
Graphana - user manual
The main functionality of Graphana is the analysis of graphs concerning structural properties.
These are measured using graphparameters. The main input of Graphana are graphs and
user inputs. The main output are analysis results.

In addition, Graphana is able to:

• generate graphs:

– by random graph generators

– by script

– by GUI

• visualize graphs and algorithms

• load external java classes to import algorithms and graph libraries.

• do time measurements on algorithms

Contents

1 Program flow 2
1.1 Text input and output . 2
1.2 Main menu . 3
1.3 Status bar . 4
1.4 Graph file set window . 4
1.5 Analysis . 4
1.6 Histograms . 5

2 Script language 7
2.1 Operations . 7
2.2 Syntax (examples) . 8
2.3 Advanced usage . 10

3 Using graphana as framework 12

Appendix A: Syntax 15

Appendix B: Types 17

Appendix C: Supported Graph Formats 18

1

1 Program flow

Graphana can be started with the following command:

java -jar graphana.jar

Since Graphana sometimes needs much memory on large graphs, it is recommended to run
it with a large heap as well as with a large stack, when planning to load large graphs. For
example:

java -jar graphana.jar -Xms1024m -Xss16m

This runs graphana with 1GB heap space and 8MB stack memory. If the memory is not
sufficient, Graphana may return an error when running respective algorithms on too large
graphs.

When Graphana is started, a window appears containing the following elements:

1.1 Text input and output

The text input field gives access to all functionalities of Graphana. Text can be typed in, which
will then be evaluated by Graphana. The text output will then print the given input and if the
evaluation yielded a result, it will be printed as well.
The typed input can be executed by pressing enter or by pressing the Execute button. The
following sequence of inputs form a simple use case:

>loadGraph("sample.dim")
>vertexCount
6700
>edgeCount
21274
>QUIT

In the examples of this manual, the user inputs are denoted with a ’>’ at the beginning of a
line. All other lines are text output.

2

Firstly a graph is loaded from the given DIMACS file. In Graphana, the loadGraph statement is
a so called operation. This will be described in detail later. After loading, the vertex and edge
count of the loaded graph are printed by typing and executing vertexCount and edgeCount.
In the end the program is closed. Other operations, including algorithms, are called the same
way as in this simple example.

By pressing up and down, it can be navigated through previously executed inputs. When
typing an operation, tab can be pressed to complete the operation identifier. For example, if
”loadgr” is typed, then pressing tab yields ”loadGraph()” (note that typing ”load” and pressing
tab won’t work, because several operations start with ”load”). When pressing tab while the
caret is positioned between empty brackets, a dialog is opened to assist setting up the argu-
ments of the call. So in the ”loadGraph()” example, a dialog will appear to choose the file
argument via open dialog.

1.2 Main menu

The main menu consists of the following items:

• File: Creating and loading graphs.

• Tasks: Default program tasks. Tasks are sequences of operations.

• All operations: Contains all Graphana operations. By clicking the respective operation
a call assistant of the operation appears including a description of the operation. By
setting up the arguments and pressing Execute the operation is executed. Alternately,
Insert can be pressed to only insert the operation call as text into the text input field.
It can then be executed by pressing enter.

• Syntax: Contains all keywords of the script language (the language is described in the
next section). By clicking the repective keyword, it can be inserted into the text input
field.

• Help: Documentation and informations about the program.

In general, everything which can be done with the main menu also can be done with the text
input field (except for the Help item). The main menu can be seen as a collection of default
text inputs to make it easier to work with the program especially without knowing all operations
and the syntax.
For example: the same use case as shown in the previous subsection can be achieved with the
main menu without knowing the commands by doing the following:

• File→ Load graph, clicking "open", choosing "sample.dim" and confirming.

• All Operations → Graph operations → General graph properties → vertex-
Count → Execute then pressing enter. The same with edgeCount.

• File→ Exit.

3

1.3 Status bar

The status bar informs the user about the current state of the program. When the program
is idle, then nothing is displayed. During computations, a label shows the current activity and
a progress bar depicts the percental progress of it. In addition, a stop button appears when
starting a computation. This can be used to interrupt the current computation.

1.4 Graph file set window

The graph file set can be opened by clicking File → Graph file set.

The graph file set offers quick user access to often used graph files. Graph files can be added to
the list by pressingAdd files. Multiple files can be chosen by holding Ctrl or Shift, respectivley.
After confirming, the chosen files appear within the list. By double clicking one of the graphs
in the list, the graph is loaded into the program. This is a quick alternative of using the
loadGraph operation. Graph files can be marked and then removed with the Remove button
or by pressing the delete key. In the list, multiple files can be marked at once by holding Ctrl
or Shift. However, only one graph can be loaded at a time. The whole list can be saved by
clicking Save and choosing a file and loaded by clicking Open and choosing the respective file.
In addition, the current graph file list is always saved when closing Graphana. The list is then
loaded with the next start of Graphana.

1.5 Analysis

One important functionality of Graphana is the analysis of multiple graph files. The analysis
task can be found in the main menu under Tasks→ Analysis.

• graphFiles: The files to analyze. By pressing Edit a popup menu appears containing
the same interface as contained in the previously described graph file set window. By

4

default, the set is equal to the main graph file set window, but the set can be edited
freely. This has no influence on the main graph file set.

• directed, weighted: With these checkboxes, the respective property can be set for
the graphs to load. The settings only apply to graph formats which do not specify this
properties. For example, the DIMACS format does not specify if the graph is directed as
opposed to the Dot format. So when loading a graph file of the Dot format, the directed
checkbox has no effect.

• forceLoopFree: If this checkbox is checked, then loops are always ignored when loading
graphs.

• algorithmSelection: The algorithms to compute on every chosen graph. After pressing
Edit, the checkboxes can be used to determine which algorithms to run. Every selected
algorithm will be run on every chosen graph file. For a description of the algorithms, see
”graphana_ops.pdf”.

• output: The file to write the result into. The analysis result is a CSV table in which the
columns are the selected algorithms and the rows are the chosen graph files. The values
are the algorithm results.

• separator: The value separator for the CSV output.

1.6 Histograms

Some graph algorithms deliver not a single number but a 2D-mapping. These mappings can
be saved as CSV file or can be visualized directly within the program. One possibility is the
use of the Show histogram task of the Tasks menu. After choosing the algorithm to execute
and pressing Execute the histogram viewer is displayed and shows the result of the chosen
algorithm. For example, if ”degrees” was chosen, then the X-axis is the degree and the Y-axis
the number of vertices with that degree.

The histogram viewer contains a menu bar in the upper edge:

The left buttons can be used to export the histogram as a CSV string. It can be exported as
a file or it can be put it into the clipboard (for example to insert it directly into a spreadsheet
program like OpenOffice).

The checkboxes on the right hand side influence the visual output of the histogram:
If logarithmic scale is activated, then the Y-Axis is a log scale axis. This is useful, whenever
the values are varying widely. Especially, the log scale yields a linear output for exponential
mappings, as depicted in the following example:

5

Normal scale Log scale

If Begin at index 0 is not checked, then the X-axis starts at the first index where the value
is non-zero. Otherwise the X-axis always starts at index zero:

Begin at first non-zero index Begin at zero index

The histogram view can display multiple histograms at once. For example, after the degrees
of one graph are displayed, another graph can be loaded without closing the histogram view.
When running the histogram task again without enabling the clearPrevious checkbox, the
degree distribution will be displayed within the same view. This enables a visual comparison.
Sometimes it is better to select the Lines checkbox when displaying multiple histograms:

Multiple histograms The same with lines mode

To use separate views instead, different titles must be given when running the histogram task.

6

2 Script language

The user inputs (and other inputs that will be described later), as the ones of the simple session
example, contain so called statements. This section describes syntax and semantics of these
statements.

2.1 Operations

In simple cases, statements only contain operation calls to modify the current graph or to run
algorithms. Operations are called using the following syntax:

operationKey (argument_1, argument_2, ...argument_n)

If an operation does not need any arguments then no brackets need to be written, but it
is recommended.
The most important operations are listed in ’graphana_ops.pdf’. The signature (keyword,
parameters, return type) and the description of a particular operation can also be printed at
runtime with the HELP keyword:

HELP operationKey

If only HELP is typed in, then a runtime help is printed.

The vertex cover size algorithm is one example operation. It has the following signature:

vertexCoverSize (useGreedy:Boolean) : Integer

That means, the algorithm is called via ’vertexCoverSize’ and needs one argument of type
Boolean (to decide, which heuristic to use). Furthermore, the signature indicates that the re-
turn value is of type Integer.
Calling the algorithm looks like this:

vertexCover(true)

In the example, true is passed as argument and therefore, a greedy algorithm is used.
If an operation returns a result then the result can be shown for example as a console output,
which is the default, or can be written into a text file. The latter will be described later. Some
types of results can also be visualized.
Some operations have optional parameters. Within the operation signature, these are denoted
with a = and a default value behind the parameter type:

operationKey (parameter_1 [= default_1], parameter_2 [= default_2], ...)

If no argument is given for these then the respective default value will be used.

There are three different types of operations:

• Graph operations: During the whole runtime of the program, there is exactly one
current graph to operate on (more graphs can be managed in the background, but that is

7

not important for the beginning). Graph operations are working on this current graph.
For example loading a graph or adding vertices are graph operations.

• Algorithms: Algorithms are special graph operations, which compute graphparameters
in most cases. A sample for a simple algorithm is the average vertex degree of a graph.

• Commands: These are used to configure the program or to get some system informa-
tion. Commands do not operate on graphs. For example there are commands for time
measurements.

Graphana internally uses various graph libraries to create graphs and operate on them. Every
graph is built up in exactly one graph library. At runtime, the user can chose which library to
use. The chosen library influences the performance and the set of available algorithms. Some
algorithms do not depend on the internal graph library, others are specialised on particular
ones. If it is necessary, Graphana automatically converts from one graph library to the one
which is needed.
Some libraries do not allow every graph configuration. For example, in JGraphT it is not
possible for undirected graphs to contain loops. Initially, the JUNG2-library is set. It allows
every configuration.

2.2 Syntax (examples)

Statements may not only contain operation calls. However, these are sufficient for the basic
usage of Graphana. In this subchapter, the underlying Graphana-syntax is explained with the
use of examples.

The first syntax example deals with handling variables:

>greetingVar = ’Hello’;
>PRINT greetingVar + " World!\n";
Hello World!

Firstly a variable is created and assigned by writing the identifier ’greetingVar’ followed by a
= and the value ’Hello’, which is a constant string. Therefore, the variable greetingVar is a
string from now on. Every variable is global and (usually) lives until quitting the program.
String constants can be surrounded either by quotation marks or by tick marks (” or ’). The
values and also the types of variables can be changed at any time by assigning the variable to
a new value.
Afterwards, console output is done by writing the keyword PRINT (attention: PRINT is not an
operation, but a keyword of the syntax which does not need brackets to pass the argument).
The printed sample string is concatenated with the + symbol. The ’\n’ yields a linebreak.

The next example deals with handling numbers:

>number = 5;
>PRINTLN number*(3+5) + 16%3;
41
>PRINTLN ++number;
6
>number+5
11

8

The variable number is set to 5, therefore it’s type is Integer. In the second line, a mathematical
term is calculated and printed. The % symbol stands for modulo. The next input increases
number and prints out the new value. If the ++ symbol would have been placed after the number
then it still would be increased, but the non-increased value would have been printed. The last
input has no PRINTLN but still the result is printed. The reason is, that the result of the input,
if it has one, is always printed. In this case, the result of ’number+5’ is 11. Even an assignment
has a result: the assigned value. To prevent printing the result, the input must end with a ;
(like it was done in the previous inputs). Leaving out the semicolon is a comfortable way for
quickly printing results (as seen in the very first example).

The semicolon is also necessary to execute more than one statement within one line. In the
following example, the statement contains several sub statements separated by semicolons:

>PRINTLN " ’number’ before:"+number; number*=2; PRINT " ’number’ after:"; number
’number’ before: 6
’number’ after: 12

>quit

In this example, four statements are executed iteratively:

• Print the value of the number with no changes.

• Multiply the number with 2.

• Print ” ’number’ after:” but not number

• Execute number, which means in this case just take the value of number

The last statement is not closed with a semicolon so the value of number is the end result of
the input and is printed even without a PRINT keyword.

Statements also can be read from a script file. This is done with the ’script’ command:

script("scripts/operations.txt");

Scripts are written with the same syntax as console inputs, but they are not parsed line wise.
So a statement with no semicolon followed by another statement in the next line is a syntax
error in most cases. Line comments begin with //. Block comments are surrounded with /*
and */ and can be nested. Comments are completely ignored when executing the script.

For example a script looks like the following one:

//Create and load graph
createGraph(false,false,true,JGraphT);
loadGraph("graphs/sample.dim");

//Print some properties
PRINTLN "Graph size: " + graphSize();
PRINTLN "Vertex cover: " + vertexCoverSize(false);
PRINTLN "Max flow between ’pita’ and ’fan’: " + maxFlow($pita,$fan);

At first, the graph is created using the ’createGraph’ command. This command initializes an
empty graph with the given configuration: In the example, the first three arguments determine
that the graph is undirected, unweighted and forced to be loop-free. The fourth argument
determines the graph library which is to be used internally. In this case, the JGraphT library
is set. As a reminder for the arguments to pass, HELP createGraph can be typed in. After
the graph is created and initialized, it is constructed by loading a DIMACS file. The graph is

9

unweighted and therefore weights are ignored when reading the file.
After the graph was loaded, some data and graphparameters are printed. The PRINTLN key-
word prints the given String. In the example, some graph operations and algorithms are
called. Firstly, graphSize is called. This graph operation does not need any arguments so the
brackets are empty. In this case, the brackets may be omitted (like it was done in the very
first example). The operation maxFlow needs two arguments. In the example, two vertices are
given as arguments. Vertex constants are written with $vertexIdentifier . A vertex with
the respective identifier must exist in the current graph.
As already mentioned above, PRINT and PRINTLN are no operations, but keywords, which do
not need any brackets. The result of the whole Expression will be printed.

The next sample script demonstrates, how to write some graphparameters into a formatted
text file:

//Write graphparameters into a file
setOutputFile("Graphparameters.txt",true);
WRITE "Vertex count: " + vertexCount() + ", ";
WRITE "Edge count: " + edgeCount() + "\n";
WRITELN "Average Degree: " + avrgDegree();
PRINT "Diameter: " + diameter();
closeFile();
PRINTLN "Wrote into ’Graphparameters.txt’";

//Save degree distribution as a CSV file
distribution = degreeDistribution();
writeWholeFile("degrees.txt",distribution);

At first, the output file is set. The file writing will be done into the chosen file from then on.
The second argument of the setOutputFile determines, whether (almost) every console output
(including warnings and errors) is also to be written into the output file. The WRITE keyword
works in a similar way as the PRINT keyword, but writes into the file, which was set previously,
instead of the console output. In the example, three strings are explicitely written into the file.
Afterwards, there is a PRINT keyword. The given string will be printed in the console output
as always, but since the second argument of the setOutputFile at the beginning is set to true,
the string will also be written into the output file. When the file writing is complete, the file
must be closed using closeOutputFile. Now the file is complete and can be read in the file
system. After the call, there is no output file set and therefore it is not allowed to call WRITE
until a new output file is set.
The last part of the example demonstrates how to create a whole text file at once. At first, a
Histogram is created representing the degree distribution of the current graph. The operation
writeWholeFile needs two arguments: The first one is the target file and the second one any
object. The text representation of the given object will be written into the target file. The file
will be closed automatically. In the example, aHistogram is passed. The string representation
of a histogram is a CSV string. So the resulting file is a CSV file and can be used in respective
external programs for example.

2.3 Advanced usage

What follows in this subsection is necessary to write more complex script files.

The first example deals with conditions:

10

if(averageDegree()<=5 && maxDegree()<=10)
setCVDHeuristics("SUCCESSIVE - MAXDEGREE");

else
setCVDHeuristics("CONNECTEDCOMPONENT - ALL");

PRINTLN cvdSize();

The example takes the average degree and the maximum degree of the current graph to decide
which cvd heuristic (see ’graphana_ops.pdf’) might be the most applicable for the graph.

The next example deals with for-loops:

for(i=1;i<=120;i++)
{

createRandomGraph(i,0.5);
writeWholeFile("graphs/random_graph_"+i+".dim", graphAsDimacs());

};

Note the semicolon at the very end of the sample. In Graphana also statement blocks are closed
with semicola.
In the loop, 120 graphs are created with a loop-free random graph generator and saved as
particular dimacs files.

Another loop is the for-each-loop. The loop iterates over a Set or a Vector.
The following example iterates over a constant set:

foreach(x in {3,7,10,11})
{

PRINTLN x*2;
};

The for-each-loop is useful when working with multiple input files (in most cases graph files).
The following example uses the getFiles command, which returns a set of files that are con-
tained in the given directory (non-recursive) and have one of the given file extensions ("‘.dim"’
in this case):

foreach(file in getFiles("graphs/","dim"))
{

loadGraph(file);
PRINTLN "--- " + file + " ---";
PRINTLN "Vertices: " + vertexCount + ", edges: " + edgeCount;
PRINTLN "Average degree: " + averageDegree
+ ", max degree: " + maxDegree;

};

11

3 Using graphana as framework

The functionality of Graphana can also be accessed within a java application. This section
demonstrates the easiest way to do this.

To use the framework in an eclipse project, the ’graphana.jar’ must be added as external
jar. This can be done by clicking Project → Properties → Java build path → Libraries
→ Add external jars and choosing ’graphana.jar’.

The easiest way to initialize the framework and to execute operations is to create a
GraphanaAccess instance. This class initializes Graphana and automatically registers all the
default operations and libraries:

GraphanaAccess graphanaAccess = new GraphanaAccess () ;

After the framework is initialized, operations can be called by using the executeX methods
where X stands for the type which is expected to be returned. So for example, if an operation,
which returns an integer, is executed, then executeInt must be called. The methods expect a
string in graphana syntax as input argument.

The following example initializes the framework, creates a random graph and prints the average
degree:

GraphanaAccess graphanaAccess = new GraphanaAccess();
graphanaAccess.execute("createErdosRenyiGraph(10,0.5)");
float averageDegree = graphanaAccess.executeFloat("averageDegree()");
System.out.println(averageDegree);

The next example loads a graph instead of creating one and prints the number of connected
components:

graphanaAccess.execute("loadgraph(’graphs/sample.dim’)");
int ccCount = graphanaAccess.executeInt("getConnectedComponentCount()");
System.out.println(ccCount);

If there is already a graph instance within the application, it is also possible to apply graph op-
erations on this graph by using the method GraphanaAccess.setCurrentGraph. The method
can either be called with a JUNG2 graph, a JGraphT graph or an instance of GraphLibrary
(the latter is described in ’graphana_extension.pdf’). All graph operation calls which follow
after the setCurrentGraph call will use the given graph.
The following example demonstrates the usage of the framework with an externally created
graph instance:

public stat ic void main (St r ing [] a rgs)
{

//Construct sample JGraphT−graph
SimpleWeightedGraph<Str ing , Object> jGraphTgraph =
new SimpleWeightedGraph<Str ing , Object >(

JGraphTWeightedStatusEdge . class
) ;

12

jGraphTgraph . addVertex ("V1") ;
jGraphTgraph . addVertex ("V4") ;
jGraphTgraph . addVertex ("V8") ;
jGraphTgraph . addVertex ("TT") ;
jGraphTgraph . addVertex ("X") ;
jGraphTgraph . setEdgeWeight (jGraphTgraph . addEdge ("V1" , "V4") , 7) ;
jGraphTgraph . addEdge ("V8" , "V4") ;
jGraphTgraph . addEdge ("TT" , "X") ;

//Use framework
GraphanaAccess graphanaAccess = new GraphanaAccess () ;

graphanaAccess . setGraph (jGraphTgraph) ;
System . out . p r i n t l n (

graphanaAccess . execute In t (" vertexCover (t rue) ")
) ;

}

The sample firstly creates a small JGraphT graph using the methods of JGraphT. Afterwards,
the framework is initialized and the just created graph is given in to compute the vertex cover
size of the graph.
If no graph is given in (like in the first two examples) then an empty JUNG2 graph is set.

Note that only one GraphanaAccess instance should be created per application, since the
constructor invokes a complete initialization of the framework. Furthermore, if graphs are not
passed as GraphLibrary, they are converted within setCurrentGraph so this method should
only be called, if the graph changed.

All previous samples did not do error handling. Therefore, if errors would occur, the stack
trace would be printed and the program would be closed. The GraphanaAccess methods throw
GraphanaRuntimeExceptions. These can be catched to extract detailed error informations
and to print appropriate error messages. The following sample tries to create a graph and to
visualize it, whereas some exceptions are thrown:

public stat ic void main (St r ing [] a rgs)
{

// I n i t i a l i z e
GraphanaAccess graphanaAccess = new GraphanaAccess () ;

//Output a s t r i n g
try{

// f a i l s because o f incomple te s ta tement
graphanaAccess . execute ("PRINT␣ ’ He l lo ") ;

}catch (GraphanaRuntimeException except ion) {
System . e r r . p r i n t l n (except ion . getMessage ()) ;

}

//Create some v e r t i c e s and edges
try{

13

graphanaAccess . execute (" createGraph (true , t rue) ; ") ;
// f a i l s because o f f o r g o t t e n second i n t e g e r argument :
graphanaAccess . execute ("addVertexRow (10 , ’ ve r tex ’) ") ;
//not execu ted :
graphanaAccess . execute ("addEdge ($vertex1 , $vertex2) ") ;
graphanaAccess . execute ("addEdge ($vertex4 , $vertex7) ") ;

}catch (GraphanaRuntimeException except ion) {
System . e r r . p r i n t l n (

"Error ␣@" + except ion . getInputKey () + " : ␣" +
except ion . getExecut ionError () . g e tS t r ingRepre s en ta t i on ()
) ;

//or s imply : System . err . p r i n t l n (excep t i on . getMessage ()) ;
}

// V i s ua l i z e the graph
try{

graphanaAccess . g e tUs e r I n t e r f a c e () . showGraph ("GRD" , true) ;
}catch (ArrangeException except ion) {

// f a i l s because o f i n v a l i d l a you t key :
System . out . p r i n t l n ("Graph␣ v i s u a l i z a t i o n ␣ f a i l e d : ␣"

+ except ion . g e tS t r ingRepre s en ta t i on ()) ;
}

//Print a sum
try{

// f a i l s because o f wrong re turn type :
System . out . p r i n t l n (
graphanaAccess . execute In t (" 1 .0 ␣+␣ 3 .2 ")
) ;

}catch (GraphanaRuntimeException except ion) {
System . e r r . p r i n t l n (except ion . getMessage ()) ;

}
}

Furthermore, it is possible to simply start the console user interface by calling

graphanaAccess . g e tUs e r I n t e r f a c e () . mainLoop () ;

The method is blocking until the user quits.

14

Appendix A: Syntax

The following table describes the whole syntax of the Graphana script language. Syntax which
is written in bold square brackets is optional:

Name Syntax Description
Application Ide(x1,x2, ...xn) Executes the operation with the key Ide with the

given arguments. Returns the result of the exe-
cution

Addition x + y Returns the sum of x and y or the concatenation
if x or y is a String

Subtraction x - y Returns the difference of x and y
Multiplication x * y Returns the product of x and y
Division x / y Returns the quotient of x and y. If x and y are

integers then integer division is done
And x && y Returns true if and only if x and y are both true.

If x is false then y is not evaluated
Or x || y Returns true if and only if x or y is true. If x is

true then y is not evaluated
Unary Minus -x Returns the negative value of x
Not !x Returns true if and only if x is false
Equal to x == y Returns true if and only if x is equal to y
Not equal to x != y Returns true if and only if x is not equal to y
Less than x < y Returns true if and only if x is smaller than y
Greater than x > y Returns true if and only if x is greater than y
Less than
or equal

x <= y Returns true if and only if x is smaller than or
equal to y

Greater than
or equal

x >= y Returns true if and only if x is greater than or
equal to y

Assignment Ide = X Assigns X to the variable Ide. Creates the vari-
able if it does not exist. Returns X

Postfix
increment

Ide++ Increases the value of the (existing) variable Ide
by 1. Returns the value of Ide before it was in-
creased

Prefix
increment

++Ide Increases the value of the (existing) variable Ide
by 1. Returns the value of Ide after it was in-
creased

Postfix
decrement

Ide−− Decreases the value of the (existing) variable Ide
by 1. Returns the value of Ide before it was de-
creased

Prefix
decrement

−−Ide Decreases the value of the (existing) variable Ide
by 1. Returns the value of Ide after it was de-
creased

Statements X1;X2; ...;Xn Executes X1 to Xn. Returns result of Xn

15

Name Syntax Description
If-then-else if(Cond)

ThenStmnt
[else

ElseStmnt]

Executes ThenStmnt if Cond is true. Executes
ElseStmnt if it is given and Cond is false.

Returns:

• Result of ThenStmnt if Cond is true

• Undefined if Cond is false and no else is
given.

• Result of ElseStmnt if Cond is false and
an else is given.

While loop while(Cond)
Stmnt

Executes Stmnt as long as Cond (Boolean) is full-
filled.

For loop for(Init;Cond;Iter)
Stmnt

Firstly executes Init and then repeatedly Stmnt
and Iter as long as Cond (Boolean) is fullfilled.

Vector (x1,x2, ... xn) Returns a vector with the given entries.
Vector access Ide[i] Returns the i-th entry of the (existing) vector

Ide. The first entry is at i=0. The last entry
is size(Ide)-1.

Set {x1,x2, ... xn} Returns a set containing the given values.
Try-catch try

TryStmnt
[catch(ErrIde)

CatchStmnt]

Executes TryStmnt. If an error occurs, execu-
tion is aborted, the error is stored in ErrIde
and CatchStmnt is executed. Returns true if
and only if there was no error in the execution
of TryStmnt

Further information:

• The Graphana language is not case sensitive, but the identifiers of vertices are.

• Whitespaces can be inserted arbitrarily.

• It is not possible to declare variables with the same identifier as a prefix keyword of the
syntax, an operation or a type.

• Identifiers must not start with a digit.

16

Appendix B: Some types

As already demonstrated in the previous subsection, some operations are called with one or
more arguments of various types. A list of the most important types for a quick overview is
given below.

Type Description Examples (in Graphana-syntax)
Integer Integral number 67 -45

PositiveInteger Natural number 32 0
Float Floating point number 5.6 -3.0

Boolean Truth value true false
String Character string ”Long Text” ’Name’

File A file or a filename as string ”directory/new_file.txt”
ExistingFile An existing file ”directory/file.txt”

Graph A whole graph getCurrentGraph()
Histogram Histogram or CSV-string distanceDistribution() newHistogram()

Color RGB-Color color(255, 128, 0)
Vertex A vertex of the graph $v1
Edge An edge of the graph $v1−−$v2

To lookup operations, terms and all types the ”graphana_ops.pdf” can be used. Alterna-
tively, HELP followed by the operation, the term or the type can be entered as text input in the
running program.

17

Appendix C: Supported Graph Formats

Currently (v2) Graphana supports the following Graph formats:

DOT

digraph g {
node [shape=p l a i n t e x t]
A1 −> B1
A2 −> B2
A3 −> B3

A1 −> A2 [l a b e l=f]
A2 −> A3 [l a b e l=g]
B2 −> B3 [l a b e l="g ’ "]
B1 −> B3 [l a b e l ="(g o f) ’ " t a i l p o r t=s headport=s]

{ rank=same ; A1 A2 A3 }
{ rank=same ; B1 B2 B3 }

}

generates the following graph:

See http://www.graphviz.org/Documentation.php for the specification of the DOT Lan-
guage. To load a DOT graph from the console do:

loadDOT("/ path/ to / f i l e ")

DIMACS

See http://prolland.free.fr/works/research/dsat/dimacs.html for the specification of
the DIMACS format. In general each line starting with the edge descriptor ’e’ describes an
edge, e.g.:

e a b

is an edge from a to b. It’s optionally possible to supply weights, thus:

18

http://www.graphviz.org/Documentation.php
http://prolland.free.fr/works/research/dsat/dimacs.html

e a b 1 .0

is a weighted edge from a to b. To load a DIMACS graph from the console do:

loadDIMACS("/ path/ to / f i l e ")

METIS

The METIS Graph format is described here: http://people.sc.fsu.edu/~jburkardt/data/
metis_graph/metis_graph.html. The first line lists the number of nodes, edges and optionally
weights. Overall there are at least N+1 lines, with N being the number of nodes. The i-th line
represents the adjacency list of the node i. To load a METIS graph from the console do:

loadMETIS("/ path/ to / f i l e ")

19

http://people.sc.fsu.edu/~jburkardt/data/metis_graph/metis_graph.html
http://people.sc.fsu.edu/~jburkardt/data/metis_graph/metis_graph.html

	Program flow
	Text input and output
	Main menu
	Status bar
	Graph file set window
	Analysis
	Histograms

	Script language
	Operations
	Syntax (examples)
	Advanced usage

	Using graphana as framework
	Appendix A: Syntax
	Appendix B: Types
	Appendix C: Supported Graph Formats

