The Parameterized Complexity of the
Rainbow Subgraph Problem

Falk Hiiffner*, Christian Komusiewicz**, Rolf Niedermeier, and
Martin Roétzschke

Institut fiir Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{falk.hueffner,christian.komusiewicz,rolf.niedermeier}@tu-berlin.de

Abstract. The NP-hard RAINBOW SUBGRAPH problem, motivated from
bioinformatics, is to find in an edge-colored graph a subgraph that contains
each edge color exactly once and has at most k vertices. We examine
the parameterized complexity of RAINBOW SUBGRAPH for paths, trees,
and general graphs. We show, for example, APX-hardness even if the
input graph is a properly edge-colored path in which every color occurs
at most twice. Moreover, we show that RAINBOW SUBGRAPH is W[1]-
hard with respect to the parameter k and also with respect to the dual
parameter ¢ := n — k where n is the number of vertices. Hence, we
examine parameter combinations and show, for example, a polynomial-
size problem kernel for the combined parameter £ and “maximum number
of colors incident with any vertex”.

1 Introduction

The RAINBOW SUBGRAPH problem is defined as follows.

RAINBOW SUBGRAPH

Instance: An undirected graph G = (V, E), an edge coloring col : E —
{1,...,p} for some p > 1, and an integer k > 0.

Question: Is there a subgraph G’ of G that contains each edge color
exactly once and has at most k vertices?

We call a subgraph G’ with these properties a solution of order at most k. In the
problem name, the term rainbow refers to the fact that all edges of G’ have a
different color. For convenience, we define a rainbow cover as a subgraph where
every color occurs at least once. Note that every rainbow cover G’ of order at
most k has a subgraph that is a solution: Simply remove any edge whose color
appears more than once in G’. Repeating this operation as long as possible yields
a solution of the same order as G’.

RAINBOW SUBGRAPH arises in bioinformatics: The (POPULATION) PARSI-
MONY HAPLOTYPING problem can be reduced to RAINBOW SUBGRAPH [I1];
note, however, that depending on the input, this reduction might not produce
a polynomial-size instance. Another bioinformatics application appears in the
context of PCR primer set design for spotted microarray experiments [5].

* Supported by DFG project ALEPH (HU 2139/1).
** Partially supported by a post-doctorial grant funded by the Région Pays de la Loire.

To appear in Proceedings of the 40th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG ’14), Lecture Notes in Computer Science,
Springer, 2014.

Table 1. Complexity overview for RAINBOW SUBGRAPH. The O*()-notation suppresses
factors polynomial in the input size.

Par. Paths Trees General graphs

p O*(3") (Thm.[d) O*(37) (Thm. [4) W[l] hard (Thm 2)

p,A —»— — o — O0*((4A — 4)?) (Thm. [3)

ko 0*(3%) (Thm. th-@) O (Thm. [th-@)) W[i]-hard (Thm. [2}+(T))

kA —»— — o — O*(2"4/?) (Thm. [3)

¢ 05" (Thm.[§) W[1]-hard (Thm. [5 W[1]-hard (Thm. [5

LA —» — O((2Ac+ 1% (Thm'O* 2Ac+1))(Thm
O(A%4*)-vertex kernel (Thm. '

l,g —»— W([1]-hard (Thm. |5 W([1]-hard (Thm. |5)

A,q APX-hard (Thm.[l) APX-hard (Thm. APX-hard ([8])

Previous work. The optimization version of RAINBOW SUBGRAPH has been mostly
studied in terms of polynomial-time approximability. Here the optimization goal
is to minimize the number of vertices in the solution; we refer to this problem
as MINIMUM RAINBOW SUBGRAPH. MINIMUM RAINBOW SUBGRAPH is APX-
hard even on graphs with maximum vertex degree A > 2 in which every color
occurs at most twice [§]. Moreover, MINIMUM RAINBOW SUBGRAPH cannot be
approximated within a factor of ¢In A for some constant ¢ unless NP has slightly
superpolynomial time algorithms [12].

The more general MINIMUM-WEIGHT MULTICOLORED SUBGRAPH problem
has a randomized +/qlog p-approximation algorithm, where ¢ is the maximum
number of times any color occurs in the input graph [7]. MINIMUM RAINBOW
SUBGRAPH can be approximated within a ratio of (6 +1n[d]+1)/2, where J is the
average vertex degree in the solution [9], and within a factor of max(v/2n, VA(1+
v/InA/2)) [12]. Katreni¢ and Schiermeyer [8] present an exact algorithm for
RAINBOW SUBGRAPH that has a running time of n@() . 27 . A% where A is the
maximum vertex degree of the input.

Our contributions. Since RAINBOW SUBGRAPH is NP-hard even on collections
of paths and cycles [8], we perform a broad parameterized complexity analysis.
Table [I| gives an overview on the complexity of MINIMUM RAINBOW SUBGRAPH
on paths, trees, and general graphs, when parameterized by

— p: number of colors;

— k: number of vertices in the solution;

— ¢ :=n — k: number of vertex deletions to obtain a solution;

— A: maximum vertex degree;

— Ac¢ = maxyev [{c| H{u,v} € E: col({u,v}) = ¢}|: maximum color degree;
— ¢: maximum number of times any color occurs in the input graph.

For each parameter and some parameter combinations, we give either a fixed-
parameter algorithm, show W/[1]-hardness, or show NP-hardness for constant
parameter values.

Our main results are as follows: RAINBOW SUBGRAPH is APX-hard even if the
input graph is a properly edge-colored path with ¢ = 2. RAINBOW SUBGRAPH is
W]1]-hard on general graphs for each of the considered parameters. For the number
of colors p, solution order k, and number /¢ of vertex deletions, the complexity
seems to depend on the density of the graph as the problem is W[1]-hard for
each of these parameters but it becomes tractable if any of these parameters
is combined with the maximum degree A. For the parameter ¢, W[1]-hardness
holds even if the input graph is a tree.

Preliminaries. APX is the class of optimization problems that allow constant-
factor approximations. If a problem is APX-hard, then it cannot be approximated
in polynomial time to arbitrary constant factors, unless P = NP. A problem
is called fized-parameter tractable (FPT) with respect to some problem-specific
parameter x if it can be solved in f(z) - |[I|°(V) time, where || is the instance size
and f is an arbitrary computable function. A kernel for a parameterized problem
is, roughly, a polynomial-time self-reduction that results in an instance whose size
is bounded only in the parameter. Analogously to NP, the class W[1] captures
parameterized hardness. It is widely assumed that if a problem is W[1]-hard,
then it is not fixed-parameter tractable.
We will use the following simple observation several times.

Observation 1. Let G' = (V' E’) be a solution for a RAINBOW SUBGRAPH
instance with G = (V, E). If there are two vertices u,v in V' such that {u,v} € E
but {u,v} ¢ E', then there is a solution G that does contain the edge {u,v} and
has the same number of vertices.

Observation [l is true since replacing the edge in G’ that has the same color
as {u,v} by {u,v} is a solution. Next, we list some easy to see observations
regarding parameter bounds:

p<k(k—1)/2, (1)
p < kA/2, (2)
p<k-1 if G is acyclic. (3)

Due to lack of space, some proofs are deferred to a long version of this article.

2 Parameterization by Color Occurrences

We now consider the complexity of RAINBOW SUBGRAPH parameterized by the
maximum number of color occurrences ¢. Indeed, the value ¢ is bounded in some
applications: For example in the graph formulation of PARSIMONY HAPLOTYPING,
q depends on the maximum number of ambiguous positions in a genotype which
can be assumed to be small. Unfortunately, RAINBOW SUBGRAPH remains hard
under g-parameterization, even for heavily restricted graph classes.

Katreni¢ and Schiermeyer [8] showed that MINIMUM RAINBOW SUBGRAPH
is APX-hard for A = 2. The instances produced by their reduction contain

precisely two edges of each color, so APX-hardness even holds for ¢ = 2. However,
the resulting graph contains cycles and is not properly edge-colored, so the
complexity on acyclic graphs and on properly edge-colored graphs (like those
resulting from PARSIMONY HAPLOTYPING instances) remains to be explored. We
show that neither restriction is helpful as RAINBOW SUBGRAPH is APX-hard for
properly edge-colored paths with ¢ = 2. This strengthens the hardness result of
Katreni¢ and Schiermeyer [8]. For this purpose, we develop an L-reduction from
the following special case of MINIMUM VERTEX COVER:

MINIMUM VERTEX COVER IN CUBIC GRAPHS

Instance: An undirected graph H = (W, F') in which every vertex has
degree three.

Task: Find a minimum-cardinality vertex cover of G.

MINIMUM VERTEX COVER IN CUBIC GRAPHS is APX-complete [IJ.

Theorem 1. MINIMUM RAINBOW SUBGRAPH is APX-hard even when the input
is a properly edge-colored path in which every color occurs at most twice.

Proof. Given an instance H = (W = {wy,...,w,}, F) of MINIMUM VERTEX
COVER IN CUBIC GRAPHS, construct an edge-colored path G = (V, E) as follows.
The vertex set is V := {v1,...,V16n+2}- The edge set is F := {{v;,v;41} |1 <
i < 16n + 1}, that is, vertices with successive indices are adjacent. It remains to
specify the edge colors. Herein, we use u* to denote unique colors, that is, if an
edge is u*-colored, then it receives an edge color that does not appear anywhere
else in GG. In addition to these unique colors, introduce five colors for each vertex
of H, that is, for each w; € W create edge colors ¢;, ¢}, ¢/, z;, and y;. The
colors ¢;, ¢, and ¢ are “filling” colors which are needed because G is connected.
Furthermore, for each edge f; € F introduce an edge color ¢;.
Now, color the first 6n + 1 edges of G by the sequence

ureputur ut cout chutcyut e cout chut ey ut.
That is, the edge between vy and v is u*-colored, the edge between v; and vy
receives color ¢1, and so on. The u*-colors are unique and thus occur only once
in G. Thus, both endpoints of these colors are contained in every solution.

Now for each vertex w; in H color 10 edges in G according to the edges that are
incident with w;. More precisely, for each w; color the edges from vg,124103i-1)
to Vent2+10i- We call the subpath of G with these vertices the w;-part of G.
Let {f, fs, [} denote the set of edges incident with w;. Then color the edges
between vgy,42410(i—1) and vent2+10; by the sequence

Ci Or Ti Gs i i Gr ¢ T3 Y

That is, the edge between ve, +2410(i—1) and Vep4-2410(i—1)+1 receives color ¢;, the
edge between vg,42410(i—1)+1 and Vep42410(i—1)+2 receives color ¢, and so on.
The resulting graph is a path with exactly 16-n+ 1 edges and p =8 -n+ |F|+1
colors.

The idea of the construction is that we may use the vertices of the w;-part
to “cover” the colors corresponding to the edges incident with w;. If we do so,
then the solution has two connected components in the w;-part. Otherwise, it
is sufficient to include one connected component from the w;-part. Since the
solution graph is acyclic and the number of edges in a minimal solution is fixed,
the number of connected components in the solution and its order are equal up
to an additive constant.

We now show formally that the reduction fulfills the two properties of L-
reductions [14]. Let S* be an optimal vertex cover for the MINIMUM VERTEX
CoOVER IN CuUBIC GRAPHS instance and let G* be an optimal solution to the
constructed MINIMUM RAINBOW SUBGRAPH instance.

The first property we need to show is that |V(G*)| = O(]S*|). As observed
above, the number of colors p in G is O(n + |F|) and thus |[V(G*)| < 2p =
O(n + |F|). Clearly, S* contains at least |F|/3 vertices, since every vertex in H
covers at most three edges. Moreover, since H is cubic we have n < 2|F| and
thus |S*| = ©(n + |F|). Consequently, |V (G*)| = O(]S*|).

The second property we need to show is following: given a solution G’ to G,
we can compute in polynomial time a solution S’ to G such that

15| =157 = O(IV(G")] = [V(G)]).

Let G’ be a solution to G. The proof outline is as follows. We show that G’
has order at least p+mn + 1+ x, z > 0, and that, given G’, we can compute in
polynomial time a size-z vertex cover S’ of H. Then we show that, conversely,
there is a solution of order at most p+n+ 1+ [S*|. Thus, the differences between
the solution sizes in the MINIMUM VERTEX COVER IN CUBIC GRAPHS instance
and in the MINIMUM RAINBOW SUBGRAPH instance are essentially the same.
We omit the details. O

3 Parameterization by Number of Colors

We now consider the parameter number of colors p. We show that RAINBOW
SUBGRAPH is generally W[1]-hard with respect to p but becomes fixed-parameter
tractable if the input graph is sparse. By Eq. , and the fact that we can always
construct a solution by arbitrarily selecting one edge of each color, implying
k < 2p, the parameter p is polynomially upper- and lower-bounded by the solution
order k. In consequence, while our main focus is on parameter p, every param-
eterized complexity result for p also implies the corresponding parameterized
complexity result for k.

A graph G is called d-degenerate if every subgraph of G has a vertex of degree
at most d. We can show that even on 2-degenerate bipartite graphs, the decision
problem RAINBOW SUBGRAPH is W[l]-hard for parameter p (and thus also for
parameter k) by a parameterized reduction from the MULTICOLORED CLIQUE
problem.

Theorem 2. MINIMUM RAINBOW SUBGRAPH is W/1]-hard with respect to the
number of colors p, even if the input graph is 2-degenerate and bipartite.

Replacing degeneracy by the larger parameter maximum degree A of G yields
fixed-parameter tractability: Katreni¢ and Schiermeyer [8] proposed an algorithm
that solves MINIMUM RAINBOW SUBGRAPH in (2A42)? - n®M) time. We show an
improved bound:

Theorem 3. Let (G, col) be an instance of MINIMUM RAINBOW SUBGRAPH
with p colors and mazimum vertex degree A. An optimal solution can be computed
in O((4A —4)P - An?) time or in O((4A —4)* . n? + 28472 (EA)3 log(kA)) time,
where k is the order of the solution.

To prove Theorem 3] we follow a two-step approach: First, we enumerate connected
candidate subgraphs exploiting the sparseness constraint. Second, we select
from these candidate subgraphs a minimum-order set with all colors, exploiting
techniques by Bjorklund et al. [2].

The algorithm by Katreni¢ and Schiermeyer [§] has a somewhat different
structure, but can also be understood in terms of a subgraph enumeration
process and a combinatorial part: It employs a method for enumerating all
connected rainbow subgraphs in O(A??-np) time and finds a solution via dynamic
programming. In contrast, we consider only connected induced subgraphs in the
first step, which improves efficiency.

In the second step, we select from the computed set of connected subgraphs
a minimum order subset with all colors. Clearly, those subgraphs correspond to
the connected components of some optimal solution, which can be retrieved by
stripping edges with redundant colors. The second step reduces to MINIMUM-
WEICGHT SET COVER when we consider the induced subgraphs as sets (of colors)
which are weighted (by the order of the subgraph). We first describe an algorithm
for MINIMUM-WEIGHT EXACT COVER using fast subset convolution and then
use it to solve MINIMUM-WEIGHT SET COVER. To improve efficiency, we apply
techniques by Bjorklund et al. [2].

Step one: enumerating induced subgraphs. We make use of the following lemma:

Lemma 1 ([I0, Lemma 2]). Let G be a graph with mazimum degree A and let
v be a vertex in G. There are at most 4% - (A —1)* connected (induced) subgraphs
of G that contain v and have order at most k. Furthermore, these subgraphs can
be enumerated in O(4% - (A —1)F - n) time.

Clearly, we can enumerate all connected induced subgraphs of G of order at
most k by applying Lemma [1] for each vertex v € V(G).

Step two: MINIMUM-WEIGHT SET COVER. We consider MINIMUM-WEIGHT
SET COVER instances with input sets C = {C1, ..., C,,} and weight function w,
where n denotes the cardinality of the ground set U := (J¢, ¢ Ci, and w(C’) for
C’ C C denotes the sum of weights of the sets in C’.

MINIMUM-WEIGHT SET COVER can be solved in O(2™) time using polynomial
space by exhaustive search and in O(2"m) time using exponential space by
dynamic programming. Cygan et al. [4] presented a polynomial-space algorithm

with running time O*(min{4"m!°e" 97}). For our application of MINIMUM-
WEIGHT SET COVER these algorithms are somewhat ill-suited since m may be
potentially as large as 2", resulting in 4” - n°() running times. Better algorithms
are known for the unweighted MINIMUM SET COVER problem which can be
solved in O(20-299(n+m)) time [6] and 2"n°™) time [3], where the second running
time avoids the m factor. In the following, we use fast subset convolution [2]
to obtain an 2"(nW)°M-time algorithm for MINIMUM-WEIGHT SET COVER,
where W is the maximum weight.
We use the following lemma due to Bjorklund et al. [2]:

Lemma 2 ([2]). Consider a set U with |[U| = n and a mapping Q : 2V —
{0,...,W}. The mapping Q' with Q'[U’'] = minygcy (Q[U"] + QIU’ \ U"))
for every U’ C U is called the convolution of Q and can be computed in
O(2"n*W log?(nW)) time.

Bjorklund et al. [2] did not give precise running time estimates, but Lemma
can be derived using their Theorem 1, assuming O(n log? n) time for addition
and multiplication of n-bit integers.

As Bjorklund et al. [2] noted, partitioning problems over the set U can be
solved by computing multiple convolutions. We describe in the following the
algorithm for MINIMUM-WEIGHT ExAcT COVER (the variant of weighted SET
COVER where each element needs to be covered by exactly one set) and then
how to use the result to solve MINIMUM-WEIGHT SET COVER.

MINIMUM-WEIGHT ExacT COVER
Instance: A family C of sets with weight function w : C — {0,...,W}.
Task: Find a minimum-weight subfamily & C C such that each element

of |J C; occurs in exactly one set in S.
Cc;eC

Lemma 3. MINIMUM-WEIGHT EXAcT COVER with weight function w : C —
{0,..., W} can be solved in O(2" - n®W log(n) log*(nW)) time.

Proof. We define an x-cover of a subset U’ C U to be a minimum-weight
subfamily C’ C C containing at most x sets such that each element of U’ occurs
in exactly one set of C" and g, cer Ci = U'. In these terms MINIMUM-WEIGHT
Exact COVER is to find an n-cover for U.

Consider a mapping @ : 2V — {0,..., W} and let initially Q[C;] = w(C})
for C; € C and Q[U'] = oo for the remaining U’ C U. Now let Q* denote the
mapping resulting from x consecutive convolutions of @, that is, Q° = @Q and
Q" is the convolution of Q%. We prove by induction that (for all U’ C U and
all x > 0) Q*[U’] is the weight of a 2%-cover for U’ if such a cover exists and
Q*[U’] = oo otherwise. This implies in particular that Q'°%2"I[U] is the weight
of an optimal solution to C, if a solution exists.

Clearly the mapping Q° = @ meets the claim. Assume that Q%[U’] is the
weight of a 2%-cover for U’ C U if such a cover exists, and Q*[U’] = oo otherwise.
Now let C' be a 2**!l-cover for some U’ C U. Let C4,Cs C C’ be disjoint
subfamilies, C, UCg = C’, such that |C,| < 2% and |Cg| < 2*. (If |C'| = 1, then

Co =C'and Cg =0). Let U, = Ue,ec. CisUp = UCiGCB C;. Now C, is a 2%-cover
for U,: it covers each element of U, exactly once, and if there was an exact
cover with lower weight, we could combine it with Cg to get an exact cover
for Jg, s Ci with lower weight than C’, contradicting that C' is a 27+1_cover.
The same holds for Cg. Hence, Q*[U,] = w(Cy) and Q*[Ug] = w(Cgs), therefore
w(C") = Q[Us] + Q[Ug], and due to the minimality of w(C’) we obtain (by
convolution) Q* [U'] = miny cy/ (Q[U"] + QU \ U"]) = w(C’"). So Q" U]
is the weight of a 27 !-cover for U’. If no 2%*+!-cover for U’ exists, then there is
no U” C U’ such that Q*[U"] # oo and Q®[U’ \ U"] # oo, hence Q* U] = oo.

To retrieve the actual solution family, we search for some U’ C U such that
QMeez 1] 4 QMog=71 [\ U'] = QM°82"1[U]. We repeat this step for U’ and
U \ U’ recursively, until we obtain subsets of U that have a 1-cover. The union
of those 1-covers are the sets of the solution family.

The initial mapping @ can be constructed within O(nm) = O(2"n) time. Next,
we compute [log,] convolutions of @, each of which takes O(2"n3W log?(nW))
time, by Lemma [2| Retrieving the solution family takes O(2"n) time, so we
obtain an overall running time of O(2"n3W log(n)log?(nW)). O

To convert a table of minimum exact cover weights to a table of minimum (not
necessarily exact) cover weights, we iterate over each set U’ C U in increasing
order of size, and for each u € U’ replace Q[U’] by min(Q[U'], QU \ {u}]).
Together with Lemma [1} this concludes the proof of Theorem

For acyclic inputs, we can use dynamic programming to speed up the enu-
meration of connected rainbow subgraphs of G, avoiding the dependency on A.

Theorem 4. For an acyclic instance (G, col) of MINIMUM RAINBOW SUBGRAPH
an optimal solution can be computed within O(3Ppn + 2Pp3nlog?(pn)) time.

4 Parameterization by Number of Vertex Deletions

In this section, we consider the dual parameter ¢ := n —k (where k is the solution
order and n is the order of the input graph), that is, the number of vertices
that are not part of a solution and thus are “deleted” from the input graph. In
Section [3] we showed that RAINBOW SUBGRAPH is W([1]-hard for the parameter k,
but that it becomes fixed-parameter tractable for the parameter (A, k). We show
that both results also hold when replacing k by ¢. Hence, parameter ¢ is useful
when we ask for the existence of relatively large solutions in sparse graphs.

In contrast to the parameter k, for which RAINBOW SUBGRAPH becomes
fixed-parameter tractable on trees, we observe W[1l]-hardness for parameter ¢
even on very restricted input trees.

Theorem 5. RAINBOW SUBGRAPH is W/1]-hard with respect to the dual param-
eter £ even when the input is a tree of height three and every color occurs at most
twice.

By Theorem [5, parameterization by ¢ alone does not yield fixed-parameter
tractability. Hence, we consider combinations of ¢ with two parameters. One is

the maximum degree A, and the other one is the mazimum color degree A¢ =
max,ev |[{c | Hu,v} € E : col({u,v}) = c}|, which is the maximum number
of colors incident with any vertex in G. This parameter was also considered
by Schiermeyer [I3] for obtaining bounds on the size of minimum rainbow
subgraphs. Note that the maximum color degree is upper-bounded by both the
maximum degree and by the number of colors in G and that it may be much
smaller than either parameter.

First, we show that for the combined parameter (A, ¢) the problem has a
polynomial-size problem kernel. To our knowledge, this is the first non-trivial
kernelization result for RAINBOW SUBGRAPH. As it is common for kernelizations,
it is based on a set of data reduction rules. The main idea of the kernelization
is as follows. We first remove edges whose colors appear very often compared
to A and £. Afterwards, deleting any vertex v “influences” only a bounded
number of other vertices: at most A edges are incident with v and for each of
these edges the number of other edges that have the same color depends only
on A and ¢. We then consider some vertices that are in every rainbow cover. To
this end, we call a vertex v obligatory if there is some edge color such that all
edges with this color are incident with v. In the data reduction rules, we reduce
those obligatory vertices that have only obligatory neighbors. Together with the
previous reduction rules, we then obtain the kernel by the following argument: If
there are many non-obligatory vertices, then we can find a greedy solution since
any vertex deletion has bounded “influence”. Otherwise, the overall instance size
is bounded as every other vertex is a neighbor of some non-obligatory vertex and
each non-obligatory vertex has at most A neighbors.

As mentioned above, the first rule removes edges whose color appears very
often compared to A and /.

Rule 1. If there is an edge color ¢ such that there are more than AL edges with
color ¢, then remove all edges with color ¢ from G.

We now deal with obligatory vertices. The first simple rule identifies edge
colors that are already covered by obligatory vertices.

Rule 2. If G contains an edge {u,v} of color ¢ such that u and v are obligatory,
then remove all other edges with color ¢ from G.

We now work on instances that are reduced with respect to Rule 2] Observe
that in such instances every edge between two obligatory vertices has a unique
color. This observation is crucial for showing the correctness of the following rules.
Their aim is to remove obligatory vertices that have only obligatory neighbors.
When removing a vertex in these rules, we decrease k and n by one, thus the
value of ¢ remains the same. The correctness of the first rule is obvious.

Rule 3. Let (G, col) be an instance that is reduced with respect to Rule @ Then,
remove all connected components of G that consist of obligatory vertices only.

The next two rules remove edges between obligatory vertices.

10

Rule 4. Let (G,col) be an instance of RAINBOW SUBGRAPH that is reduced
with respect to Rule[3 If G contains three obligatory vertices u, v, and w such
that {u, v}, {v,w} € E and u has only obligatory neighbors, then remove {u,v}
from G. If u has degree zero now, then remove u from G.

Rule 5. Let (G,col) be an instance of RAINBOW SUBGRAPH that is reduced
with respect to Rule[3 If G contains four obligatory vertices u, v, w and x such
that {u,v} € G and {w,z} in G and u and x have only obligatory neighbors, then
do the following.

Remove {w,x} from G. If v and w are not adjacent, then insert {v,w} and
assign it a unique color. If x has now degree zero, then remove x from G.

Note that application of Rule [] does not increase the maximum degree of the
instance and decreases the degree of v and w. Furthermore, note that application
of Rule [5| may increase the degree of v by one but directly triggers an application
of Rule [4] which reduces the degree of v and u again by one. Hence, both rules
can be exhaustively applied without increasing the overall maximum degree.

We now show that the instance either has a rainbow cover or that it has
bounded size.

Lemma 4. Let (G,col) be an instance that is reduced with respect to Rules
to @ Then, (G, col) is a yes-instance or it contains at most 2A - (A+1) - Ag - £2
vertices.

Proof. We consider a special type of vertex sets that can be safely deleted. To
this end, call a vertex set S a colorful packing if

1. no vertex in S is obligatory, and
2. for all w and v in S the set of colors incident with u is disjoint from the set
of colors incident with v.

Assume that (G, col) has a colorful packing of size £. Then, G — S is a rainbow
cover of order k: For each color incident with some vertex v in .S, there are two
other vertices in V' that are connected by an edge with this color (as v is not
obligatory). By the second condition, these two vertices are not in S. Hence, this
edge color is contained in G — S. Summarizing, if (G, col) contains a colorful
packing of size at least £, then (G, col) is a yes-instance.

Now, assume that a maximum-cardinality colorful packing S in G has size
less than ¢. Each vertex in S is incident with at most Ag colors. For each of these
colors, the graph induced by the edges of this color has at most A¢ edges and
thus at most 2A¢ vertices, since the instance is reduced with respect to Rule

Let T denote the set of vertices in V'\ S that are incident with at least one
edge that has the same color as as an edge incident with some vertex in S. By

the above discussion,
IT| <2A-Ac-L-(£—1).

Note that T includes all neighbors of vertices in S. By the maximality of S, all
vertices in V'\ (S UT) are obligatory. Now partition V' \ (SUT) into the set X

11

that has neighbors in 7" and the set Y that has only neighbors in (X UY'). The
set X has size at most (2A4¢ - A-£- (£ —1)) - A since the maximum degree in G
is A. The set Y has size at most 1 since otherwise one of the Rules [3] to [5] applies
(we omit the details).

Hence, since S has size at most ¢ — 1, G contains at most

(1424 -Ac-£-(0—1)+2A% Ac-£-(L—1)+1<2A-(A+1)-Ac - 12

vertices. Thus, if any instance contains more vertices, then a colorful packing of
size at least £ exists and the instance is a yes-instance. a

Using Lemma [4] we obtain the following theorem.

Theorem 6. RAINBOW SUBGRAPH admits a problem kernel with at most 2A -
(A+1)- Ac - £2 vertices that can be computed in O(m? +mn) time.

We now consider parameterization by (Ac, £) (recall that the color degree Ax
can be much smaller than A). First, by performing the following additional rule,
we can use the kernelization result for (A, ¥¢) to obtain a polynomial problem
kernel for (A¢g,?).

Rule 6. If G contains a vertex v such that at least £ + 2 edges incident with v
have the same color c, then delete an arbitrary one of these edges.

Rule[6]can be exhaustively performed in linear time. Afterwards, the maximum
degree A of G is at most Ac - (€ + 1). In combination with Theorem [6] this
immediately implies the following.

Theorem 7. RAINBOW SUBGRAPH has a problem kernel with at most 2(Ac +
1)302(¢ + 1) wvertices that can be computed in O(m? + mn) time.

Finally, we describe a simple branching for the parameter (A¢, £). Herein, deleting
a verter means to remove it from G and to decrease £ by one; thus, a deleted
vertex is mot part of a rainbow cover of order k of the original instance.

Branching Rule 1. If G contains a non-obligatory vertex u, then branch into
the following cases. First, recursively solve the instance obtained from deleting u
from G. Then, for each color ¢ that is incident with u pick an edge {v,w} with
color ¢. If v (w) is non-obligatory, then recursively solve the instance obtained
from deleting v (w).

Note that the parameter ¢ decreases by one in each branch. Exhaustively apply-
ing Branching Rule [1] until either every vertex is obligatory or ¢ < 0 yields an
algorithm with the following running time.

Theorem 8. RAINBOW SUBGRAPH can be solved in O((2A¢ + 1)¢ - (n +m))
time.

12

5

Outlook

Considering its biological motivation, it would be interesting to gain further,
potentially data-driven parameterizations of MINIMUM RAINBOW SUBGRAPH that
may help identifying further practically relevant and tractable special cases. From
a more graph-theoretic point of view, we left open a deeper study of parameters
measuring the degree of acyclicity of the underlying graph, such as treewidth
or feedback set numbers. A further question is whether for our fixed-parameter
tractability result in Theorem [3| we can avoid exponential memory consumption.

Acknowledgments. We thank the reviewers of WG’ 14 for their thorough and
valuable feedback.

References

[1]

P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs.
Theor. Comput. Sci., 237(1-2):123-134, 2000.

A. Bjorklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Mobius:
Fast subset convolution. In Proc. 39th STOC 07, pages 67-74. ACM, 2007.
A. Bjorklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546-563, 20009.

M. Cygan, L. Kowalik, and M. Wykurz. Exponential-time approximation of
weighted set cover. Inform. Process. Lett., 109(16):957-961, 2009.

R. Fernandes and S. Skiena. Microarray synthesis through multiple-use PCR,
primer design. Bioinformatics, 18(suppl 1):128-135, 2002.

F. V. Fomin, F. Grandoni, and D. Kratsch. A measure & conquer approach
for the analysis of exact algorithms. J. ACM, 56(5):25:1-25:32, 2009.

M. T. Hajiaghayi, K. Jain, L. C. Lau, I. I. Mandoiu, A. Russell, and V. V.
Vazirani. Minimum multicolored subgraph problem in multiplex PCR primer
set selection and population haplotyping. In Proc. 6th ICCS ’06, volume
3992 of LNCS, pages 758-766. Springer, 2006.

J. Katreni¢ and I. Schiermeyer. Improved approximation bounds for the
minimum rainbow subgraph problem. Inform. Process. Lett., 111(3):110-114,
2011.

M. Koch, S. Matos Camacho, and I. Schiermeyer. Algorithmic approaches
for the minimum rainbow subgraph problem. ENDM, 38:765-770, 2011.

C. Komusiewicz and M. Sorge. Finding dense subgraphs of sparse graphs.
In Proc. 7th IPEC, volume 7535 of LNCS, pages 242-251. Springer, 2012.
S. Matos Camacho, I. Schiermeyer, and Z. Tuza. Approximation algorithms
for the minimum rainbow subgraph problem. Discrete Math., 310(20):
2666-2670, 2010.

A. Popa. Better lower and upper bounds for the minimum rainbow subgraph
problem. Theor. Comput. Sci., 543:1-8, 2014.

I. Schiermeyer. On the minimum rainbow subgraph number of a graph. Ars
Mathematica Contemporanea, 6(1), 2012.

D. P. Williamson and D. B. Shmoys. The Design of Approximation Algo-
rithms. Cambridge University Press, 2011.

	The Parameterized Complexity of the Rainbow Subgraph Problem

