = false
returns Graph
Returns the current graph. The returned Graph can be stored in a variable for example.

setCurrentGraph
graph: Graph
returns void
Sets the given graph as the current graph.

setAlgorithmTimeout
timeOutMillis: PositiveInteger
returns void
Sets the maximum computation time for an algorithm. If an algorithm which is executed
afterwards exceeds the given time then the computation will be aborted and a timeout error
will be returned. If 0 is given, then the timeout is disabled.
The timeout is given in milliseconds, so a timeout of 1000 means one second. Initially, the
timeout is set to 10000.

3

setScriptTimeout
timeOutMillis: PositiveInteger
returns void
Sets the maximum script execution time. If a script which is executed afterwards exceeds
the given time then the execution will be aborted and a timeout error will be returned. If 0
is given, then the timeout is disabled.
The timeout is given in milliseconds, so a timeout of 1000 means one second. Initially, the
timeout is disabled.

setTimeout
timeOutMillis: PositiveInteger = 10000
returns void
Sets the algorithm timeout and the script timeout to the given value (see setAlgorithm-
Timeout and setScriptTimeout). The value is given in milliseconds.

setPrintWarnings
printWarnings: Boolean = true
returns void
Calling this method enables or disables the output of warnings.

setCaching
enableCaching: Boolean
returns void
This operation can be used to enable or disable caching of algorithm results. Some algorithms
save their (interim) results to reuse them when called repeatedly or to provide them to other
algorithms to increase the overall program performance.
Initially, caching is enabled. There are circumstances under which caching is automatically
disabled, for example if the runtime of an algorithm is measured.

1.2 System operations

import
Class: ExistingFile
returns String
Imports the given ExistingFile into the program. The file must be a java class which is
compatible with Graphana. After importing, the operations that are defined within the class
are available in the program.

sleep
milliseconds: PositiveInteger
returns void
Causes the program to sleep. The duration is given in milliseconds, so for example 1000
means one second.

4

1.3 Time and date

getTime
format: String = ’HH:mm:ss’
returns String
Returns the current system time as formatted String in the given format.

millisToString
milliseconds: PositiveInteger
returns String
Converts the given milliseconds into a formatted String.

getTimeMillis
returns Integer
Returns the current system time in milliseconds where 0 is 00:00.

getDate
format: String = ’yyyy/MM/dd’
returns String
Returns the current system date as formatted String in the given format.

1.4 Counters

startCounter
returns void
Starts the global counter. Every time this operation is called, the global counter will be reset.

getCounter
returns Integer
Returns the time difference between the call of startCounter and the current time in millisec-
onds. This operation does not stop the counter.

Algorithm timer:
The algorithm timer can be used to measure the runtimes of algorithms. It increases when-
ever an algorithm is running. So the timer is more accurate than the normal counter because
only the runtime of the algorithm itself is measured, ignoring for example compatibility checks.
Nevertheless, interferences with the java garbage collector may occur.
The algorithm timer is used via startAlgorithmTimer and getAlgorithmTime.

startAlgorithmTimer
returns void
Starts/restarts the algorithm timer. That means, that its value is set to 0.

5

getAlgorithmTime
returns Integer
Returns the current algorithm timer as Integer in milliseconds. The algorithm timer keeps
running after calling this operation.

1.5 Execution

script
file: ExistingFile
statements: ANY = ”
...
returns ANY
Executes the given ExistingFile as batch. The script must contain source code in Graphana
syntax. The additional arguments are ignored and can be used to set up global variables
which are used within the script for example.

executeString
statement: String
returns ANY
Executes the given String and returns the result of the execution. The given string must
be source code in Graphana syntax. The additional arguments are ignored and can be used
to set up global variables which are used within the statement for example. If the statement
shall be executed multiple times it is recommended to use parse and executeTree instead
of this command.

parse
source: String
returns ParseTree
Parses the given String and returns a ParseTree. The given source must be source code
in Graphana syntax.

parseScript
script: ExistingFile
returns ParseTree
Parses the given ExistingFile and returns a ParseTree. The script must be source code in
Graphana syntax.

executeTree
tree: ParseTree
returns ANY
Executes the given ParseTree and returns the result of the execution. The execution of a
parse tree is much faster than the execution of a String with executeString.

6

1.6 System alerts

error
message: String
returns void
Throws an error with the given text message and stops the execution of the statement and,
if executed in a script, of the script.

warning
message: String
returns void
Prints a warning with the given text together with some meta data.

alert
message: String
title: String = ’Message’
returns void
Shows a message dialogue containing the given text. The dialogue window will be titled with
the given title.

1.7 File output

setOutputFile
file: File
autoWriteConsoleOutput: Boolean = false
autoWriteConsoleInput: Boolean = false
returns void
Sets the current output file. After the output file is set, every WRITE call will write into the
chosen file.
If the given file does not exist, it will be created. Otherwise it will be overwrit-
ten. If autoWriteConsoleOutput is set to true then nearly every console output, in-
cluding PRINT calls, errors and warnings, will be written into the file automatically. If
autoWriteConsoleInput is set to true then also console inputs will be written into the file.

flushOutput
returns void
Flushes the current output file without closing it. So the file will be visible and up to date
in the file system.

closeOutput
returns void
Closes the current output file. So the file will be visible and up to date in the file system and
can be used by other programs. After closing the file it is not allowed to call WRITE until a
new output file is set using setOutputFile.

7

writeWholeFile
file: File
object: ANY
returns void
Creates a text file which contains the string representation of the given Object. The file will
be automatically closed after writing.

1.8 File input

readWholeFile
file: ExistingFile
returns String
Reads the whole given (text) file and returns the content as one String.

getFiles
directory: String
acceptedExtensions: Vector =)
returns Set
Returns all files of the given directory as a set of File. Instead of a directory, a filename can
be given alternatively. In this case, a set, which only contains the given file, will be returned.

1.9 Graph visualization

Visualization window:
Every graph visualization and algorithm visualization is done in a visualization window
which can be minimized, maximized and closed. Within the window, the following actions can
be performed:

Left click on a vertex: moving vertex.
Right click on empty space: adding a vertex.
Middle click and drag: scrolling through the view.
Mouse wheel: zoom in and out.
Right click and hold on a vertex and release on another vertex: creating an edge from the first
vertex to the second or delete the respective edge, if it already exists.

Modifying the graph only works in the standard visualization and only if it is allowed (for
example it is not possible in algorithm visualizations). So the right mouse button may have no
effect.

Every window has a certain frame rate which determines, how often the graph is repainted
per second. Repainting is necessary to make changes in the dates and states of the vertices and
edges visible. If the frame rate is set to zero, then the graph must be repainted manually using
repaintGraph.

Layout:
The layout determines how the vertices are positioned in a visualization window. The layout

8

is chosen for example as the first argument of the showGraph operation.

The following layouts are available in Graphana:
GRID
CYCLE
TREE
JUNG.CYCLE
JUNG.ISOM

For directed graphs, a root vertex must be given for every connected component when using
the TREE layout. These are specified by writing a colon and the vertex identifiers seperated
by commas (for example TREE:v1,v5).

showGraph
layout: String = ’GRID’
windowTitle: String = ”
width: PositiveInteger = 640
height: PositiveInteger = 640
enableModification: Boolean = true
frameRate: PositiveInteger = 10
returns void
Visualizes the graph in the visualization window with the given title. If no such window
exists, a new one will be created. The layout is set by passing the respective layout keyword
(e.g. ”Jung.ISOM”,”TREE” ...).
With width and height the dimensions of the window can be set.
If allowModification is set to false then the graph cannot be modified within the visual-
ization window, so right click will not have any effect.
The parameter frameRate sets the frame rate of the visualization window. If zero is given
then the window will not update frequently.

repaintGraph
windowTitle: String = ’Graph’
returns void
Refreshes the graph visualization in the visualization window with the given title.

closeGraphView
windowTitle: String = ’Graph’
returns void
Closes the graph visualization window with the given title.

Algorithm visualization:
Some algorithms support algorithm visualization, which is a step-by-step algorithm output.
If algorithm visualization is enabled and a respective algorithm is executed, the visualization
starts automatically. Depending on the algorithm, the graph or multiple graphs are visualized
in one or more visualization window(s) after every important step of the algorithm. One
can iterate through the steps by pressing enter in the console. To abort the visualization, ’fin’
can be typed in.
The algorithm visualization blocks caching and the algorithm timer. Algorithm visualiza-

9

tion can be enabled or disabled using setAlgorithmOutput. Initially, algorithm visualization
is disabled.

setAlgorithmVisualization
showOutput: Boolean
returns void
This operation enables or disables algorithm visualization.

setAlgorithmVisualizationParams
layout: String = ’GRID’
width: PositiveInteger = 640
height: PositiveInteger = 640
returns void
Sets the visualization parameters for the algorithm visualization, which can be enabled
using setAlgorithmOutput. The parameters have the same meaning as the respective
parameters in the showGraph operation.

1.10 Histogram creation

newHistogram
estimatedValues: PositiveInteger = 64
xScale: PositiveInteger = 1
returns Histogram
Creates a new empty Histogram. The returned Histogram can be filled with values using
setHistogramValue or incHistogramValue. Initially, a value is zero. With the parameter
estimatedValues the initial memory allocation can be set. The capacity is nearly unlimited
- estimatedValues only has a slight effect on performance.

setHistogramValue
histogram: Histogram
index: PositiveInteger
value: Float
returns void
Sets the value associated with the given index in the given histogram.

incHistogramValue
histogram: Histogram
index: Float
incValue: Float = 1.0f
returns void
Increments the value associated with the given index in the given Histogram by the given
incValue, which may be negative, too.

10

csvToHistogram
csv: String
separator: String = ’:’
returns Histogram
Converts a CSV string into a Histogram which then can be used for example for visualiza-
tion.

1.11 Histogram visualization

showHistogram
histogram: Histogram
titleKey: String = ’Histogram’
clearPrevious: Boolean = true
width: Integer = 800
height: Integer = 600
returns void
Visualizes the given Histogram using the window with the given title. If no such Window
is shown, a new one will be created. If clearPrevious is set to false then previously shown
histograms of the window won’t be deleted. The dimension of the output window can be set
by the parameters width and height.

addHistogramToView
histogram: Histogram
titleKey: String = ’Histogram’
returns void
Does the same as showHistogram with ClearPrevious set to false.

setHistogramViewMode
linesMode: Boolean
thickLines: Boolean = true
logScale: Boolean = false
beginAtZero: Boolean = true
returns void
Configures histogram visualization in general. This will influence every histogram visualiza-
tion which is done after this operation.
If linesMode is set to true then lines will be drawn instead of bars. With boldLines set to
true the lines have a width of 3px instead of 1px.

refreshHistogramView
titleKey: String = ’Histogram’
returns void
Refreshes the visualization of histograms associated with the given title. This operation must
be called after changing Histogram values to make the changes visible to the user.

11

setHistogramViewColors
color: Color
...
returns void
Configures the colors of the bars or lines of all histogram visualization which is called after
this operation. The first givenColor is used for the first addedHistogram of a visualization,
the second Color for the second one and so on. If there are more histograms to output than
colors given then it restarts with the first Color.

clearHistogramView
titleKey: String = ’Histogram’
returns void
Removes all the histograms of a visualization associated with the given title. The visualization
window remains visible.

getHistogramFromView
titleKey: String = ’Histogram’
index: PositiveInteger = 0
returns Histogram
Extracts the Histogram with the given index from a visualization associated with the given
title. The indices of the histograms are set by the order they were added into the visualization.

1.12 Colors

newColor
red: PositiveInteger
green: PositiveInteger
blue: PositiveInteger
alpha: PositiveInteger = 255
returns Color

newFloatColor
red: Float
green: Float
Blue: Float
Alpha: Float = 1.0f
returns Color

gray
value: PositiveInteger
returns Color
Returns a gray color with the given brightness. The brightness must be a value between 0
(black) and 255 (white)

12

fGray
value: Float
returns Color
Returns a gray color with the given brightness. The brightness must be a value between 0
(black) and 1 (white)

1.13 User interactions

ask
question: String = ”
returns String
Pauses the execution, waits for a user input and returns the String which was entered by
the user.

pause
message: String = ’Press Enter...’
returns void
Pauses the execution until the user presses enter. A message can be given. This message will
be printed before the execution pauses.

1.14 Variables

typeOf
variable: ANY
returns String
Returns the type name of the given value.

removeVariable
identifier: String
returns Boolean
Removes the variable with the given identifier. The value will be deleted from memory
and calling defined on the variable afterwards will return false.

1.15 Assertions

assert
condition: Boolean
message: ANY = ”
returns void
Does nothing, if the given Boolean is true. Otherwise, an error is thrown together with a
message that can be given.

13

assertEq
value1: ANY
value2: ANY
message: ANY = ”
returns void
Does nothing, if the two given values are equal. Otherwise, an error is thrown together with
a message that can be given.

1.16 Bounds

newInterval
lowerBound: Float
upperBound: Float
returns Interval
Creates and returns a new Interval with the given bounds.

getLowerBound
bounds: Interval
returns Float
Returns the lower bound of the given Interval.

getUpperBound
bounds: Interval
returns Float
Returns the upper bound of the given Interval.

1.17 Converting primitives

asFloat
integer: Integer
returns Float
Converts an Integer into a Float. This can be used for example to enforce float division
when dividing two integers.

parseInt
string: String
returns Integer
Converts a String into an Integer by parsing the string.

parseFloat
string: String
returns Float
Converts a String into a Float by parsing the string.

14

parseBool
string: String
returns Boolean
Converts a String into a Boolean by parsing the string. The strings ”true” and ”1” result
in true and the strings ”false” and ”0” result in false. The strings are not case-sensitive.

1.18 String operations

toString
object: ANY
returns String
Returns the String representation of the given object which can be of any type.

split
string: String
regex: String = ’\n’
trim: Boolean = true
returns Vector
Splits the given String at the given regular expression and returns multiple strings as a
Vector.

startsWith
string: String
prefix: String
returns Boolean
Returns true iff the given String starts with prefix.

endsWith
string: String
postfix: String
returns Boolean
Returns true iff the given String ends with postfix.

1.19 Complex type operations

getSize
iterable: Iterable
returns PositiveInteger
Returns the number of elements in the given Iterable.

getVectorSize
vector: Vector
returns PositiveInteger
Returns the number of entries of the given Vector.

15

setVectorSize
vector: Vector
newSize: PositiveInteger
returns void
Sets the number of entries of the given Vector to the given number. The values of the vector
remain the same.

getSetCardinality
set: Set
returns PositiveInteger
Returns the cardinality of the given Set.

setInsert
set: Set
value: ANY
returns void
Inserts the given element into the given Set. The element is inserted even if an equal element
exists in the given set.

1.20 Math functions

round
number: Float
returns Integer
Converts a Float into an Integer by rounding the given value.

random
lowerBound: Integer
upperBound: Integer
returns Integer
Returns a random Integer which is bigger or equal to lowerBound and smaller or equal to
upperBound.

sqrt
x: Float
returns Float
Returns the square root of the given value.

sqr
x: Float
returns Float
Returns the square of the given value.

pow
base: Float
exp: Float
returns Float
Returns base to the power of exp.

16

sin
x: Float
returns Float
Returns the sine of the given value.

cos
x: Float
returns Float
Returns the cosine of the given value.

tan
x: Float
returns Float
Returns the tangent of the given value.

cotan
x: Float
returns Float
Returns the cotangent of the given value.

17

2 Graph operations

In the explanations of this section, G is the given graph, V its vertices and E its edges. When
a runtime is given then n is the number of vertices, m the number of edges and ∆(G) is the
sum of both.

Every box in this section depicts one algorithm. The boxes are structured as follows:

algorithmKey
parameterName1: ParameterType1
parameterName2: ParameterType2
...
parameterNameN: ParameterTypeN
[...]
returns ReturnType

The algorithm’s description text.

For some algorithms:
Runtime: The algorithms runtime in O-notation
Graph preconditions: List of preconditions
Compatible libraries: List of supported graph libraries

Arguments are handled in the same way as they were explained in the previous section. The
algorithm timer only counts if one of the algorithms of this section is called.

Algorithms which support algorithm visualization are marked with a * after the algorithm
key.

2.1 Graph creation

Graph configuration:
In Graphana a graph configuration is the combination of the properties directed, weighted and
loop-free forced. If a graph is forced to be loop-free then no loops can be inserted.

createGraph
directed: Boolean = false
weighted: Boolean = false
forceLoopFree: Boolean = false
library: String = ’KEEP’
returns void
Creates a graph with the given graph configuration and sets it as the current graph. With
the parameter library a name of a graph library can be given. The graph will then
internally be created as a graph of the respective library. If the argument is set to KEEP
or omitted then the previously used library will be used. An already created graph will be
completely deleted and recreated.

18

2.2 General graph properties

vertexCount
returns Integer
Returns the number of vertices.

edgeCount
returns Integer
Returns the number of edges.

graphSize
returns Integer
Returns the sum of the vertex count and edge count.

isDirected
returns Boolean
Returns true, if and only if the graph is directed.

isWeighted
returns Boolean
Returns true, if and only if the graph is weighted.

isLoopFree
returns Boolean
Returns true, if and only if the graph does not contain any loops.

isForceLoopFree
returns Boolean
Returns true, if no loops can be added to the graph.

2.3 Graph loading

loadGraph
filename: ExistingFile
returns void
Sets the current graph by loading a DIMACS or a dot file. Depending on the given file
format, the operation does either the same as loadDIMACS or loadDot.

loadDIMACS
filename: ExistingFile
returns void
Loads the given DIMACS File.
If the graph is directed then every edge in the file is seen as an directed edge and vice versa.
So if the graph is undirected, there can only be one edge per vertex pair even if there are
two in the file. If the graph is unweighted then the weights within the file will be ignored. If
the graph is forced to be loop-free then loops in the file will be ignored . For huge files the
number of lines to read can be limited using ’MaxLines’.

19

loadDot
filename: ExistingFile
ignoreWeights: Boolean = false
ignoreLayoutAttributes: Boolean = false
returns void
Loads the given dot File.
Since a dot file directly contains information of whether the graph is directed or not, the
resulting graph will be directed if and only if it is directed in the dot file. If the graph is
unweighted then the weights within the file will be ignored. If the graph is forced to be
loop-free then loops in the file will be ignored .

2.4 Graph libraries

Graph library:
Graphana can internally use different graph libraries. Which library is used influences perfor-
mance and the set of available algorithms. The usage itself does not depend on the chosen
library. So graph construction, graph loading etc. always works in the same way. In addition
libraries can be converted into each other (either manually by calling setLibrary or automat-
ically if a called algorithm is not compatible with the current library).

setLibrary
libraryName: String
returns void
Sets the current graph library. The graph will be converted into the given graph library.
Initially, the JUNG2 library is set.

getLibrary
returns String
Returns the name of the current graph library as a String.

getAvailableLibraries
returns Set
Returns the names of all available graph libraries as a Set of String. Each of the given
names is a valid library input for the setLibrary operation or the createGraph operation.

20

2.5 Random graphs

createErdosRenyiGraph
vertexAmount: PositiveInteger = 10
connectionProbability: Float = 0.3f
minWeight: Integer = 1
maxWeight: Integer = 1
returns void
Creates a random Erdős-Rï¿1

2
nyi-Graph. The new graph has VertexCount vertices. Every

vertex pair is connected with a probability of ConnectionProbability. The weight of every
edge is a random value between MinWeight and MaxWeight. These values only have an effect
if the graph was previously created as a weighted graph (see createGraph).

createRandomClusterGraph
clusterAmount: PositiveInteger = 10
minClusterSize: PositiveInteger = 10
maxClusterSize: PositiveInteger = 20
additionalEdgesAmount: PositiveInteger = 8
minWeight: Integer = 1
maxWeight: Integer = 1
returns void
Creates a random cluster graph. The resulting graph contains up to ClusterAmount clusters.

addRandomClique
membershipProbability: Float
returns void
Adds a clique in the graph by adding edges using the existing vertices. Every vertex of the
graph is part of the clique with a probability of MemberShipProbability. Setting the value
to 1 means that the whole graph will be a clique or will be complete, respectively. By setting
it to 0, the operation has no effect.

createPGeneratedGraph
vertexCount: Integer
a: Float = 0.5f
b: Float = 0.6f
returns void
Creates a p-generated random graph.
Note that the resulting graph is always undirected, unweighted and loop-free.

2.6 Graph editing

resolveVertexNameClashes
resolve: Boolean
returns void
If resolve is true then name clashes will be automatically resolved when adding a vertex
(e.g. with addVertex) with an identifier which is already used by an existing vertex of the
graph. Initially name clashes are not resolved.

21

addVertex
identifier: String = ”
returns Vertex
Adds a vertex with the given name to the current graph. The added vertex is then identified
by the given identifier. If auto-resolving of name clashes is activated (see resolveVertex-
NameClashes) then underscores will be added to the given identifier until there is no vertex
with the same identifier. If not and there is a name clash then no vertex will be added. If
no identifier is given, a default identifier will be used (default identifiers are enumerated).
The new or the already existing vertex is returned.

addVertices
identifier: String
...
returns void
Adds multiple vertices. With every given identifier the operation adds a vertex just as
addVertex does

addVertexRow
amount: PositiveInteger
startIndex: Integer = 0
prefix: String = ’v’
Cluster: Boolean = false
returns void
Adds overall amount vertices. The operation enumerates the added vertices, starting at
startIndex. The name of an added vertex will be the prefix concatenated with the number.
If cluster is set to true then all added vertices are connected with each other.

addEdge
startVertex: Vertex
endVertex: Vertex
weight: Float = 1.0f
returns void
Adds an edge between the two given vertices (see Vertex). A weight can be given, but will
be ignored, if the graph is unweighted.

setEdgeWeight
edge: Edge
weight: Float = 1.0f
returns void
Sets the weight of the given Edge. An error is returned if the graph is unweighted.

removeVertex
vertex: Vertex
...
returns void
Removes the given Vertex or the given vertices, respectively, from the graph. That means
one ore more vertices can be given.

22

removeVertexSet
vertices: Iterable
...
returns void
Removes all vertices of the given Iterable.

removeEdge
edge: Edge
...
returns void
Removes the given Edge or the given edges, respectively, from the graph. That means one
or more edges can be given.

removeEdgeSet
edges: Iterable
...
returns void
Removes all edges of the given Iterable.

clearGraph
returns void
Removes all vertices from the graph.

deleteLoops
returns void
Deletes all loops from the graph in order that the graph is loop-free after this operation.
However, loops can be inserted afterwards. To disallow this, see forceLoopFree.

forceLoopFree
returns void
Deletes all loops from the graph. Furthermore, loops cannot be inserted afterwards.

allowLoops
returns void
After the call of this operation, loops can be added into the graph.

mergeGraph
sourceGraph: Graph
returns void
Merges the graph with the given sourceGraph. Every vertex and edge of the given graph
will be added to the graph as deep copies. Only dates of the vertices and edges, if existing,
are not copied deep.

23

graphGUI
deleteGraph: Boolean = false
drawWindowWidth: PositiveInteger = 640
drawWindowHeight: PositiveInteger = 640
frameRate: PositiveInteger = 0
returns void
Opens a visualization window with the standard grid layout with the purpose of editing
the graph visually. If deleteGraph is set to true then all vertices are deleted before editing
and the graph as well as the visualization window is empty.

2.7 Graph conversions

setGraphConfig
directed: Boolean
weighted: Boolean
forceLoopFree: Boolean
returns void
Converts the current graph into a graph with the given graph configuration whereas the
graph library remains the same. If the given graph configuration is forbidden in the respective
graph library then an error will be returned.

asDirected
returns Graph
Returns an equivalent directed graph. The returned graph contains the same vertices as the
original graph. For every undirected edge in the original graph two directed edges are created
in the returned graph. If the original graph is already directed then the graph is returned
without any changes.

toDirected
returns void
Converts the current graph into a directed graph. The converted graph contains the same
vertices as the original graph. For every undirected edge in the original graph two directed
edges are created in the converted graph.
If the current graph is already directed then nothing happens.

asWeighted
returns Graph
Returns an equivalent weighted graph. The returned graph contains the same vertices as the
original graph. For every unweighted edge of the original graph, an edge with the weight 1
is created in the returned graph. In the returned graph, edge weights can be set.
If the original graph is already weighted then the graph is returned without any changes.

24

toWeighted
returns void
Converts the current graph into a weighted graph. The converted graph contains the same
vertices as the original graph. For every unweighted edge of the original graph an edge with
the weight 1 is created in the converted graph. After this call, edge weights can be set in the
current graph.
If the current graph is already weighted then nothing happens.

graphAsDIMACS
returns String
Returns a String containing the DIMACS representation of the graph.

25

3 Algorithms

Algorithms are special Graph operations. The boxes in this section are structured the same
way as in the previous section.

Algorithms which support algorithm visualization are marked with a * after the algorithm
key.

3.1 Vertex degrees

averageDegree
returns Float
Returns the average degree of all vertices.

Graph preconditions: not empty

maxDegree
returns Integer
If the graph is undirected then the degree of the vertices with the largest number of neighbors
is returned. Otherwise the maximum of maxIngoingDegree and maxOutgoingDegree
is returned.

Graph preconditions: not empty

maxIngoingDegree
returns Integer
Returns the ingoing edge count of the vertices with the largest number of ingoing edges.
If the graph is undirected then the returned value is equal to the maxDegree return value.

Graph preconditions: not empty

maxOutgoingDegree
returns Integer
Returns the outgoing edge count of the vertices with the largest number of outgoing edges.
If the graph is undirected then the returned value is equal to the maxDegree return value.

Graph preconditions: not empty

minDegree
returns Integer
If the graph is undirected then the degree of the vertices with the smallest number of neighbors
is returned. Otherwise the minimum of minIngoingDegree and minOutgoingDegree is
returned.

Graph preconditions: not empty

26

minIngoingDegree
returns Integer
Returns the ingoing edge count of the vertices with the smallest number of ingoing edges.
If the graph is undirected then the returned value is equal to the minDegree return value.

Graph preconditions: not empty

minOutgoingDegree
returns Integer
Returns the outgoing edge count of the vertices with the smallest number of outgoing edges.
If the graph is undirected then the returned value is equal to the minDegree return value.

Graph preconditions: not empty

degreeDistribution
returns Histogram
Returns a Histogram with a mapping from vertex degrees to the amount of vertices that
have the respective degree.

Graph preconditions: undirected, not empty

ingoingDegreeDistribution
returns Histogram
Returns a Histogram with a mapping from vertex degrees to the amount of vertices that
have the respective ingoing degree.
If the graph is undirected then the returned histogram is equal to the degreeDistribution
return value.

Graph preconditions: not empty

outgoingDegreeDistribution
returns Histogram
Returns a Histogram with a mapping from vertex degrees to the amount of vertices that
have the respective outgoing degree.
If the graph is undirected then the returned histogram is equal to the degreeDistribution
return value.

Graph preconditions: not empty

distanceDistribution
returns Histogram
Returns a mapping of d to the number of vertices that have the distance d.

Graph preconditions: not empty
Compatible libraries: JUNG2

27

3.2 Flows

maxFlow
source: Vertex
sink: Vertex
returns Float
Returns the max flow between the two given vertices (see Vertex).

Graph preconditions: not empty
Compatible libraries: JUNG2, JGraphT

minCut
source: Vertex
sink: Vertex
returns Vector
Returns the min cut between the two given vertices (see Vertex).

Graph preconditions: not empty
Compatible libraries: JUNG2

Gomory-Hu-Tree:
The Gomory-Hu-Tree T = (V,ET) of a graph G = (V,EG) is a tree in order that every pair
(v, w) ∈ V has the same max flow as in G.

gomoryHuTree *
ignoreWeights: Boolean = false
returns Graph
Returns the Gomory-Hu-tree of the graph.

Runtime: O(n2 + m2)
Graph preconditions: undirected, not empty, loop-free
Compatible libraries: JUNG2

3.3 Connected Components

getConnectedComponentCount *
returns PositiveInteger
Returns the number of connected components.

28

getConnectedComponent *
componentIndex: PositiveInteger
returns Graph
Returns the connected component with the given index. The index must be a value between
0 and the connected component count (see getConnectedComponentCount) minus one. The
indices are given internally.
The returned graph is a deep copy of the respective connected component.

Graph preconditions: undirected, not empty

getConnectedComponentByVertex *
vertex: String
returns Graph
Returns the connected component in which the given vertex is contained.
The returned graph is a deep copy of the respective connected component.

Graph preconditions: undirected, not empty

getStronglyConnectedComponentCount
returns Integer
Returns the number of strongly connected components.

Graph preconditions: loop-free

3.4 Trees

Tree:
A tree is an acyclic graph.

isTree *
returns Boolean
Checks, whether the graph is a tree.

Graph preconditions: undirected

29

3.5 Treewidth

setTreewidthUpperBoundHeuristics
heuristic: String
...
returns void
Since the computation of the treewidth is NP-complete, Graphana uses some heuristics for
this problem. The heuristics are implemented in LibTW from www.treewidth.com .
The heuristics which are to be used are passed as Strings. If multiple heuristics are given
then every heuristic will be executed and the best result will be returned .

The following Strings are valid treewidth upper bound heuristic keys:
GREEDYFILLIN
GREEDYDEGREE
ALLSTARTLEXBFS

By default, GREEDYFILLIN is set. For informations on the different heuristics, see www.
treewidth.com .

The chosen treewidth upper bound heuristics influence the following algorithms:
treewidthUpperBound, treewidthBounds, treewidthExact.

setTreewidthLowerBoundHeuristics
heuristic: String
...
returns void
Since the computation of the treewidth is NP-complete, Graphana uses some heuristics for
this problem. The heuristics are implemented in LibTW from www.treewidth.com .
The heuristics which are to be used are passed as Strings. If multiple heuristics are given
then every heuristic will be executed and the best result will be returned .

The following Strings are valid treewidth lower bound heuristic keys:
MAXMINDEGREEPLUSLEASTC
MAXCARDSEARCH
RAMACHANDRAMURTHI
ALLSTARTMAXCARDSEARCH
MAXMINDEGREE
MAXMINDEGREEPLUSMAXD
MAXMINDEGREEPLUSMIND
ALLSTARTMAXMINDEGREE
ALLSTARTMAXMINDEGREEPLUSLEASTC
ALLSTARTMINORMINWIDTH
MINORMINWIDTH
MINDEGREE

By default, MAXMINDEGREEPLUSLEASTC is set. For informations on the different heuristics, see
www.treewidth.com .

The chosen treewidth lower bound heuristics influence the following algorithms:
treewidthLowerBound, treewidthBounds.

30

www.treewidth.com
www.treewidth.com
www.treewidth.com
www.treewidth.com
www.treewidth.com

treewidthUpperBound
returns Integer
Returns an upper bound of the treewidth. The heuristics which are to be used can be set
with setTreewidthUpperBoundHeuristics.

Graph preconditions: not empty
Compatible libraries: LibTW

treewidthLowerBound
returns Integer
Returns a lower bound of the treewidth. The heuristics which are to be used can be set with
setTreewidthLowerBoundHeuristics.

Graph preconditions: not empty
Compatible libraries: LibTW

treewidthExact
returns Integer
Returns the treewidth using the ’TreewidthDP’ algorithm from www.treewidth.com. The
algorithm has a NP runtime. Before the actual computation starts, an upper bound is
established by using one or more heuristics. Which heuristics are to be used for this can be
set with setTreewidthUpperBoundHeuristics.
For further information on the algorithm, see www.treewidth.com.

Graph preconditions: not empty
Compatible libraries: LibTW

3.6 Connectivity

largestKConnected *
k: Integer
returns Integer
Returns the cardinality of a maximum V ′ ⊂ V in order that V ′ is k-edge-connected depending
on the parameter k.

Graph preconditions: undirected, not empty, loop-free
Compatible libraries: JUNG2

edgeConnectivityDistribution *
returns Histogram
Returns a mapping from k to largestKConnected(k) as a Histogram. The first value is
k = 0. The last value is the largest k where largestKConnected(k) does not return 0.

Graph preconditions: not empty
Compatible libraries: JUNG2

31

www.treewidth.com
www.treewidth.com

3.7 Clusters

Cluster:
A cluster is a connected component in which all vertices are connected with each other.

Cluster graph:
A cluster graph is a graph which consists only of clusters (see Cluster).

isClusterGraph *
returns Boolean
Returns true if and only if the graph is a Cluster graph.

Graph preconditions: undirected

3.8 Cluster vertex deletion

CVD:
Abbrevation for ”cluster vertex deletion”

Cluster vertex deletion set:
A set C ⊆ V in order that (V \C,EC) is a cluster graph (the set of edges EC ⊆ E contains
all edges which are not incident to any vertex in C).

CVD-set:
Abbrevation for Cluster vertex deletion set

CVD-heuristics:
Since finding a CVD-set is NP-complete, Graphana supports several heuristics for this prob-
lem which differ in runtime and cardinality of the resulting set.
Which heuristic(s) shall be used, can be set with setCVDHeuristics. A CVD-heuristic con-
sists of two parts: the search strategy to search for nodes which may be deleted and the delete
strategy to delete one or more vertex of the found candidates. In Graphana there are two search
strategies and three delete strategies. So in combination, there are six heuristics.

The search strategies are:
Successive (key: ”SUCC”):
The candidates are found by regarding each vertexes neighbors. This strategy is recommended
for very sparse graphs.
Runtime: O(n ·m)Connected components (key: ”CC”):
The candidates are found by recursively splitting the graph into connected components. This
strategy is especially recommended for dense graphs. In most cases the runtime is better than
the runtime of the ”Successive” strategy.

32

Runtime: O((n + m) + |C| · (n + m) ·∆(G) + |C| · (∆(G))2)
Where |C| is the cardinality of the CVD set.

The delete strategies are:
All (key: ”ALL”): Deletes all found candidates. This strategy ensures, that the cardinality
of the resulting CVD-set is not more than three times as large as the cardinality of an optimal
solution.
First (key: ”FIRST”):
Deletes the candidate which was found first.
Maximum degree (key: ”MAX”)
Deletes a candidate with the highest degree.

setCvdHeuristics
heuristic: String
...
returns void
Sets the CVD-heuristics which shall be used when computing a CVD-set. The heuristics
are given as Strings containing the key of search strategy and the key of the deletion strategy,
separated by a minus character. So for example ”CC-MAX” is a valid string. More than one
heuristic can be set by passing them within one call. A new call of setCVDHeuristics resets
the heuristics. If multiple heuristics are given, then the respective algorithms will execute all
of them and return the best result. So the computation time increases but the results are
getting more accurate.

The chosen cvd heuristics influence the following algorithms: cvdSet, cvdSize, cvdBounds,
toClusterGraph, maximumIndependentSetByCVD

toClusterGraph
returns void
Deletes vertices in order that the graph becomes a cluster graph. The number of deleted
vertices may not be optimal (see CVD-heuristics).

Graph preconditions: undirected, not empty, loop-free

getMaximumIndependentSetByCVD
returns List
Computes the maximum independent set with a parameterized algorithm which uses aCVD-
set as parameter.

Graph preconditions: undirected, not empty, loop-free

getCvdSet
returns List
Tries different heuristics to compute a CVD-set.

Graph preconditions: undirected, not empty, loop-free

33

getCvdSetSize
returns Integer
Same as getCVDSet but only returns the size of the solution.

Graph preconditions: undirected, not empty, loop-free

3.9 Cluster Editing

CE:
Abbreviation for ”cluster editing”. Task: Find a minimum size set of edges to add or delete
such that the result is a cluster graph.

edge deletion:
The minimum size set of edges to delete such that the result is a cluster graph.

clusterEditing
returns List
Returns a minimum size set of edges to add or delete such that the result is a cluster graph.
The edge branching algorithm in use has a runtime of
Runtime: O(n2.61)
Graph preconditions: undirected, not empty

clusterEditingSize
returns Integer
Returns the solution size, see clusterEditing.

Graph preconditions: undirected, not empty

clusterEditing3APX
returns List
It is an expected (randomized) 3-approximation for cluster editing. The result is the best of
5 runs.

Graph preconditions: undirected, not empty

clusterEditing3APXSize
returns Integer
Returns the solution size, see clusterEditing3APX.

Graph preconditions: undirected, not empty

34

clusterEditing3APXRuns
runs: Integer
returns List
Same as clusterEditing3APX; takes the number of runs as its argument.

Graph preconditions: undirected, not empty

clusterEditing3APXRunsSize
runs: Integer
returns Integer
Returns the solution size, see clusterEditing3APXRuns.

Graph preconditions: undirected, not empty

edgeDeletionAPX
returns List
A variaton of clusterEditing3APX for edge deletion. The result is the best of 5 runs.

Graph preconditions: undirected, not empty

edgeDeletionAPXSize
returns Integer
Returns the solution size, see edgeDeletionAPX.

Graph preconditions: undirected, not empty

edgeDeletionAPXRuns
runs: Integer
returns List
Same as edgeDeletionAPX; takes the number of runs as its argument.

Graph preconditions: undirected, not empty

edgeDeletionAPXRunsSize
runs: Integer
returns Integer
Returns the solution size, see edgeDeletionAPXRuns.

Graph preconditions: undirected, not empty

3.10 Feedback Sets

Feedback edge set size:
The feedback edge set size is the minimum number of edge deletions that are necessary in order
that the graph becomes a tree.
The feedback edge set size for a connected component is |E|+ 1− |V |.

35

feedbackEdgeSetSize *
returns Integer
Returns the feedback edge set size.

Graph preconditions: undirected

feedbackVertexSet *
returns Set

Graph preconditions: undirected, loop-free

feedbackVertexSetSize *
returns PositiveInteger

Graph preconditions: undirected, loop-free

feedbackArcSet
returns List
Heuristic for computing the feedback arc set of a directed graph; that is the number of edges
that have to be removed in order to obtain an acyclic graph. Uses sifting, which is similar to
a two sided insertion sort.
Runtime: O(n2).
Graph preconditions: loop-free

feedbackArcSetSize
returns Integer
A call to this algorithm is equivalent to getSize(feedbackArcSet()).

Graph preconditions: loop-free

3.11 Miscellaneous graph parameters

vertex cover:
A vertex cover S is a set of vertices in order that every edge e ∈ E has at least one endpoint
in V . The vertex cover size is the cardinality of a minimum vertex cover.

dominating set:
A dominating set S is a set of vertices such that every node in the graph has at least one
neighbour in S.

betweenness:
The betweenness of a Vertex/Edge is the number of shortest paths that use the Vertex/Edge.

36

vertexCoverSize
useGreedy: Boolean = true
returns Integer
This algorithm offers two heuristics: If useGreedy is set to true then a nlogn - approximation
is used. Otherwise a 2-approximation is used. The nlogn - approximation delivers better
results in many practical cases.

Runtime: O(n + m)
Graph preconditions: undirected, loop-free

vertexCoverSizeBothHeuristics
returns Integer
Calls both heuristics of vertexCoverSize and returns the minimum of both results.

Runtime: O(n + m)
Graph preconditions: undirected, loop-free

hIndex
returns Integer
The h-index is the largest number n in order that n nodes have at least n neighbors.

Runtime: O(n + ∆(G))
Graph preconditions: not empty

hIndexPlus
returns Integer
The h-indexPlus is the number n of nodes to delete such that the remaining nodes have a
degree of at most n.

Graph preconditions: undirected, loop-free

k-degenerate:
A graph is k-degenerate if and only if there is an induced subgraph which contains a vertex
with a degree at most k.

degeneracy
returns Integer
The degeneracy is the smallest number k in order that the graph is k-degenerate.

Runtime: O(m)
Graph preconditions: undirected, not empty, loop-free

37

dominatingSet
useReduction: Boolean = false
returns Set
A heuristic to calculate a (hopefully minimal) dominating set. The result set is returned.
The 1-degree reduction rule is always applied. If useReduction is set to true there will be
a further reduction step beforehand (
Runtime: O(n3)).
Graph preconditions: undirected, loop-free

dominatingSetSize
useReduction: Boolean = false
returns Integer
Same as dominatingSet but returns only the size of the result set.

Graph preconditions: undirected, loop-free

betweennessVertex
returns Histogram
Calculates the betweenness of all vertices and returns a histogram.

Graph preconditions: not empty
Compatible libraries: JUNG2

betweennessEdge
returns Histogram
Calculates the betweenness of all edges and returns a histogram.

Graph preconditions: not empty
Compatible libraries: JUNG2

neighborhoodDiversity
returns Integer
A graph has a neighborhood diversity of at most w, if there exist a partition of V into at
most w sets, such that all the vertices in each set have the same neighborhood.

Graph preconditions: not empty

38

4 Types

Every box in this section depicts one type. The boxes are structured as follows:

TypeName

The type’s description text.

Samples:
sample1
sample2
. . .
sampleN

4.1 Primitive types

Integer
An integral number with the range -2,147,483,648 to 2,147,483,647.

Samples:
8
-10
0

PositiveInteger
Essentially the same as Integer but with the range 0 to 2,147,483,647.

Samples:
3
0

Boolean
A truth value with two possible values.

Samples:
true
false

Float
A floating point number with the range 1.40129846432481707e-45 to
3.40282346638528860e+38 (positive and negative).

Samples:
4.6
-2.0

An Integer is automatically converted into a Float, if it is necessary.

39

String
A string of characters. Constant strings can either be written in quotation marks or in tick
marks. When using quotation marks, tick marks can be written inside the string and vice
versa without escaping.
See Escape characters to get a list of supported escape characters.

Samples:
’word’
”long text”
”A string with\n\t’tick marks’ and\n\t\”quotation marks\” ”

Character
A single character.
See Escape characters to get a list of supported escape characters.

Samples:
’A’
’\n’

Escape characters:
Within constant Strings or Characters, the following expressions are valid escape characters:

\n Line break
\t Tab
\\ Backslash
\” Quotation marks
\’ Tick mark

4.2 Graph types

Graph
A graph including vertices, edges, configuration, vertex- and edge data, name and algorithm
cache.

Sample: getCurrentGraph()

Vertex
A single vertex of a graph. A constant vertex can be written with $[vertex identifier].
This will deliver the vertex with the given identifier of the respective graph. If no such vertex
exists, an error will occur.

Samples:
$v2
getVertexByIdent(’v2’)

40

Edge
A single edge of a graph. An edge can be identified by the two incident vertices (in directed
graphs by their ordering, too).
An edge can for example be delivered using vertex1 −− vertex2 in undirected and
vertex1 -> vertex2 in directed graphs.

Samples:
getEdge($v0,$v2)
$v0 −− $v2

4.3 Complex types

Vector
A vector holds multiple ordered values and can be of any size. An entry of the vector can
be of any individual type (also Vector again). The particular entries can be accessed with
vector [index] where index is an Integer beginning at 0.
Vectors can be used in foreach-loops (see ’graphana_manual.pdf’).

Samples:
(1,2,3,4)
()
((2.4,4.2,6.4),(-5.6,7,10.2),(3,2.1,0))

See Complex type operations for a list of operations on vectors.

Set
A set holds multiple unordered values and can be of any size. An element of the set can be
of any individual type (also Set again).
Sets can be used in foreach-loops (see ’graphana_manual.pdf’).

Samples:
{1,2,3,4}
{}
{”A string”,$aVertex,{2.3,8.5,-6}}

See Complex type operations for a list of operations on sets.

Iterable
An Iterable cannot be created directly. An argument of an operation call is casted into an
Iterable if it is a Vector or a Set.

41

4.4 File types

File
Files are given as Strings containing the relative or absolute filename. The file does not have
to exist.

Samples:
”C:/absolute/path/file.ext”
”relative/path/file.ext”

ExistingFile
Nearly similar to File but the file must exist.

Sample: ”path/to/an/existing/file.ext”

4.5 Miscellaneous types

Histogram
A histogram contains a mapping from integral numbers to float numbers. Every entry can
be accessed in particular.

Samples:
createHistogram(30)
degreeDistribution()

See Histogram creation for a list of operations on histograms.

Interval
An interval has a minimum and a maximum value (”bounds”). The bounds can be extracted
using getLowerBound and getUpperBound

Samples:
newInterval(-3,7)
cvdBounds()

ParseTree
A String can be parsed and converted into a parse tree. This tree can then be executed any
number of times and does not need to be parsed again, which improves performance. Note
that the execution of a tree may return different results depending on global variables for
example. So if a script shall be executed very often, it makes sense to convert it into a parse
tree once using parse, assign it to a variable and execute it repeatedly (for example within
a loop) using executeTree.

Sample: parse(”2 + x*(3+y)”)

42

	Commands
	Program configuration
	System operations
	Time and date
	Counters
	Execution
	System alerts
	File output
	File input
	Graph visualization
	Histogram creation
	Histogram visualization
	Colors
	User interactions
	Variables
	Assertions
	Bounds
	Converting primitives
	String operations
	Complex type operations
	Math functions

	Graph operations
	Graph creation
	General graph properties
	Graph loading
	Graph libraries
	Random graphs
	Graph editing
	Graph conversions

	Algorithms
	Vertex degrees
	Flows
	Connected Components
	Trees
	Treewidth
	Connectivity
	Clusters
	Cluster vertex deletion
	Cluster Editing
	Feedback Sets
	Miscellaneous graph parameters

	Types
	Primitive types
	Graph types
	Complex types
	File types
	Miscellaneous types

