
April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Chapter 1

Fixed-Parameter Algorithms for

Graph-Modeled Data Clustering

Falk Hüffner∗, Rolf Niedermeier, and Sebastian Wernicke†

Institut für Informatik, Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{hueffner, niedermr, wernicke}@minet.uni-jena.de

Web: http://theinf1.informatik.uni-jena.de/

Fixed-parameter algorithms can efficiently find optimal solutions to
some NP-hard problems, including several problems that arise in graph-
modeled data clustering. This survey provides a primer about practical
techniques to develop such algorithms; in particular, we discuss the de-
sign of kernelizations (data reductions with provable performance guar-
antees) and depth-bounded search trees. Our investigations are circum-
stantiated by three concrete problems from the realm of graph-modeled
data clustering for which fixed-parameter algorithms have been imple-
mented and experimentally evaluated, namely Clique, Cluster Edit-

ing, and Clique Cover.

1.1. Introduction

The central idea behind graph-modeled data clustering is to depict the

similarity between a set of entities as a graph: Each vertex represents an

entity—such as a gene or protein—and two vertices are connected by an

edge if the entities that they represent have some (context-specific) similar-

ity; for instance, two genes have a similar expression profile or two proteins

have a high sequence similarity. Groups of highly connected vertices in the

resulting graph represent clusters of mutually similar entities. Hence, de-

tecting these dense groups can identify clusters in the graph-encoded data.

Graph-modeled data clustering has been shown to have useful applica-

tions in many areas of bioinformatics, including the analysis of gene expres-

∗Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research group
PIAF (fixed-parameter algorithms), NI 369/4.
†Supported by the Deutsche Telekom Stiftung.

1

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

2 F. Hüffner, R. Niedermeier & S. Wernicke

sion,1–4 proteins,5,6 gene networks,7 allergic reactions,8 and marine ecosys-

tems.9 There is a catch, however: Most problems that are concerned with

the detection of cluster structures in a graph are known to be NP-hard, that

is, there is probably no algorithm that can solve all instances efficiently.10

Thus, whenever such a problem is encountered and large instances need to

be solved, it is common to employ heuristic algorithms,11 approximation

algorithms,12,13 or similar techniques. These usually come with some dis-

advantages: The solutions are not guaranteed to be optimal or there are

no useful guarantees concerning the running time of the algorithm. Fur-

ther, approximation algorithms and—to some extent—heuristic algorithms

are not suited to cope with enumerative tasks. There are many scenar-

ios where these disadvantages seem too severe, that is, where we need to

solve a combinatorially hard problem both optimally and yet at the same

time somewhat efficiently. For some combinatorial problems, this can be

achieved by means of fixed-parameter algorithms.14–16 These are based on

the observation that not all instances of an NP-hard problem are equally

hard to solve; rather, this hardness depends on the particular structure of a

given instance. Opposed to “classical” computational complexity theory—

which sees problem instances only in terms of their size—fixed-parameter

algorithms and the underlying theory of fixed-parameter tractability (FPT)

reflect such differences in structural hardness by expressing them through

a so-called parameter, which is usually a nonnegative integer variable de-

noted k.

Whenever the parameter k turns out to be small, fixed-parameter algo-

rithms may solve an NP-hard problem quite fast (sometimes even in linear

time)—with provable bounds on the running time and guaranteeing the op-

timality of the solution that is obtained. More precisely, a size-n instance

of a fixed-parameter tractable problem can be solved in f(k) · p(n) time,

where f is a function solely depending on k, and p(n) is a polynomial in n.

The purpose of this survey is twofold: First, we provide a primer about

some important and practically relevant techniques for the design of fixed-

parameter algorithms in the realm of graph-modeled data clustering (Sec-

tion 1.2); in particular, Section 1.2.1 exhibits kernelizations (data reduc-

tions with provable performance guarantees) and Section 1.2.2 discusses

depth-bounded search trees. Second, we present three concrete case stud-

ies from the realm of graph-modeled data clustering where fixed-parameter

algorithms have been devised, implemented, and successfully tested:

• Clique (Section 1.3.1). Using techniques that were originally de-

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 3

veloped for the fixed-parameter tractable Vertex Cover prob-

lem, it is possible to detect a size-(n − k) clique in an n-vertex

and m-edge graph in O(1.3k + kn + m) time.17,18 So-called k-

isolated cliques, that is, i-vertex cliques that have less than k · i

edges to vertices that lie outside of them, can be exhaustively enu-

merated in O(4k · k2m) time.19–21

• Cluster Editing (Section 1.3.2). In this problem, the assump-

tion is that the input graph has an underlying cluster structure that

is a disjoint union of cliques, which has been distorted by adding

and removing at most k edges. For an n-vertex input graph, this

underlying cluster structure can be found in O(1.92k + n + m)

time.22–24

• Clique Cover (Section 1.3.3). The assumed underlying cluster

structure in this problem is an overlapping union of cliques, that

is, the task is to cover the edges of a given graph with a minimum

number of cliques. Fixed-parameter algorithms allow for optimal

problem solutions within a running time that is competitive with

common heuristics.25,26

Practical experiments that we discuss in the case studies suggest that

the presented fixed-parameter algorithms are capable of solving many real-

world instances in reasonable time. In particular, they perform much better

on real-world data than the provable worst-case bounds suggest. Thus,

for some NP-hard clustering problems, fixed-parameter tractability theory

offers algorithms which are both efficient and capable of delivering optimal

solutions. It should hence be part of the algorithmic toolkit for coping with

graph-based clustering problems.

We conclude our survey with advice on employing fixed-parameter al-

gorithms in practice (Section 1.4.1) and with a list of specific challenges for

future research (Section 1.4.2).

1.2. Fixed-Parameter Tractability Basics and Techniques

In this section, we introduce the basics of fixed-parameter tractability, in

particular exhibiting two techniques that are of major practical importancea

and have by now facilitated many success stories in bioinformatics, namely

• kernelizations, that is, data reductions with provable performance

aA broader view on fixed-parameter algorithm design techniques can be found in Ref. 16.

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

4 F. Hüffner, R. Niedermeier & S. Wernicke

Fig. 1.1. A graph with a size-8 vertex cover (cover vertices are marked black, the
solution size is optimal).

guarantees (Section 1.2.1) and

• depth-bounded search trees (Section 1.2.2).

Both techniques are introduced by means of a single natural and easy to

grasp problem, namely the NP-hard Vertex Cover problem.

Vertex Cover

Input: An undirected graph G = (V, E) and a nonnega-

tive integer k.

Task: Find a subset of vertices C ⊆ V with k or fewer

vertices such that each edge in E has at least one of its

endpoints in C.

This problem is illustrated in Figure 1.1 and is—among many other

applications—of central importance to practically solving the Clique prob-

lem that we discuss in Section 1.3.1.b

Throughout this work, we assume basic knowledge from algorith-

mics28,29 and graph theory.30,31 For a given undirected graph G = (V, E),

we always use n to denote the number of its vertices and m to denote

the number of its edges. For v ∈ V , we use NG(v) to denote the neigh-

bor set {v ∈ V | {u, v} ∈ E} and NG[v] to denote the closed neighbor-

hood NG(v) ∪ {v}, omitting the indices whenever they are clear from the

context.

The core approach of fixed-parameter tractability14–16 is to consider

parameterized problems—that is, problems that consist of the instance I

and a parameter k—and ask whether there is an algorithm that confines

the combinatorial explosion that is involved in solving the problem to the

parameter.

bVertex Cover is the Drosophila of fixed-parameter research in that many initial dis-
coveries that influenced the whole field originated from studies of this single problem
(e.g., see Guo et al.27).

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 5

Definition 1.1. An instance of a parameterized problem consists of a prob-

lem instance I and a parameter k. A parameterized problem is fixed-

parameter tractable if it can be solved in f(k) · |I|O(1) time, where f is

a computable function solely depending on the parameter k, and not on

the input size |I|.

For NP-hard problems, f(k) will of course not be polynomial, since

otherwise we would have an overall polynomial-time algorithm.

As parameterized complexity theory points out, there are problems that

are likely not to be fixed-parameter tractable.14–16 It is important to note in

this respect that a problem can have various parameterizations such as the

size of the solution that is sought after or some structural parameter that

characterizes the input. A problem that is not fixed-parameter tractable

with respect to some parameter may still be so with respect to others. Also,

the choice of the parameter can greatly affect the efficiency of the algorithm

that is obtained.

Besides the classic reference,14 two new monographs are available on

parameterized complexity, one focusing on theoretical foundations15 and

one focusing on techniques and algorithms.16

1.2.1. Kernelizations

Before firing up a computationally expensive algorithm to solve a combi-

natorially hard problem, one should always try to perform a reduction on

the input data, the idea being to quickly presolve those parts of the input

data that are relatively easy to cope with and thus to shrink the input

to those parts that form the “really hard” core of the problem. Costly

algorithms need then only be applied to the reduced instance. In some

practical scenarios, data reduction may even reduce a seemingly hard prob-

lem to triviality.25,32,33

Clearly, practitioners are likely to already be aware of data reduction

rules. The reason why they should also consider fixed-parameter tractabil-

ity in this context is that fixed-parameter theory provides a way to use

data reduction rules not only in a heuristic way, but to prove their power

by so-called kernelizations. These run in polynomial time and give an up-

per bound on the size of a reduced instance that solely depends on the

parameter value, that is, they come with a performance guarantee both

concerning their running time as well as their effectiveness. Having a quan-

titative measure for the performance of a data reduction can moreover help

to guide the search for further improved data reductions in a constructive

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

6 F. Hüffner, R. Niedermeier & S. Wernicke

way.34

1.2.1.1. An Introductory Example

Consider our running example Vertex Cover. To reduce the input size

for a given instance of this problem, it is clearly permissible to remove

isolated vertices, that is, vertices with no adjacent edges. This leads to a

first simple data reduction rule.

Reduction Rule VC1. Remove all isolated vertices.

In order to cover an edge in the graph, one of its two endpoints must

be in the vertex cover. If one of these is a degree-1 vertex, then the other

endpoint has the potential to cover more edges than the degree-1 vertex,

leading to a second reduction rule.

Reduction Rule VC2. For degree-1 vertices, put their

neighboring vertex into the cover.c

Note that this reduction rule assumes that we are only looking for one

optimal solution to the Vertex Cover instance we are trying to solve;

there may exist other minimum vertex covers that do include the reduced

degree-1 vertex.

After having applied the easy rules VC1 and VC2, we can further do

the following in the fixed-parameter setting where we ask for a vertex cover

of size at most k.

Reduction Rule VC3. If there is a vertex v of degree

at least k + 1, put v into the cover.

The reason this rule is correct is that if we did not take v into the cover,

then we would have to take every single one of its k + 1 neighbors into the

cover in order to cover all edges adjacent to v. This is not possible because

the maximum allowed size of the cover is k.

After exhaustively performing the rules VC1–VC3, no vertex in the

remaining graph has a degree higher than k, meaning that choosing a vertex

into the cover can cause at most k edges to become covered. Since the

solution set may be no larger than k, the remaining graph can have at

most k2 edges if it is to have a solution. By rules VC1 and VC2, every
c“Put into the cover” means adding the vertex to the solution set and removing it and
its incident edges from the instance.

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 7

vertex has degree at least two, which implies that the remaining graph can

contain at most k2 vertices.

1.2.1.2. The Kernelization Concept

Abstractly speaking, what have we done in the previous section? After

applying a number of rules in polynomial time to an instance of Vertex

Cover, we arrived at a reduced instance whose size can solely be expressed

in terms of the parameter k. Since this can be easily done in O(n) time,

we have found a data reduction for Vertex Cover with guarantees con-

cerning its running time as well as its effectiveness. These properties are

formalized in the concepts of a problem kernel and the corresponding ker-

nelization.14

Definition 1.2. Let L be a parameterized problem, that is, L consists of

input pairs (I, k), where I is the problem instance and k is the parame-

ter. A reduction to a problem kernel (or kernelization) means to replace

an instance (I, k) by a reduced instance (I ′, k′) called problem kernel in

polynomial time such that

(1) k′ ≤ k,

(2) I ′ is smaller than g(k) for some function g only depending on k,

and

(3) (I, k) has a solution if and only if (I ′, k′) has one.

While this definition does not formally require that it is possible to re-

construct a solution for the original instance from a solution for the problem

kernel, all kernelizations we are aware of easily allow for this.

The methodological approach of kernelization, including various tech-

niques of data reduction, is best learned by the concrete examples that we

discuss in Section 1.3; there, we will also discuss kernelizations for Vertex

Cover that even yield a kernel with a linear number of vertices in k.

To conclude this section, we state some useful general observations and

remarks concerning Definition 1.2 and its connections to fixed-parameter

tractability. Most notably, there is a close connection between fixed-

parameter tractable problems and those problems that have a problem

kernel—they are exactly the same.

Theorem 1.3 (Cai et al.35). Every fixed-parameter tractable problem is

kernelizable and vice-versa.

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

8 F. Hüffner, R. Niedermeier & S. Wernicke

Unfortunately, the practical use of this theorem is limited: the running

times of a fixed-parameter algorithm directly obtained from a kerneliza-

tion is usually not practical; and, in the other direction, the theorem does

not constructively provide us with a data reduction scheme for a fixed-

parameter tractable problem. Hence, the main use of Theorem 1.3 is to

establish the fixed-parameter tractability or amenability to kernelization of

a problem—or show that we need not search any further (e.g., if a problem

is known to be fixed-parameter intractable, we do not need to look for a

kernelization).

Rule VC3 explicitly needed the value of the parameter k. We call

this a parameter-dependent rule as opposed to the parameter-independent

rules VC1 and VC2, which are oblivious to k. Of course, one typically does

not know the actual value of k in advance and then has to get around this

by iteratively trying different values of k.d While, in practice, one would

naturally prefer to avoid this extra outer loop, assuming explicit knowledge

of the parameter clearly adds some leverage to finding data reduction rules

and is hence frequently encountered in kernelizations.

1.2.2. Depth-Bounded Search Trees

After preprocessing the given input data of a problem by a kernelization and

cutting away its “easy parts,” we are left with the “really hard” problem

kernel to be solved. A standard way to explore the huge search space of a

computationally hard problem is to perform a systematic exhaustive search.

This can be organized in a tree-like fashion, which is the main subject of

this section.

Certainly, search trees are no new idea and have been extensively used in

the design of exact algorithms (e.g., see Ref. 37–41). The main contribution

of fixed-parameter theory to search tree approaches is the consideration of

search trees whose depth is bounded by the parameter, usually leading to

search trees that are much smaller than those of näıve brute-force searches.

Additionally, the speed of search tree exploration can (provably) be im-

proved by exploiting kernelizations.42

An extremely simple search tree approach for solving Vertex Cover is

to just take one vertex and branch into two cases: either this vertex is in the

vertex cover or not. This leads to a search tree of size O(2n). As we outline

dIn general, the constraint k < n is easily established. As Dehne et al.36 point out
in their studies of Cluster Editing, it depends on the concrete problem which search
strategy for the “optimum” value of k is most efficient to employ in practice.

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 9

. . .

k

.

k − 1

k − 2

k − 1

k − 2

k − 2 k − 2

Fig. 1.2. Simple search tree for finding a vertex cover of size at most k in a given graph.
The size of the tree is upper-bounded by O(2k).

in this section, we can do much better than that and obtain a search tree

whose depth is upper-bounded by k, giving a size bound of O(2k). Since

usually k � n, this can draw the problem into the zone of feasibility even

for large graphs (as long as k is small).

The basic idea is to find a small subset of the input instance in poly-

nomial time such that at least one element of this subset must be part of

an optimal solution to the problem. In the case of Vertex Cover, the

most simple such subset is any two vertices that are connected by an edge.

By definition of the problem, one of these two vertices must be part of a

solution. Thus, a simple search-tree algorithm to solve Vertex Cover on

a graph G proceeds by picking an arbitrary edge e = {v, w} and recursively

searching for a vertex cover of size k−1 both in G−v and G−w.e That is,

the algorithm branches into two subcases knowing one of them must lead

to a solution of size at most k—if one such solution exists.

As shown in Figure 1.2, these recursive calls of the simple Vertex

Cover algorithm can be visualized as a tree structure. Because the depth

of the recursion is upper-bounded by the parameter value and we always

branch into two subcases, the size of this tree is upper-bounded by O(2k).

This means that the size of the tree is independent of the size of the initial

input instance and only depends on the value of the parameter k.

The main idea behind fixed-parameter algorithmics is to get the combi-

natorial explosion as small as possible. For our Vertex Cover example,

one can easily achieve a size-o(2k) search tree by distinguishing more de-

tailed branching cases rather than just picking single endpoints of edges

eFor a vertex v ∈ V , we define G − v to be the graph G with v and the edges incident
to v removed.

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

10 F. Hüffner, R. Niedermeier & S. Wernicke

to be in the cover.f An example for such an “improved” search-tree is

given in our case study of Cluster Editing in Section 1.3.2. The cur-

rently “best” search trees for Vertex Cover are of size O(1.28k)18 and

mainly achieved by extensive case distinguishing. However, it should be

noted for practical applications that it is always concrete implementation

and testing that has to decide whether the administrative overhead caused

by distinguishing more and more cases pays off. A simpler algorithm with

slightly worse bounds on the search tree size often turns out to be prefer-

able in practice. Here, recent progress with the analysis of search tree

algorithms using multivariate recurrences44 might help: with this method,

it was shown that some simple algorithms perform in fact much better than

previously proved.39 Also, new algorithms were developed guided by the

new analysis methods;39 however, there is no practical experience yet with

these approaches.

In combination with data reduction (see Section 1.3.1), the use of depth-

bounded search trees has proven itself quite useful in practice, allowing to

find vertex covers of more than ten thousand vertices in some dense graphs

of biological origin.45 Search trees also trivially allow for a parallel im-

plementation: when branching into subcases, each processor in a parallel

setting can further explore one of these branches with no additional commu-

nication required. Cheetham et al.46 expose this in their parallel Vertex

Cover solver to achieve a near-optimum (i.e., linear with the number of

processors employed) speedup on multiprocessor systems. Finally, it is gen-

erally beneficial to augment search tree algorithms with admissible heuris-

tic evaluation functions in order to further increase their performance and

memory efficiency by cutting away search tree parts that cannot lead to

good solutions.47,48

1.3. Case Studies From Graph-Modeled Data Clustering

This section surveys fixed-parameter algorithms and experimental results

for three important NP-complete problems from the realm of graph-

modeled data clustering, namely Clique, Cluster Editing, and Clique

Cover. The purpose of these case studies is twofold: First, they serve to

fNote that analogously to the case of data reduction, most of these branchings assume
that only one minimum solution is sought after. Since some graphs can have 2k minimum
vertex covers, a size-o(2k) search tree for enumerating all minimum vertex covers requires
the use of compact solution representations as outlined by Damaschke43 and is beyond
the scope of this work.

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 11

teach in more detail the methodological approaches of designing kerneliza-

tions and depth-bounded search trees. Second, the encouraging experimen-

tal results that are known for these problems underpin the general useful-

ness of fixed-parameter algorithms for optimally solving NP-hard problems

in graph-modeled data clustering.

1.3.1. Clique

A “classical” combinatorial problem that is closely connected to graph-

modeled data clustering is to find a clique in a graph, that is, a subset of

vertices that are fully connected.

Clique

Input: An undirected graph G = (V, E) and a nonnega-

tive integer k.

Task: Find a k-vertex clique in G.

It is also a common task to enumerate maximal cliques in a graph, that

is, all cliques that are not a proper subset of any other clique.

Clique is NP-hard10 and hard to approximate in polynomial time.49 In

a similar sense as it is generally assumed that P 6= NP, it is strongly believed

that Clique is not fixed-parameter tractable when parameterized by the

size of the cliques that are sought after.14 Nevertheless, Clique has a close

connection to the fixed-parameter tractable Vertex Cover problem that

we used as our running example to introduce fixed-parameter techniques:

If an n-vertex graph contains a size-k clique, then its complement graphg

contains a size-(n − k) vertex cover and vice versa. This can be made use

of when seeking after or enumerating cliques.

1.3.1.1. Finding Maximum Cardinality Cliques

The catch when solving Clique for a graph G by means of finding a

minimum-cardinality vertex cover for the complement graph G′ is that if

the maximum size k of a clique in G is rather small compared to its total

number of vertices n, then G′ will have a rather large minimum-size ver-

tex cover. Therefore, one has to rely on effective data reduction rules that

preprocess the complement graph G′ so that depth-bounded search tree al-

gorithms become practically applicable for the reduced graph that remains.

gThat is, the graph that contains exactly those edges that are not contained in the
original graph.

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

12 F. Hüffner, R. Niedermeier & S. Wernicke

G

I

H

Fig. 1.3. A graph G with a crown I ∪ H. The thick edges constitute a maximum
matching of size |H| in the bipartite graph that is induced by the edges between I

and H.

One kernelization for Vertex Cover that has proven itself to be of partic-

ular practical importance in this respect is the so-called crown reduction,50

which generalizes the Vertex Cover data reduction rule VC2 (the elim-

ination of degree-1 vertices by taking their neighbors into the cover) and

thus leads to a data reduction that requires no explicit knowledge of the

parameter k and yields a kernel with a number of vertices linear in k.

A crown in a graph consists of an independent set I (that is, no two

vertices in I are connected by an edge) and a set H containing all vertices

adjacent to I. In order for I ∪ H to be a crown, there has to be a size-|H |

matching in the bipartite graph induced by the edges between I and H

(i.e., one in which every vertex of H is matched). An example for a crown

structure is given in Figure 1.3. If there is a crown I ∪ H in the input

graph G, then we need at least |H | vertices to cover all edges in the crown.

But since all edges in the crown can be covered by taking at most |H |

vertices into the cover (as I is an independent set), there is a minimum-

size vertex cover for G that contains all the vertices in H and none of the

vertices in I. We may thus delete any given crown I∪H from G, reducing k

by |H |.

It turns out that finding crowns can be achieved in polynomial time by

computing maximum matchings.51 The size of the thus reduced instance

is upper-bounded via the following theorem.

Theorem 1.4 (Abu-Khzam et al.50). A graph that is crown-free and

has a vertex cover of size at most k can contain at most 3k vertices.

There are several kernelizations for Vertex Cover that achieve a ker-

nel of O(k) vertices; some of these even yield an at-most-2k-vertex kernel,

e.g., see Ref. 16,50. However, it has been found that crown reductions of-

ten offer a good balance between the polynomial time that is required to

compute the kernel and the size that the reduced graphs usually turn out

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 13

to have in practice.45,50,52

Some quite successful implementations for solving Clique rely on ker-

nelization techniques (especially crown reductions) for Vertex Cover that

are combined with depth-bounded search trees.50,52,53 The exploration of

the search trees is usually highly optimized, for instance, by using efficient

data structures and ensuring proper load balancing in parallel scenarios;

details of these techniques are described, e.g., by Abu-Khzam et al.50 and

Zhang et al.53 Even attempts to implement parts of the algorithms in

hardware have been reported.45

With the combination of kernelizations and depth-bounded search trees,

it is currently possible to find cliques that consist of over 400 vertices in

some dense graphs of biological origin within hours.45

1.3.1.2. Enumerating Maximal Cliques

Instead of finding a single maximum-size clique in a graph, one would of-

ten like to enumerate all cliques of maximal size. In graph-modeled data

clustering, this can have mainly two reasons: First, an enumeration obvi-

ously identifies all clusters that are present in the data. Second, with an

enumerative solution one can include expert knowledge as to what cliques

that are present in the input graph are (biologically) “meaningful.”

Analogously to the task of finding a maximum-size clique, the task of

enumerating maximal cliques in a graph is equivalent to enumerating min-

imal vertex covers for its complement graph. To enumerate all maximal

cliques in a graph, one can therefore rely on kernelizations for Vertex

Cover that are suited for finding all vertex covers up to a certain size54

and on enumerative depth-bounded search trees such as discussed by Da-

maschke.43 However, so far there is no empirical evidence of the practical

viability of this approach.

An interesting result concerning the enumeration of maximal cliques

that makes a more “indirect” use of Vertex Cover was recently shown

by Ito et al.19 It is based on an alternative parameterization other than

the clique size. This parameterization is based on the observation that the

hardness of finding a large clique in a graph is determined by the isolation

of that clique, meaning that if we restrict ourselves to finding cliques that

have only a few edges to “external” vertices outside of the clique, then this

is a much easier task compared to finding cliques that have many edges to

external vertices. The intuitive reason for this is that isolated cliques are

better distinguishable from the remaining graph. To quantify the isolation

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

14 F. Hüffner, R. Niedermeier & S. Wernicke

Fig. 1.4. Illustration for the Cluster Editing problem: By removing two edges from
and adding one edge to the graph on the left (that is, k = 3), we can obtain a graph
that consists of two disjoint cliques.

of a clique, Ito et al.19 introduced the notion of an isolation factor k.

An i-vertex clique is said to be k-isolated if it has less than k · i edges

to external vertices. It turns out that enumerating all k-isolated cliques

is fixed-parameter tractable with respect to k. Komusiewicz et al.20,21

pointed out an error in the algorithm and provided a corrected version.

Theorem 1.5 (Ito et al.,19 Komusiewicz et al.20,21). All k-isolated

cliques in an m-edge graph can be enumerated in O(4k · k2m) time.

The underlying algorithm of this result is based on a search tree for

Vertex Cover; the main achievement lies in showing that the isolation

factor k can also serve as a bound for the depth of this search tree, which

is achieved by a parameter-dependent data reduction. This nicely demon-

strate the benefit of alternative parameterizations for a problem. Ito et al.19

mentioned that some preliminary experiments suggest that the detection

of isolated cliques is quite efficient in practice.

1.3.2. Cluster Editing

The Cluster Editing problem is based on the assumption that the input

graph is a disjoint union of cliques—a so-called cluster graph—that has

been perturbed by adding or removing edges. Cluster Editing appears

as an important problem in the analysis of data from synthetic genetic

arrays.1,36

Cluster Editing

Input: An undirected graph G = (V, E) and a nonnega-

tive integer k.

Task: Modify G to consist of disjoint cliques by adding or

deleting at most k edges.

Figure 1.4 illustrates this problem. Cluster Editing is NP-hard,3,55

and its minimization version can be approximated in polynomial time

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 15

within a factor of 4.56 A randomized expected factor-3 approximation algo-

rithm was given by Ailon et al.57 Cluster Editing is also a special case of

the Correlation Clustering problem occurring in machine learning.58

In what follows, we concentrate on a search tree-based fixed-parameter

approach towards exactly solving Cluster Editing. Here, the overall

strategy is based on an easy-to-see observation, namely that a cluster graph

has a very special structure: If two vertices are connected by an edge, then

their neighborhoods must be the same. Hence, whenever we encounter two

connected vertices u and v in the input graph G that are connected by an

edge and where one vertex, say u, has a neighbor w that is not connected

to v, we call {u, v, w} a conflict triple of vertices because it compels us to

do one of three things: Either remove the edge {u, v}, or connect v with w,

or remove the edge {u, w}. Each of these three modifications counts with

respect to the parameter k and, therefore, exhaustively branching into these

cases for at most k forbidden substructures, we obtain a search tree of

size O(3k) to solve Cluster Editing.

The search tree size can be significantly reduced. More specifically, a

more sophisticated branching strategy gives a search tree size of O(2.27k),22

which—using computer-generated branching rules—has been further im-

proved to a size of O(1.92k).23 The computer-generated result, however,

is based on a quite complicated branching with lots of case distinctions

that might not be of practical value. In the following, we describe the key

observations and fundamental ideas behind the improved search trees for

Cluster Editing. As a remark, there also exist size-o(3k) search trees

for enumerating all solutions to a given instance of Cluster Editing.59

The basic approach to obtain the improved search trees for Cluster

Editing is to do a case distinction, where we provide for every possible

situation additional branching steps. The analysis of successive branching

steps, then, yields a better worst-case bound on the search tree size. To

this end, we make use of two annotations for unordered vertex pairs:

“permanent”: In this case, {u, v} ∈ E and it is not allowed to delete {u, v};

“forbidden”: In this case, {u, v} /∈ E and it is not allowed to add {u, v}.

Clearly, if an edge {u, v} is deleted, then the vertex pair is made forbidden.

If an edge {u, v} is added, then the vertex pair is made permanent.

We distinguish three main situations that may apply when considering

the conflict triple {u, v, w}:

(C1) Vertices v and w do not share a common neighbor, that is, ∀x ∈

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

16 F. Hüffner, R. Niedermeier & S. Wernicke

uu

vv ww

NG∩G′(v) NG∩G′(w)

G G′

Fig. 1.5. In case (C1), adding the edge {v, w} does not need to be considered. Here,
G is the given graph and G′ is a clustering solution of G that adds the edge {v, w}.
The dashed lines denote edges being deleted to transform G into G′, and the bold lines
denote edges being added. Observe that the drawing only shows that parts of the graphs
(in particular, edges) which are relevant for our argument.

V, x 6= u : {v, x} 6∈ E or {w, x} 6∈ E.

(C2) Vertices v and w have a common neighbor x 6= u and {u, x} ∈ E.

(C3) Vertices v and w have a common neighbor x 6= u and {u, x} /∈ E.

Regarding case (C1), the following lemma shows that a branching into two

subcases suffices.

Lemma 1.6. Given a graph G = (V, E), a nonnegative integer k, and a

conflict triple u, v, w ∈ V of vertices that satisfy case (C1) from above,

adding the edge {v, w} cannot yield a better solution than deleting one of

the edges {u, v} or {u, w}.

Proof. Consider a clustering solution G′ for G where we did add {v, w}

(see Figure 1.5 for an example). We use NG∩G′(v) to denote the set of

vertices that are neighbors of v in G and in G′. Without loss of generality,

assume that |NG∩G′(w)| ≤ |NG∩G′(v)|. We then construct a new graph G′′

from G′ by deleting all edges adjacent to w. It is clear that G′′ is also a clus-

tering solution for G. We compare the cost of the transformation G → G′′

to that of the transformation G → G′:

• −1 for not adding {v, w},

• +1 for deleting {u, w},

• −|NG∩G′(v)| for not adding all edges {w, x}, x ∈ NG∩G′(v),

• +|NG∩G′(w)| for deleting all edges {w, x}, x ∈ NG∩G′(w).

Here, we omitted possible vertices which are neighbors of w in G′ but not

in G: they would only increase the cost of transformation G → G′.

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 17

In summary, the cost of G → G′′ is not higher than the cost of G → G′,

that is, we do not need more edge additions and deletions to obtain G′′

from G than to obtain G′ from G. �

As a consequence of Lemma 1.6, the search tree only has to branch

into two instead of three subcases in case (C1). Making use of the markers

“permanent” and “forbidden,” the standard branching into three subcases

can also be avoided in cases (C2) and (C3). Each of these cases, however,

requires specific considerations22 which have to be omitted here.

Besides a search tree strategy for Cluster Editing, also data reduc-

tions yielding problem kernels are known for this problem. The first result

was a problem kernel with O(k2) vertices22 and this has recently been im-

proved to a problem kernel with only O(k) vertices.60,61 For a practical

solving algorithm, the search tree has to be combined with the kerneliza-

tion.22,36,42 By splitting up cases (C2) and (C3) further using a computer,

we arrive at the following theorem.

Theorem 1.7 (Gramm et al.,23 Protti et al.24). Cluster Editing

can be solved in O(1.92k + n + m) time.

For a recent implementation of the above strategy, experiments indi-

cated that the fixed-parameter approach outperforms a solution based on

linear programming and appears to be of practical use.36 The implemen-

tation can solve certain synthetic instances with n = 100 and 40 edit oper-

ations within an hour.

There are several problems closely related to Cluster Editing that

deserve similar studies. Among these are the more general Correlation

Clustering problem56,58 and the Bicluster Editing problem,24,62 the

latter also known to be fixed-parameter tractable.24

1.3.3. Clique Cover

The model assumption for Clique Cover is that the data forms overlap-

ping cliques, as opposed to the disjoint cliques that were the underlying

model for Cluster Editing. In general, this clustering model is applica-

ble whenever various items carry an unknown subset of features, and two

items will be measured as similar whenever they have at least one feature

in common. Then, the set of items that carry one particular feature forms

a clique. Therefore, finding a set of cliques that covers all edges gives the

most parsimonious explanation of the data under this model: each clique

corresponds to one feature. Guillaume and Latapy63 argue that this model

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

18 F. Hüffner, R. Niedermeier & S. Wernicke

is very widely applicable to discover underlying structure in complex real-

world networks.

Formally, the Clique Cover problem is defined as follows:

Clique Cover

Input: An undirected graph G = (V, E) and a nonnega-

tive integer k.

Task: Find a set of at most k cliques in G such that each

edge in E has both its endpoints in at least one of the

selected cliques.

Clique Cover is NP-hard,64 and there is strong evidence that it can-

not be approximated to a constant factor.65 Therefore, the standard ap-

proach to solving Clique Cover in practice so far is to employ heuris-

tics.66–69 Behrisch and Taraz70 give simple greedy algorithms for Clique

Cover that provide asymptotically optimal solutions for certain random

intersection graphs. However, because of the fundamental inapproximabil-

ity of the problem, the results of these algorithms can become nearly arbi-

trarily bad for particular inputs. This makes fixed-parameter algorithms,

which provide optimal solutions, attractive. A natural parameter is the

size of the feature set k, since it seems reasonable to assume that there are

much fewer features than items.

Gramm et al.25 presented a parameterized approach to Clique Cover,

which is based on data reduction. In fact, the fixed-parameter tractability

of Clique Cover with respect to k is based on a problem kernel. The first

two rules that lead to this kernel are easy to see:

Reduction Rule CC1. Remove isolated vertices and

vertices that are only adjacent to covered edges.

Reduction Rule CC2. If there is an edge {u, v} whose

endpoints have exactly the same closed neighborhood, that

is, N [u] = N [v], then delete u. To reconstruct a solution

for the unreduced instance, add u to every clique contain-

ing v.

Rules CC1 and CC2 together suffice to show the problem kernel (the

basic underlying observation was already made by Gyárfás71).

Theorem 1.8 (Gyárfás71 and Gramm et al.25). A Clique Cover

instance reduced with respect to Rules CC1 and CC2 contains at most 2k

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 19

v

Fig. 1.6. An illustration of the partition of the neighborhood of a vertex v. The two
vertices with rectangles are exits, the other white ones are prisoners.

vertices or, otherwise, has no solution.

Proof. Consider a graph G = (V, E) that is reduced with respect to

Rules CC1 and CC2 and has a clique cover C1, . . . , Ck of size k. We assign to

each vertex v ∈ V a binary vector bv of length k where bit i, 1 ≤ i ≤ k, is set

iff v is contained in clique Ci. If we assume that G has more than 2k vertices,

then there must be u 6= v ∈ V with bu = bv. Since Rule CC1 does not apply,

every vertex is contained in at least one clique, and since bu = bv, u and v are

contained in the same cliques. Therefore, u and v are connected. As they

also share the same neighborhood, Rule CC2 applies, in contradiction to

our assumption that G is reduced with respect to Rule CC2. Consequently,

G cannot have more than 2k vertices. �

By Theorem 1.3, this implies that Clique Cover is fixed-parameter

tractable with respect to parameter k. Unfortunately, the worst-case size of

a reduced instance is still exponential, as opposed to the polynomially-sized

kernels that are known for Vertex Cover and Cluster Editing.

As an example of an advanced data reduction rule, we now formulate

a generalization of Rule CC2. While one can show that this rule finds a

strict superset of the reduction opportunities of Rule CC2, it does not seem

possible to use it to improve the worst-case problem kernel size bound in

Theorem 1.8. Nevertheless, Rule CC2 improves the running time of solving

Clique Cover in practice, as described below.

To discuss the advanced data reduction rule, we need some additional

terminology: For a vertex v, we partition the set of vertices that are con-

nected by an edge to v into prisoners p with N(p) ⊆ N(v) and exits x

with N(x) \ N(v) 6= ∅. We say that the prisoners dominate the exits if

every exit x has an adjacent prisoner. An illustration of the concept of

prisoners and exits is given in Figure 1.6.

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

20 F. Hüffner, R. Niedermeier & S. Wernicke

Reduction Rule CC3. Consider a vertex v that has

at least one prisoner. If each prisoner is connected to at

least one vertex other than v via an edge, and the pris-

oners dominate the exits, then delete v. To reconstruct a

solution for the unreduced instance, add v to every clique

containing a prisoner of v.

Lemma 1.9. Reduction Rule CC3 is correct.

Proof. By definition, every neighbor of v’s prisoners is also a neighbor

of v itself. If a prisoner of v participates in a clique C, then C ∪ {v} is

also a clique in the graph. Therefore, it is correct to add v to every clique

containing a prisoner in the reduced graph. Next, we show that all edges

adjacent to v are covered by the cliques resulting by adding v to the cliques

containing v’s prisoners. We consider separately the edges connecting v

to prisoners and edges connecting v to exits. Regarding an edge {v, w}

to a prisoner w, vertex w has to be part of a clique C of the solution for

the instance after application of the rule. Therefore, the edge {v, w} is

covered by C ∪ {v} in the solution for the unreduced instance. Regarding

an edge {v, x} to an exit x, the exit x is dominated by a prisoner w and

therefore x has to be part of a clique C with w. Hence, the edge {v, x} is

covered by C ∪ {v} in the solution for the unreduced instance. �

Concerning experimental results, Gramm et al.25 implemented an al-

gorithm to optimally solve Clique Cover that is based on four data re-

duction rules (CC1–CC3 and one additional rule) and a simple branching

strategy. The implementation was able to solve within a few seconds 14 real-

world instances from an application in graphical statistics, with up to 124

vertices and more than 2 700 edges.26 Further experiments on random

graphs showed that in particular sparse instances could be solved quickly.

The algorithm relied mainly on the data reduction rules: many instances

were reduced to an empty instance before the branching even began. By

way of contrast, when the data reduction was not successful, running times

increased sharply. Additional experiments for the feature model mentioned

at the beginning of this section showed that random instances with 100

items and up to 30 features could be solved within a few minutes.

Two reduction rules of Gramm et al. (Rule CC3 and another rule that

we do not discuss here) have so far not been proved to improve the size of

the problem kernel and are also quite slow to compute. For some instances,

however, both rules were beneficial, meaning that the obtained speedups

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 21

for them instances were much larger than observed slowdowns for other

instances. This suggests the general application of these rules, possibly

with an additional heuristic to disable them based on instance properties.

As a final note, unlike the Cluster Editing model, Clique Cover

does not take perturbed data into account. In practice, probably edges

within feature clusters are missing, and spurious edges exist. However, this

can be handled with a post-processing: as long as there are not too many

errors, spurious edges will be covered by size-2 cliques, which can be easily

filtered; and a clique missing an edge will be optimally covered by two

cliques, and so in a post-processing one can check for all pairs of cliques

whether they could be merged by adding a small number of edges.

1.4. Conclusion

We conclude our survey with a list of guidelines for the practical design of

fixed-parameter algorithms and some open challenges in the field.

1.4.1. Practical Guidelines

The following list sums up the experiences of our and other research groups

who have implemented fixed-parameter algorithms:

Fixed-Parameter Tractability in General

(1) Do not despair of bad upper bounds for fixed-parameter algo-

rithms that are given in theoretically oriented papers—the analysis

is worst-case and often much too pessimistic.

(2) Fixed-parameter algorithms are the better the smaller the parame-

ter value is. Hence, parameterizations with small parameter values

should be sought after.

(3) Most existing fixed-parameter algorithms in the literature are con-

cerned with optimization problems on unweighted graphs. Solving

enumerative problems and problems on weighted graphs therefore

usually requires some additional work to be done.

(4) Exponential memory consumption usually turns out to be more

harmful in practice than exponential time, especially in enumer-

ative tasks. Using memory-saving techniques generally pays off,

even if this means some decrease in time efficiency.

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

22 F. Hüffner, R. Niedermeier & S. Wernicke

Data Reductions and Kernelizations

(1) One should always start by designing data reduction rules because

these are helpful in combination with basically any algorithmic

technique that is subsequently applied.

(2) The order of applying data reduction rules can significantly influ-

ence the practical effectiveness and efficiency of the overall data

reduction. Experimental work is important to find good orderings.

(3) Even if a data reduction has no provable performance guarantee,

it can still turn out to be very effective in practice.

Depth-Bounded Search Trees

(1) The branching in a search tree can produce new opportunities for

data reduction. Therefore, data reductions should be applied re-

peatedly during the course of the whole algorithm and not only as

a preprocessing step.42 To achieve maximum efficiency, the exact

frequency of applying data reductions may require some tuning.

(2) Search tree algorithms can be parallelized rather easily.

(3) Complicated case distinctions for the branching should be avoided

when a simpler search strategy is available that yields almost the

same worst-case running time bounds. The simpler strategy usually

turns out to be faster.

1.4.2. Challenges

While there has been substantial work on fixed-parameter algorithms for

clustering problems and several examples show the potential of this ap-

proach, the field is still quite young, and there remain a couple of challenges

for future research:

• The Clique model is often too restricted in applications; one would

rather prefer a notion of “dense subgraph” (e. g., Ref. 72–74). Ex-

cept for Ref. 19–21, we are not aware of fixed-parameter approaches

for such scenarios.

• For simplicity, many fixed-parameter approaches drop the require-

ment to be able to handle weighted problems or to handle enumer-

ation. Extensions of known results in this direction are desirable.

• Of our three case studies, Clique Cover seems to be the least

explored problem. While kernels with a linear number of vertices

are known for Vertex Cover and Cluster Editing, the only

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 23

known kernel for Clique Cover is of exponential size. Also, no

search tree with a fixed-parameter bound on its size is known for

Clique Cover except for a trivial brute-force exploration of the

problem kernel.

• Some works consider the variant of Cluster Editing where there

are don’t care-edges that have zero editing cost.58 It is not yet

known whether a fixed-parameter algorithm exists for this problem.

A particularly important challenge for future work is to bring progress

from fixed-parameter algorithmics to a broader audience by providing easily

accessible software tools that are finely tuned by algorithm engineering and

additional tools such as heuristics and parallelization.

References

1. A. Ben-Dor, R. Shamir, and Z. Yakhini, Clustering gene expression patterns,
Journal of Computational Biology. 6(3–4), 281–297, (1999).

2. E. J. Chesler, L. Lu, S. Shou, Y. Qu, J. Gu, J. Wang, H. C. Hsu, J. D.
Mountz, N. E. Baldwin, M. A. Langston, D. W. Threadgill, K. F. Manly,
and R. W. Williams, Complex trait analysis of gene expression uncovers
polygenic and pleiotropic networks that modulate nervous system function,
Nature Genetics. 37, 233–242, (2005).

3. R. Shamir, R. Sharan, and D. Tsur, Cluster graph modification problems,
Discrete Applied Mathematics. 144(1–2), 173–182, (2004).

4. S. Seno, R. Teramoto, Y. Takenaka, and H. Matsuda, A method for clustering
expression data based on graph structure, Genome Informatics. 15(2), 151–
160, (2004).

5. H. Kawaji, Y. Takenaka, and H. Matsuda, Graph-based clustering for finding
distant relationships in a large set of protein sequences, Bioinformatics. 20

(2), 243–252, (2004).
6. H. Kawaji, Y. Yamaguchi, H. Matsuda, and A. Hashimoto, A graph-based

clustering method for a large set of sequences using a graph partitioning
algorithm, Genome Informatics. 12, 93–102, (2001).

7. B. H. Voy, J. A. Scharff, A. D. Perkins, A. M. Saxton, B. Borate, E. J.
Chesler, L. K. Branstetter, and M. A. Langston, Extracting gene networks for
low-dose radiation using graph theoretical algorithms, PLoS Computational
Biology. 2(7), e89, (2006).

8. M. Benson, M. A. Langston, M. Adner, B. Andersson, Å. Torinsson Naluai,
and L. O. Cardell, A network-based analysis of the late-phase reaction of
the skin, The Journal of Allergy and Clinical Immunology. 118(1), 220–225,
(2006).

9. M. A. Langston, A. D. Perkins, D. J. Beare, R. W. Gauldie, P. J. Kershaw,
J. B. Reid, K. Winpenny, and A. J. Kenny. Combinatorial algorithms and
high performance implementations for elucidating complex ecosystem rela-

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

24 F. Hüffner, R. Niedermeier & S. Wernicke

tionships from North Sea historical data. In Proc. International Council for
the Exploration of the Sea Annual Science Conference, (2006).

10. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. (W. H. Freeman, 1979).

11. Z. Michalewicz and B. F. Fogel, How to Solve it: Modern Heuristics.
(Springer, 2004), 2nd edition.

12. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi, Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties. (Springer, 1999).

13. V. V. Vazirani, Approximation Algorithms. (Springer, 2001).
14. R. G. Downey and M. R. Fellows, Parameterized Complexity. (Springer,

1999).
15. J. Flum and M. Grohe, Parameterized Complexity Theory. (Springer, 2006).
16. R. Niedermeier, Invitation to Fixed-Parameter Algorithms. (Oxford Univer-

sity Press, 2006).
17. L. S. Chandran and F. Grandoni, Refined memorisation for Vertex Cover,

Information Processing Letters. 93(3), 125–131, (2005).
18. J. Chen, I. A. Kanj, and G. Xia. Improved parameterized upper bounds for

Vertex Cover. In Proc. 31st MFCS, vol. 4162, LNCS, pp. 238–249. Springer,
(2006).

19. H. Ito, K. Iwama, and T. Osumi. Linear-time enumeration of isolated cliques.
In Proc. 13th ESA, vol. 3669, LNCS, pp. 119–130. Springer, (2005).

20. C. Komusiewicz, F. Hüffner, H. Moser, and R. Niedermeier. Isolation con-
cepts for enumerating dense subgraphs. In Proc. 13th COCOON, LNCS.
Springer, (2007). To appear.

21. C. Komusiewicz. Various isolation concepts for the enumeration of dense sub-
graphs. Diplomarbeit, Institut für Informatik, Friedrich-Schiller-Universität
Jena, (2007).

22. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier, Graph-modeled data
clustering: Exact algorithms for clique generation, Theory of Computing Sys-
tems. 38(4), 373–392, (2005).

23. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier, Automated generation of
search tree algorithms for hard graph modification problems, Algorithmica.
39(4), 321–347, (2004).

24. F. Protti, M. D. da Silva, and J. L. Szwarcfiter. Applying modular decom-
position to parameterized Bicluster Editing. In Proc. 2nd IWPEC, vol. 4169,
LNCS, pp. 1–12. Springer, (2006).

25. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Data reduction, exact,
and heuristic algorithms for clique cover. In Proc. 8th ALENEX, pp. 86–94.
SIAM, (2006). Long version to appear under the title “Data reduction and
exact algorithms for clique cover” in ACM Journal of Experimental Algorith-
mics.

26. J. Gramm, J. Guo, F. Hüffner, R. Niedermeier, H.-P. Piepho, and R. Schmid,
Algorithms for compact letter displays: Comparison and evaluation, Com-
putational Statistics & Data Analysis. (2006). To appear.

27. J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of gen-

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 25

eralized Vertex Cover problems. In Proc. 9th WADS, vol. 3608, LNCS, pp.
36–48. Springer, (2005). Long version to appear under the title “Parameter-
ized complexity of Vertex Cover variants” in Theory of Computing Systems.

28. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. (MIT Press, 2001), 2nd edition.

29. J. Kleinberg and É. Tardos, Algorithm Design. (Addison Wesley, 2005).
30. R. Diestel, Graph Theory. (Springer, 2005), 3rd edition.
31. D. B. West, Introduction to Graph Theory. (Prentice Hall, 2001), 2nd edition.
32. S. Mecke and D. Wagner. Solving geometric covering problems by data re-

duction. In Proc. 12th ESA, vol. 3221, LNCS, pp. 760–771. Springer, (2004).
33. K. Weihe. Covering trains by stations or the power of data reduction. In

Proc. 1st ALEX, pp. 1–8, (1998).
34. J. Guo and R. Niedermeier, Invitation to data reduction and problem ker-

nelization, ACM SIGACT News. 38(1), 31–45, (2007).
35. L. Cai, J. Chen, R. Downey, and M. R. Fellows, Advice classes of parame-

terized tractability, Annals of Pure and Applied Logic. 84, 119–138, (1997).
36. F. K. H. A. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw, and

Y. Zhang. The Cluster Editing problem: Implementations and experiments.
In Proc. 2nd IWPEC, vol. 4169, LNCS, pp. 13–24. Springer, (2006).

37. M. Davis, G. Logemann, and D. W. Loveland, A machine program for
theorem-proving, Communications of the ACM. 5(7), 394–397, (1962).

38. L. Drori and D. Peleg, Faster exact solutions for some NP-hard problems,
Theoretical Computer Science. 287(2), 473–499, (2002).

39. F. V. Fomin, F. Grandoni, and D. Kratsch, Some new techniques in design
and analysis of exact (exponential) algorithms, Bulletin of the EATCS. 87,
47–77, (2005).

40. K. Mehlhorn, Data Structures and Algorithms, Volume 2: NP-Completeness
and Graph Algorithms. EATCS Monographs on Theoretical Computer Sci-
ence, (Springer, 1984).

41. G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In
Proc. 5th IWCO, vol. 2570, LNCS, pp. 185–208. Springer, (2003).

42. R. Niedermeier and P. Rossmanith, A general method to speed up fixed-
parameter-tractable algorithms, Information Processing Letters. 73, 125–129,
(2000).

43. P. Damaschke, Parameterized enumeration, transversals, and imperfect
phylogeny reconstruction, Theoretical Computer Science. 351(3), 337–350,
(2006).

44. D. Eppstein. Quasiconvex analysis of backtracking algorithms. In Proc. 15th
SODA, pp. 788–797. ACM/SIAM, (2004).

45. F. N. Abu-Khzam, M. A. Langston, P. Shanbhag, and C. T. Symons, Scalable
parallel algorithms for FPT problems, Algorithmica. 45(3), 269–284, (2006).

46. J. Cheetham, F. K. H. A. Dehne, A. Rau-Chaplin, U. Stege, and P. J. Taillon,
Solving large FPT problems on coarse-grained parallel machines, Journal of
Computer and System Sciences. 67(4), 691–706, (2003).

47. R. E. Korf, M. Reid, and S. Edelkamp, Time complexity of iterative-
deepening-A*, Artificial Intelligence. 129, 199–218, (2001).

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

26 F. Hüffner, R. Niedermeier & S. Wernicke

48. A. Felner, R. E. Korf, and S. Hanan, Additive pattern database heuristics,
Journal of Artificial Intelligence Research. 21, 1–39, (2004).

49. J. H̊astad, Clique is hard to approximate within n
1−ε, Acta Mathematica.

182(1), 105–142, (1999).
50. F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H.

Suters, and C. T. Symons. Kernelization algorithms for the Vertex Cover
problem: theory and experiments. In Proc. 6th ALENEX, pp. 62–69. SIAM,
(2004).

51. B. Chor, M. R. Fellows, and D. W. Juedes. Linear kernels in linear time, or
how to save k colors in O(n2) steps. In Proc. 30th WG, vol. 3353, LNCS, pp.
257–269. Springer, (2004).

52. F. N. Abu-Khzam, M. A. Langston, and W. H. Suters. Fast, effective ver-
tex cover kernelization: A tale of two algorithms. In Proc. 3rd AICCSA.
ACS/IEEE, (2005). 16 pages.

53. Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J. Chesler, M. A. Langston,
and N. F. Samatova. Genome-scale computational approaches to memory-
intensive applications in systems biology. In Proc. 18th SC, p. e12. IEEE
Computer Society, (2005).

54. M. Chleb́ık and J. Chleb́ıková. Improvement of Nemhauser–Trotter theorem
and its applications in parameterized complexity. In Proc. 9th SWAT, vol.
3111, LNCS, pp. 174–186. Springer, (2004).

55. M. Křivánek and J. Morávek, NP-hard problems in hierarchical-tree cluster-
ing, Acta Informatica. 23(3), 311–323, (1986).

56. M. Charikar, V. Guruswami, and A. Wirth, Clustering with qualitative infor-
mation, Journal of Computer and System Sciences. 71(3), 360–383, (2005).

57. N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent informa-
tion: ranking and clustering. In Proc. 37th STOC, pp. 684–693. ACM, (2005).

58. N. Bansal, A. Blum, and S. Chawla, Correlation clustering, Machine Learn-
ing. 56(1), 89–113, (2004).

59. P. Damaschke. On the fixed-parameter enumerability of Cluster Editing. In
Proc. 31st WG, vol. 3787, LNCS, pp. 283–294. Springer, (2005).

60. M. R. Fellows, M. A. Langston, F. Rosamond, and P. Shaw. Polynomial-time
linear kernelization for Cluster Editing. Manuscript, (2006).

61. J. Guo. A more effective linear kernelization for cluster editing. In Proc. ES-
CAPE, LNCS. Springer, (2007). To appear.

62. L. Wang, Y. Lin, and X. Liu. Approximation algorithms for bi-clustering
problems. In Proc. 6th WABI, vol. 4175, LNBI, pp. 310–320. Springer, (2006).

63. J.-L. Guillaume and M. Latapy, Bipartite structure of all complex networks,
Information Processing Letters. 90(5), 215–221, (2004).

64. J. B. Orlin, Contentment in graph theory: Covering graphs with cliques,
Indagationes Mathematicae (Proceedings). 80(5), 406–424, (1977).

65. C. Lund and M. Yannakakis, On the hardness of approximating minimization
problems, Journal of the ACM. 41, 960–981, (1994).

66. E. Kellerman, Determination of keyword conflict, IBM Technical Disclosure
Bulletin. 16(2), 544–546, (1973).

67. L. T. Kou, L. J. Stockmeyer, and C.-K. Wong, Covering edges by cliques

April 3, 2007 16:42 World Scientific Review Volume - 9in x 6in fptcluster

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 27

with regard to keyword conflicts and intersection graphs, Communications
of the ACM. 21(2), 135–139, (1978).

68. H.-P. Piepho, An algorithm for a letter-based representation of all-pairwise
comparisons, Journal of Computational and Graphical Statistics. 13(2), 456–
466, (2004).

69. S. Rajagopalan, M. Vachharajani, and S. Malik. Handling irregular ILP
within conventional VLIW schedulers using artificial resource constraints.
In Proc. CASES, pp. 157–164. ACM, (2000).

70. M. Behrisch and A. Taraz, Efficiently covering complex networks with cliques
of similar vertices, Theoretical Computer Science. 355(1), 37–47, (2006).

71. A. Gyárfás, A simple lower bound on edge coverings by cliques, Discrete
Mathematics. 85(1), 103–104, (1990).

72. K. Holzapfel, S. Kosub, M. G. Maaß, and H. Täubig, The complexity of de-
tecting fixed-density clusters, Discrete Applied Mathematics. 154(11), 1547–
1562, (2006).

73. H. Yu, A. Paccanaro, V. Trifonov, and M. Gerstein, Predicting interactions
in protein networks by completing defective cliques, Bioinformatics. 22(7),
823–829, (2006).

74. S. Butenko and W. E. Wilhelm, Clique-detection models in computational
biochemistry and genomics, European Journal of Operational Research. 173

(1), 1–17, (2006).

