
A New View on Rural Postman
Based on Eulerian Extension and Matching

Manuel Sorge?, René van Bevern??, Rolf Niedermeier, and Mathias Weller? ? ?

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin
{manuel.sorge, rene.vanbevern, rolf.niedermeier,

mathias.weller}@tu-berlin.de

Abstract We provide a new characterization of the NP-hard arc routing problem
Rural Postman in terms of a constrained variant of minimum-weight perfect
matching on bipartite graphs. To this end, we employ a parameterized equivalence
between Rural Postman and Eulerian Extension, a natural arc addition problem
in directed multigraphs. We indicate the NP-hardness of the introduced matching
problem. In particular, we use it to make some partial progress towards answering
the open question about the parameterized complexity of Rural Postman with
respect to the number of weakly connected components in the graph induced by
the required arcs. This is a more than thirty years open and long-time neglected
question with significant practical relevance.

1 Introduction

The Rural Postman (RP) problem with its special case, the Chinese Postman problem,
is a famous arc routing problem in combinatorial optimization. Given a directed, arc-
weighted graph G and a subset R of its arcs (called “required arcs”), the task is to find a
minimum-cost closed walk in G that visits all arcs of R. The manifold practical applica-
tions of RP include snow plowing, garbage collection, and mail delivery [1, 2, 3, 6, 7, 15].
Recently, it has been observed that RP is closely related (more precisely, “parameterized
equivalent”) to the arc addition problem Eulerian Extension (EE). Here, given a directed
and arc-weighted multigraph G, the task is to find a minimum-weight set of arcs to add
to G such that the resulting multigraph is Eulerian [10, 4]. RP and EE are NP-hard. In fact,
their mentioned parameterized equivalence means that many algorithmic and complexity-
theoretic results for one of them transfer to the other. In particular, this gives a new view
on RP, perhaps leading to novel approaches to attack its computational hardness. A
key issue in both problems is to determine the influence of the number c of connected
components1 on each problem’s computational complexity [4, 9, 11, 13, 14]. Indeed,
Frederickson [9] observed that RP (and, thus, EE) is polynomial-time solvable when c
is constant. However, this left open whether c influences the degree of the polynomial or

? Partially supported by the DFG, project AREG, NI 369/9 and project PABI, NI 369/7.
?? Supported by the DFG, project AREG, NI 369/9.

? ? ? Supported by the DFG, project DARE, NI 369/11.
1 More precisely, c refers to the number of weakly connected components in the input for EE and

the number of weakly connected components in the graph induced by the required arcs for RP.



whether RP can be solved in f (c) · nO(1) time for some exponential function f . In other
words, it remained open whether RP and EE are fixed-parameter tractable2 with respect
to the parameter c [4]. We remark that this parameter is presumably small in a number
of applications [4, 7, 9], strongly motivating to attack this seemingly hard open question.

Our Results. In this work, we contribute new insights concerning the seemingly hard
open question whether RP (and EE) is fixed-parameter tractable with respect to the
parameter “number of components”. To this end, our main contribution is a new charac-
terization of RP in terms of a constrained variant of minimum-weight perfect matching
on bipartite graphs. Referring to this problem as Conjoining BipartiteMatching (CBM),
we show its NP-hardness and a parameterized equivalence to RP and EE. Moreover,
we show that CBM is fixed-parameter tractable3 when restricted to bipartite graphs
where one partition set has maximum vertex degree two. This implies corresponding
fixed-parameter tractability results for relevant special cases of RP and EE which would
probably have been harder to formulate and to detect using the definitions of these
problems. Indeed, we hope that CBM might help to finally answer the puzzling open
question concerning the parameterized complexity of RP with respect to the number of
components. In this paper we consider decision problems. However, our results easily
transfer to the corresponding optimization problems.

For the sake of notational convenience and justified by the known parameterized equiv-
alence [4], most of our results and proofs refer to EE instead of RP. Due to space
constraints, most proofs are deferred to a full version of the paper.

2 Preliminaries and Preparations

Consider a directed multigraph G = (V, A), comprising the vertex set V and the arc
multiset A. For notational convenience, we define a component graph �G as a clique
whose vertices one-to-one correspond to the weakly connected components of G. Since
we never consider strongly connected components, we omit the adverb “weakly”. A
walk W in G is a sequence of arcs in G such that each arc ends in the same vertex as
the next arc starts in. We use V(W) and A(W) to refer to the set of vertices in which
arcs of W start or end, and the multiset of arcs of W, respectively. The first vertex in the
sequence is called the initial vertex of the walk and the last vertex in the sequence is
called the terminal vertex of the walk. A walk W in G such that A(W) is a submultiset
of the multiset A(G) is called a trail of G. A trail T in G such that every vertex in G
has at most two incident arcs in A(T ) is called a cycle if the initial and terminal vertices
of T are equal, and path otherwise. If G is clear from the context, we omit it. We use
balance(v) B indeg(v) − outdeg(v) to denote the balance of a vertex v in G and I+

G
and I−G to denote the set of all vertices v in G with balance(v) > 0 and balance(v) < 0,
respectively. A vertex v is balanced if balance(v) = 0.

2 See Section 2 and the literature [5, 8, 12] for more on parameterized complexity analysis.
3 The corresponding parameter “join set size” measures the instance’s distance from triviality

and translates to the parameter “number of components” in equivalent instances of EE and RP.



Our results are in the context of parameterized complexity [5, 8, 12]. A parame-
terized problem L ⊆ Σ∗ ×� is called fixed-parameter tractable (FPT) with respect to
a parameter k if (x, k) ∈ L is decidable in f (k) · |x|O(1) time, where f is a computable
function only depending on k.

We consider two types of parameterized reductions between problems: A polynomial-
parameter polynomial-time many-one reduction (≤PPP

m -reduction) from a parameterized
problem L to a parameterized problem L′ is a polynomial-time computable function g
such that (x, k) ∈ L ⇔ (x′, k′) ∈ L′, with (x′, k′) B g(x, k), and k′ ≤ p(k), where p is
a polynomial only depending on k. If such a reduction exists, we write L≤PPP

m L′. A
parameterized Turing reduction (≤FPT

T -reduction) from a parameterized problem L to a
parameterized problem L′ is an algorithm that decides (x, k) ∈ L in f (k) · |x|O(1) time,
where queries of the form (x′, g(k)) ∈ L′ are assumed to be decidable in O(1) time and
f , g are functions solely depending on k. If such a reduction exists, we write L≤FPT

T L′. If
L≤FPT

T L′ and L′ ≤FPT
T L, then we say that L and L′ are ≤FPT

T -equivalent. Note that every
≤PPP

m -reduction is a ≤FPT
T -reduction. Also, if L′ ∈ FPT and L≤FPT

T L′, then L ∈ FPT.
In this work, we consider the problem of making a given directed multigraph Eulerian

by adding arcs. A directed multigraph G is Eulerian if it is connected and each vertex
is balanced. An Eulerian extension E for G = (V, A) is a multiset over V × V such that
G′ = (V, A ∪ E) is Eulerian.

Eulerian Extension (EE)
Input: A directed multigraph G = (V, A), an integer ωmax, and a weight func-

tion ω : V × V → [0, ωmax] ∪ {∞}.
Question: Is there an Eulerian extension E of G whose weight is at most ωmax?

In the context of EE we speak of allowed arcs a ∈ V × V , if ω(a) < ∞.

2.1 Preprocessing Routines

A polynomial-time preprocessing for EE routine introduced by Dorn et al. [4] ensures
that the balance of every vertex is in {−1, 0, 1}. This simplifies the problem and helps in
constructions later on. Dorn et al. [4] showed that the corresponding transformation can
be computed in O(n(n + m)) time. In the following, we assume that all input instances of
EE have been transformed thusly, and hence, we assume that the following observation
holds.

Observation 1. Let v be a vertex in a pre-processed instance of EE. Then, balance(v) ∈
{−1, 0, 1}.

We use a second preprocessing routine to make further observations about trails in Eu-
lerian extensions. This preprocessing is a variant of the algorithm used by Dorn et al. [4]
to remove isolated vertices from the input graph. Basically, it replaces the weight of a
vertex pair by the weight of the “lightest” path in the graph (V,V × V) with respect to ω.
Note that the resulting weight function respects the triangle inequality. Dorn et al. [4]
showed that this transformation can be computed in O(n3) time. In the following, we
assume all input instances of EE to have gone through this transformation, and hence,
we assume that the following holds.



Observation 2. Let ω be a weight-function of a pre-processed instance of EE. Then, ω
respects the triangle inequality, that is, for each x, y, z, it holds that ω(x, z) ≤ ω(x, y) +

ω(y, z).

In the subsequent sections, we use this preprocessing in parameterized algorithms and
reductions. To this end, note that both transformations are parameter-preserving, that is,
they do not change the number of connected components.

The presented transformations lead to useful observations regarding trails in Eulerian
extensions. For instance, we often need the following fact.

Observation 3. For any Eulerian extension E of G, there is an Eulerian extension E′

of at most the same weight such that any path p and any cycle c in E′ does not visit a
connected component of G twice, except for the initial and terminal vertex of p and c.

2.2 Advice

Since Eulerian extensions have to balance every vertex, they contain paths starting in
vertices with positive balance and ending in vertices with negative balance. These paths
together with cycles have to connect all connected components of the input graph. In
order to reduce the complexity of the problem, we use advice as additional information on
the structure of optimal Eulerian extensions. Advice consists of hints which specify that
there must be a path or cycle in an Eulerian extension that visits connected components
in a distinct order. Hints however do not specify exactly which vertices these paths or
cycles visit. For an example of advice, see Figure 1a.

Formally, a hint for a directed multigraph G = (V, A) is an undirected path or cycle t
of length at least one in the component graph �G together with a flag determining
whether t is a cycle or a path.4 Depending on this flag, we call the hints cycle hints
and path hints, respectively. We say that a set of hints H is an advice for the graph G
if the hints are edge-disjoint.5 For a trail t in G, �G(t) is the trail in �G that is obtained
by making t undirected and, for every connected component C of G, substituting every
maximum length subtrail t′ of t with V(t′) ⊆ C by the vertex in �G corresponding to C.
We say that a path p in the graph (V,V × V) realizes a path hint h if �G(p) = h and the
initial vertex of p has positive balance and the terminal vertex has negative balance in G.
We say that a cycle c in the graph (V,V × V) realizes a cycle hint h if �G(c) = h. We say
that an Eulerian extension E heeds the advice H if it can be decomposed into a set of
paths and cycles that realize all hints in H.

A topic in this work is how having an advice helps in solving an instance of Eulerian
extension. In order to discuss this, we introduce the following version of EE.

Eulerian Extension with Advice (EEA)
Input: A directed multigraph G = (V, A), an integer ωmax, a weight function ω : V ×

V → [0, ωmax] ∪ {∞}, and advice H.
Question: Is there an Eulerian extension E of G that is of weight at most ωmax and

heeds the advice H?
4 The flag is necessary because a hint to a path in �G may correspond to a cycle in G.
5 Note that there is a difference between advice in our sense and the notion of advice in computa-

tional complexity theory. There, an advice applies to every instance of a specific length.



We will see that the hard part of computing an Eulerian extension that heeds a given
advice H is to choose initial and terminal vertices for path hints in H. In fact, it is possible
to compute optimal realizations for all cycle hints in any given advice in O(n3) time.

Observation 4 ([16]). Let (G, ωmax, ω,H) be an instance of EEA. In O(n3) time we can
compute an equivalent instance (G′, ωmax, ω,H′) such that H′ does not contain a cycle
hint. Furthermore, the number of components at most decreases.

In this regard we note that we can compute an optimal realization of a path hint for given
endpoints in the corresponding directed multigraph. This is possible in quadratic time,
mainly using Observation 2, forbidding arcs contained in one connected component, and
Dijkstra’s algorithm.

Observation 5. Let (G, ωmax, ω,H) be an instance of EE, let h ∈ H be a path hint
and let Ci,Ct be the connected components of G that correspond to the endpoints of h.
Furthermore, let (u, v) ∈ (Ci ×Ct) ∩ (I+

G × I−G). Then, we can compute a minimum-weight
realization of h with initial vertex u and terminal vertex v in O(n2) time.

Since we want to derive Eulerian extensions from an advice and every Eulerian extension
for a graph connects all of the graphs connected components, we are mainly interested
in “connecting” advice. We say that an advice for a directed multigraph G is connecting,
if its hints connect all vertices in �G. Furthermore, if there is no connecting advice H′

with H′ ⊂ H, then H is called minimal connecting advice. We consider the following
restricted version of EEA that allows only minimal connecting advice (note that, by
Observation 4, we can assume the given advice to be cycle-free).

Eulerian Extension with Cycle-freeMinimal Connecting Advice (EE∅CA)
Input: A directed multigraph G = (V, A), an integer ωmax, a weight function ω : V ×

V → [0, ωmax] ∪ {∞}, and minimal connecting cycle-free advice H.
Question: Is there an Eulerian extension E of G with weight at most ωmax and

heeding the advice H?

We can show that each minimal connecting cycle-free advice can be obtained from a
forest in �G. Enumerating these forests allows us to generate all such advices for a given
graph G with c connected components in f (c) · |G|O(1)) time, where f is some function
only depending on c. Deferring the presentation of details to a long version of this work,
we state that EE is parameterized Turing reducible to EE∅CA [16].

Lemma 1. EE is ≤FPT
T -reducible to EE∅CA in 16c log(c)|G|O(1) time.

3 Eulerian Extension and Conjoining Bipartite Matching

This section shows that Rural Postman (RP) is parameterized equivalent to a matching
problem. By the parameterized equivalence of RP and Eulerian Extension (EE) given
by Dorn et al. [4], we may concentrate on the equivalence of EE and matching instead.

First we introduce a variant of perfect bipartite matching. Let G be a bipartite
graph, M be a matching of the vertices in G, and let P be a vertex partition with the
cells C1, . . . ,Ck. We call an unordered pair {i, j} of integers 1 ≤ i < j ≤ k a join and



a set J of such pairs a join set with respect to G and P. We say that a join {i, j} ∈ J is
satisfied by the matching M of G if there is at least one edge e ∈ M with e ∩ Ci , ∅
and e ∩ C j , ∅. We say that a matching M of G is J-conjoining with respect to a join
set J if all joins in J are satisfied by M. If the join set is clear from the context, we simply
say that M is conjoining.

Conjoining BipartiteMatching (CBM)
Input: A bipartite graph G = (V1 ] V2, E), an integer ωmax, a weight func-

tion ω : E → [0, ωmax], a partition P = {C1, . . . ,Ck} of the vertices in G, and a
join set J.

Question: Is there a matching M of the vertices of G such that M is perfect, M is
conjoining and M has weight at most ωmax?

CBM can be interpreted as a job assignment problem with additional constraints: an
assignment of workers to tasks is sought such that each worker is busy and each task is
being processed. Furthermore, every worker must be qualified for his or her assigned
task. Both the workers and the tasks are grouped and the additional constraints are of
the form “At least one worker from group A must be assigned a task in group B”. An
assignment that satisfies such additional constraints may be favorable in settings where
the workers are assigned to projects and the projects demand at least one worker with
additional qualifications.

Over the course of the following subsections, we prove the following theorem.

Theorem 1. ConjoiningBipartiteMatching and Eulerian Extension are≤FPT
T -equivalent

with respect to the parameters “join set size” and “number of connected components in
the input graph.”

The proof of Theorem 1 consists of four reductions, one of which is a parameterized
Turing reduction. The other three reductions are polynomial-time polynomial-parameter
many-one reductions.

It is easy to see that the equivalence of EE and RP given by Dorn et al. [4] also holds
for the parameters “number of components” and “number of components in the graph
induced by the required arcs.” Thus, we obtain the following from Theorem 1.

Theorem 2. Conjoining BipartiteMatching and Rural Postman are ≤FPT
T -equivalent

with respect to the parameters “number of components in the graph induced by the
required arcs” and “join set size.”

3.1 From Eulerian Extension to Matching

In this section we sketch a reduction from EE∅CA to CBM. By Lemma 1 this reduction
leads to the following theorem.

Theorem 3. Eulerian Extension is ≤PPP
m -reducible to Conjoining BipartiteMatching

with respect to the parameters “number of components” and “join set size.”

Outline of the Reduction. The basic idea of our reduction is to use vertices of positive
balance and negative balance in an instance of EE∅CA as the two cells of the graph
bipartition in a designated instance of CBM. Edges between vertices in the new instances



1

2

3 4 5

6

7

8

(a) EE∅CA instance

1

2 5

6

7

81 • 7

1 ◦ 7

1 • 5

1 ◦ 5

8 • 2

8 ◦ 2

6 • 2

6 ◦ 2

(b) Long-hint gadget in CBM instance

Figure 1: Example of the long-hint gadget. In (a) an EE∅A-instance is shown, consisting
of a graph with three connected components and an advice that contains a single path
hint h (dashed lines). In (b) a part of an instance of CBM is shown, comprising the cells
that correspond to the initial and terminal vertices of h and a gadget to model h. The gad-
get consists of new vertices put into a new cell which is connected by two joins (dashed
and dotted lines) to the cells corresponding to the initial and terminal vertices of h.

represent shortest paths between these vertices that consist of allowed extension arcs in
the original instance. Every connected component in the original instance is represented
by a cell in the partition in the matching instance and hints are basically modeled by joins.

Description of the Reduction. For the description of the reduction, we need the following
definition.

Definition 1. Let C1, . . . ,Cc be the connected components of a directed multigraph G,
and let H be a cycle-free advice for G. For every h ∈ H define connect(h) B {i, j},
where Ci,C j are the components corresponding to the initial and terminal vertices of h.

First, consider an EE∅CA-instance (G, ωmax, ω,H) such that H is a cycle-free minimal
connecting advice that contains only hints of length one. We will deal with longer hints
later. We create an instance ICBM of CBM by first defining B0 = (I+

G]I−G, E0) as a bipartite
graph. Here, the set E0 consists of all edges {u, v} such that u ∈ I+

G, v ∈ I−G, and ω(u, v) <
∞.6 Second, we derive a vertex partition {V ′1, . . . ,V

′
c} of B0 by intersecting the connected

components of G with (I+
G]I−G). The vertex partition obviously models the connected com-

ponents in the input graph, and the need for connecting them according to the advice H is
modeled by an appropriate join-set J0, defined as {connect(h) : h ∈ H}. Finally, we make
sure that matchings also correspond to Eulerian extensions weight-wise, by defining the
weight function ω′({u, v}) for every u ∈ I+

G, v ∈ I−G as ω(u, v) with ω′max = ωmax.
By Observation 3 we may assume that every hint in H of length one is realized by a

single arc. Since the advice connects all connected components, by the same observation,
we may assume that all other trails in a valid Eulerian extension have length one. Finally,
by Observation 1, we may assume that every vertex has at most one incident incoming
or outgoing arc in the extension and, hence, we get an intuitive correspondence between
conjoining matchings and Eulerian extensions.

To model hints of length at least two, we utilize gadgets similar to the one shown in
Figure 1. The gadget comprises two vertices (u◦v and u•v) for every pair (u, v) of vertices
with one vertex in the component the hint starts and one in the component the hint ends.
The vertices u ◦ v and u • v are adjacent and each of these two vertices is connected with

6 This serves the purpose of modeling the structure of “allowed” arcs in the matching instance.



one vertex of the pair it represents. The edge {u• v, u} is weighted with the cost it takes to
connect u, v with a path that realizes h. This cost is computed using Observation 5. The
edges {u • v, u ◦ v} and {u ◦ v, v} have weight 0. Intuitively these three edges in the gadget
represent one concrete realization of h. If u ◦ v and u • v are matched, this means that this
specific path does not occur in a designated Eulerian extension. However, by adding the
vertices of the gadget as cell to the vertex partition and by extending the join set to the
gadget, we enforce that there is at least one outgoing edge that is matched. If a perfect
matching matches u ◦ v with u, then it also matches u • v with v and vice versa. This
introduces an edge to the matching that has weight corresponding to a path that realizes h.

3.2 From Matching to Eulerian Extension with Advice

We reduce Conjoining BipartiteMatching to Eulerian Extension with Advice:

Theorem 4. Conjoining BipartiteMatching is ≤PPP
m -reducible to Eulerian Extension

with Advice with respect to the parameters “join set size” and “connected components
in the input graph”.

To reduce CBM to EEA we first observe that for every instance of CBM there is an
equivalent instance such that every cell in the input vertex partition contains equal
numbers of vertices from both cells of the graph bipartition. This observation enables us
to model cells as connected components and vertices in the bipartite graph as unbalanced
vertices in the designated instance of EEA.

Lemma 2. For every instance of CBM there is an equivalent instance comprising the
bipartite graph G = (V1 ]V2, E), the vertex partition P = {C1, . . . ,Ck} and the join set J,
such that

(i) for every 1 ≤ i ≤ k it holds that |V1 ∩Ci| = |V2 ∩Ci|, and
(ii) the graph (P, {{Ci,C j} : {i, j} ∈ J}) is connected.

This equivalent instance contains at most one cell more than the original instance.

Description of the Reduction. To reduce instances of CBM that conform to Lemma 2 to
instances of EEA we use the simple idea of modeling every cell as connected component,
vertices in V1 as vertices with balance −1, vertices in V2 as vertices with balance 1, and
joins as hints.

Construction 1. Let the bipartite graph B = (V1 ] V2, E), the weight function ω : E →
[0, ωmax], the vertex partition P = {C1, . . . ,Ck} and the join set J constitute an in-
stance ICBM of CBM that corresponds to Lemma 2. Let v1

1, v
2
1, . . . , v

1
n/2, v

2
n/2 be a sequence

of all vertices chosen alternatingly from V1 and V2. Let the graph G = (V, A) B (V1 ∪

V2, A1 ∪ A2) where the arc sets A1 and A2 are as follows: A1 B {(v1
i , v

2
i ) : 1 ≤ i ≤ n/2}.

For every 1 ≤ j ≤ k let C j = {v1, . . . , v jk }, and let

A j
2 B {(vi, vi+1) : 1 ≤ i ≤ jk − 1} ∪ {(v jk , v1}



and define A2 B
⋃k

j=1 A j
2. Define a new weight function ω′ for every pair of ver-

tices (u, v) ∈ V × V by

ω′(u, v) B

ω({u, v}), u ∈ V2, v ∈ V1, {u, v} ∈ E
∞, otherwise.

Finally, derive an advice H for G by adding a length-one hint h to H for every join {o, p} ∈
J such that h consists of the edge that connects vertices in �G that correspond to the
connected components Co, and Cp. The graph G, the weight function ω′, the maximum
weight ωmax and the advice H constitute an instance of EEA.

Theorem 4 follows, since Construction 1 is a ≤PPP
m -reduction.

3.3 Removing Advice

For Theorem 1, it remains to show, that the advice in an instance of EEA created by
Construction 1 can be removed. That is, it remains to show the following theorem.

Theorem 5. Eulerian Extension with Advice is ≤PPP
m -reducible to Eulerian Extension

with respect to the parameter “number of components in the input graph.”

The basic ideas for proving Theorem 5 are as follows. First, we remove every cycle-hint
using Observation 4. We use the fact that every Eulerian extension has to connect all
connected components of the input graph. Thus, for each hint h, we introduce a new
connected component Ch. Let the components Cs,Ct correspond to the endpoints of
hint h. To enforce that hint h is realized, we use the weight function to allow an arc from
every vertex with balance 1 in Cs to a number of distinct vertices in Ch. This number
is the number of vertices with balance −1 in Ct. That is, for every pair of unbalanced
vertices in Cs ×Ct, we have an associated vertex in Ch. Then, for every inner vertex v
on h, we copy Ch and connect it to the component corresponding to v. From one copy
to another, using the weight function, we allow only arcs that start and end in vertices
corresponding to the same pair of unbalanced vertices in Cs×Ct. This enforces that every
hint is realized and connects every component it visits. Using the weight function and
Observation 5 we can ensure that the arcs corresponding to a realization of a hint have
the weight of an optimal realization with the same endpoints. Using this construction,
Theorem 5 can be proven which concludes the proof of Theorem 1.

4 Conjoining Bipartite Matching: Properties and Special Cases

This section investigates the properties of CBM introduced in Section 3. As discussed
before, CBM might eventually help us derive a fixed-parameter algorithm for EE with
respect to the parameter number of connected components. Section 4.1 first shows that
also CBM is NP-complete. Section 4.2 then establishes tractability of the problem on
restricted graph classes and translates this tractability result into the world of EE and RP.



4.1 NP-Hardness

NP-Hardness for Conjoining Bipartite Matching (CBM) does not follow from the
parameterized equivalence to Eulerian Extension (EE) we gave in Section 3, since the
reduction from EE we gave is a parameterized Turing reduction. To show that CBM
is NP-hard, we polynomial-time many-one reduce from the well-known 3SAT, where
a Boolean formula φ in 3-conjunctive normal form (3-CNF) is given and it is asked
whether there is an assignment to the variables of φ that satisfies φ. Herein, a formula φ
in 3-CNF is a conjunction of disjunctions of three literals each, where each literal is
either x or ¬x and x is a variable of φ. In the following, we represent each clause as
three-element-set γ ⊆ X×{+,−}, where (x,+) ∈ γ means that x is contained in the clause
represented by γ and (x,−) ∈ γ means that ¬x is contained in the clause represented
by γ.

Construction 2. Let φ be a Boolean formula in 3-CNF with the variables X B {x1, . . . , xn}

and the clauses γ1, . . . , γm ⊆ X × {+,−}. We translate φ into an instance of CBM that is
a yes-instance if and only if φ is satisfiable. To this end, for every variable xi, introduce a
cycle with 4m edges consisting of the vertex set Vi B {v

j
i : 1 ≤ j ≤ 4m} and the edge

set Ei B {ek
i B {v

k
i , v

k+1
i } ⊆ Vi} ∪ {e4m

i B {v1
i , v

4m
i }}. Let G B (

⋃n
i=1 Vi,

⋃n
i=1 Ei), and

let ω(e) B 0, e ∈ Ei for any 1 ≤ i ≤ n, and define ωmax B 1. To construct an instance of
CBM, it remains to find a suitable partition of the vertices of G and a join set.

Inductively define the vertex partition Pm of V(G) and the join set Jm as follows:
Let J0 = ∅, and let P0 B ∅. For every clause γ j introduce the cell

C j B {v
4 j−1
i : (xi,+) ∈ γ j ∨ (xi,−) ∈ γ j} ∪ {v

4 j−2
i : (xi,+) ∈ γ j} ∪ {v

4 j
i : (xi,−) ∈ γ j}.

Define P j B P j−1 ∪ {C j} and J j B J j−1 ∪ {{0, j}}.
Finally, define C0 B V(G) \ (

⋃m
j=1 C j). The graph G, the weight function ω, the

vertex partition Pm ∪ {C0} and the join set Jm constitute an instance of CBM.

Using this construction, we can prove the following theorem.

Theorem 6. CBM is NP-complete, even in the unweighted case and when the input
graph G = (V ]W, E) has maximum degree two, and for every cell Ci in the given vertex
partition of G it holds that |Ci ∩ V | = |Ci ∩W |.

Proof. CBM is contained in NP, because a perfect conjoining matching of weight at
most ωmax is a certificate for a yes-instance.

We prove that Construction 2 is a polynomial-time many-one reduction from 3SAT
to CBM. Notice that in instances created by Construction 2 any matching has weight
lower than ωmax and, thus, the soundness of the reduction implies that CBM is hard even
without the additional weight constraint. Also, since the cells in the instances of CBM
are disjoint unions of edges, every cell in the partition Pm contains the same number of
vertices from each cell of the graph bipartition.

It is easy to check that Construction 2 is polynomial-time computable. For the
correctness we first need the following definition: For every variable xi ∈ X let

Mtrue
i B {ek

i ∈ Ei : k odd} and

Mfalse
i B Ei \ Mtrue

i = {ek
i ∈ Ei : k even}.



Observe that all perfect matchings in G are of the form
⋃n

i=1 Mν(xi)
i , where ν is an

assignment of truth values to variables in X. We show that the matching
⋃n

i=1 Mν(xi)
i is a

conjoining matching for G with respect to the join set Jm if and only if ν is satisfies φ.
For this, it suffices to show that for every variable xi ∈ X it holds that

{ j : (xi,+) ∈ γ j} = { j : Mtrue
i satisfies the join {0, j}}, and (1)

{ j : (xi,−) ∈ γ j} = { j : Mfalse
i satisfies the join {0, j}}. (2)

We only show that (1) holds; (2) can be proven analogously. Assume that (xi,+) ∈ γ j.
By Construction 2 v4 j−2

i ∈ C j, v
4 j−3
i ∈ C0 and thus, since

{v4 j−2
i , v4 j−3

i } = e4 j−3 ∈ Mtrue
i ,

the matching Mtrue
i satisfies the join {0, j}. Now assume that (xi,+) < γ j, that is, either

(1) (xi,±) < γ j or (2) (xi,−) ∈ γ j. If (xi,±) < γ j, then Vi and C j are disjoint and, thus, no
matching in G[Vi] can satisfy the join {0, j}. If (xi,−) ∈ γ j, then the only edges in Ei that
can satisfy the join {0, j} are e4 j−2

i and e4 j
i . Both edges are not in Mtrue

i and, thus, this
matching cannot satisfy the join {0, j}. ut

4.2 Tractability on Restricted Graph Classes

This section presents data reduction rules and employs them to sketch an algorithm for
CBM on a restricted graph class, leading to the following theorem:

Theorem 7. Conjoining Bipartite Matching can be solved in O(2 j( j+1)n + n3) time,
where j is the size of the join set, provided that in the bipartite input graph G =

(V1 ] V2, E) each vertex in V1 has maximum degree two.

In this section, let (G, ωmax, ω, P = {C1, . . . ,Cc}, J) be an instance of CBM, where in G
is as in Theorem 7. The following lemma plays a central role in the proof of Theorem 7.
It implies that, in a yes-instance, every component of G consists of an even-length cycle
with a collection of pairwise vertex-disjoint paths incident to it.

Lemma 3. If G has a perfect matching, then every connected component of G contains
at most one cycle as subgraph.

Proof. We show that if G contains a connected component that contains two cycles c1, c2
as subgraphs, then G does not have a perfect matching. First assume that c1, c2 are
vertex-disjoint. Then, there is a path p from a vertex v ∈ V(c1) to a vertex w ∈ V(c2)
such that p is vertex-disjoint from c1 and c2 except for v,w. It is clear that both v,w ∈ V2
because they have degree three. Consider the vertices Vcp

1 B (V(c1)∪V(p)∪V(c2))∩V1
and the set Vcp

2 B (V(c1) ∪ V(p) ∪ V(c2)) ∩ V2. The set Vcp
2 is the set of neighbors of

vertices in Vcp
1 , because they have degree two and thus have neighbors only within p, c1,

and c2. It is |Vcp
1 | = (|E(c1)| + |E(p)| + |E(c2)|)/2 since neither of these paths and cycles

overlap in a vertex in V1. However, it is |Vcp
2 | = |V

cp
1 | − 1 because c1 and p overlap in v

and c2 and p overlap in w. This is a violation of Hall’s condition and thus G does not
have a perfect matching.



The case where c1 and c2 share vertices can be proven analogously. (Observe that
then there is a subpath of c2 that is vertex-disjoint from c1 and contains an even number
of edges.) ut

We now present four polynomial-time executable data reduction rules for CBM. The
correctness of the first three rules is easy to verify, while the correctness of the fourth
one is more technical and omitted. We note that all rules can be applied exhaustively in
O(n3) time.

Reduction Rule 1 removes paths incident to the cycles of a graph G in a yes-instance.
As a side-result, Reduction Rule 1 solves CBM in linear time on forests.

Reduction Rule 1. If there is an edge {v,w} ∈ E(G) such that deg(v) = 1, then re-
move both v and w from G, and remove all joins {i, j} from J, with v ∈ Ci,w ∈ C j.
Decrease ωmax by ω({v,w}).

If exhaustively applying Reduction Rule 1 to G does not transform G such that each
connected component is a cycle, which is checkable in linear time, then, by Lemma 3,
G does not have a perfect matching and we can return “NO”. Hence, in the following,
assume that each connected component of G is a cycle. Reduction Rule 2 now deletes
connected components that cannot satisfy joins.

Reduction Rule 2. If there is a connected component D of G such that it contains no
edge that could satisfy any join in J, then compute a minimum-weight perfect matching M
in G[D], remove D from G and decrease ωmax by ω(M).

After exhaustively applying Reduction Rule 2, we may assume that each connected
component of G contains an edge that could satisfy a join. We next present a data
reduction rule that removes joins that are always satisfied. To this end, we need the
following definition.

Definition 2. For each connected component D (that is, each cycle) in G, denote
by M1(D) a minimum-weight perfect matching of D with respect to ω and denote
by M2(D) B E(D) \ M1(D) the other perfect matching of D.7 Furthermore, denote

σ1(D) B { j ∈ J : ∃e ∈ M1(D) : e satisfies j},

σ2(D) B { j ∈ J : ∃e ∈ M2(D) : e satisfies j},

and the signature σ(D) of D as {σ1(D), σ2(D)}.

Reduction Rule 3. Let D be a connected component of G. If there is a join j ∈ σ1(D)∩
σ2(D), then remove j from J.

A final data reduction rule removes connected components that satisfy the same joins.

Reduction Rule 4. Let S = {D1, . . . ,D j} be a maximal set of connected components
of G such that σ(D1) = . . . = σ(D j) and j ≥ 2. Let M∗1 =

⋃ j
k=1 M1(Dk), let Dl ∈ S such

that ω(M2(Dl)) − ω(M1(Dl)) is minimum, and let M∼1 = M∗1 \ M1(Dl).

7 Note that in bipartite graphs every cycle is of even length.



(i) If the matching M∗1 is conjoining for the join set σ1(D1) ∪ σ2(D1), then remove
each component in S from G, remove each join in σ1(D1) ∪ σ2(D1) from the join
set J, and reduce ωmax by ω(M∗1).

(ii) If the matching M∗1 is not conjoining for the join set σ1(D1) ∪σ2(D1), then remove
each component in S \ {Dl} from G, remove any join in σ1(D1) from the join set J,
and reduce ωmax by ω(M∼1 ).

In either case, update the partition P accordingly.

Observation 6. If Reduction Rule 4 is not applicable to G, then G contains at most one
connected component for each of the 2|J|+1 possible signatures.

Now, Theorem 7 follows: Exploiting Observation 6, a search-tree algorithm solving
CBM can in O(n) time choose a join j ∈ J and choose one of the at most 2|J|+1 connected
components of the graph that can satisfy j and match the component accordingly. Then,
the algorithm can recurse on how the remaining |J| − 1 joins are satisfied.

Analyzing the pre-images that lead to tractable instances of CBM under the reductions
we gave in Section 3, Theorem 7 can be translated to a tractability result for EE. A
similar tractability result can also be shown for Rural Postman. Due to its length, we
only state it for EE here.

Corollary 1. Let the graph G and the weight function ω constitute an instance IEE of
EE. Let c be the number of connected components in G.

(i) If every path or cycle in the set of allowed arcs w.r.t. ω has length at most one,
(ii) if G contains only vertices with balance between −1 and 1,

(iii) if every vertex in I+
G (every vertex in I−G) has only outgoing allowed arcs (incoming

allowed arcs), and
(iv) if in every connected component C of G, either all vertices in I+

G ∩C or in I−G ∩C
have at most two incident allowed arcs,

then it is decidable in O(2c(c+log(2c4))(n4 + m)) time whether IEE is a yes-instance.

5 Conclusion

Clearly, the most important remaining open question is to determine whether Rural Post-
man is fixed-parameter tractable with respect to the number of connected components of
the graph induced by the required arcs. This question also extends to the presumably
harder undirected case. The newly introduced Conjoining BipartiteMatching (CBM)
problem might also be useful in spotting new, computationally feasible special cases of
Rural Postman and Eulerian Extension. The development of polynomial-time approxi-
mation algorithms for CBM or the investigation of other (structural) parameterizations for
CBM seem worthwhile challenges as well. Finally, we remark that previous work [10, 4]
also left open a number of interesting open problems referring to variants of Eulerian
Extension. Due to the practical relevance of the considered problems, our work is also
meant to further stimulate more research on these challenging combinatorial problems.



References

[1] A. A. Assad and B. L. Golden. Arc routing methods and applications. In Network
Routing, volume 8 of Handbooks in Operations Research and Management Science,
pages 375–483. Elsevier B. V., 1995.

[2] E. Benavent, A. Corberán, E. Piñana, I. Plana, and J. M. Sanchis. New heuristic
algorithms for the windy rural postman problem. Comput. Oper. Res., 32(12):
3111–3128, 2005.

[3] E. A. Cabral, M. Gendreau, G. Ghiani, and G. Laporte. Solving the hierarchical
chinese postman problem as a rural postman problem. European J. Oper. Res., 155
(1):44–50, 2004.

[4] F. Dorn, H. Moser, R. Niedermeier, and M. Weller. Efficient algorithms for Eulerian
extension. In Proc. 36th WG, volume 6410 of LNCS, pages 100–111. Springer,
2010.

[5] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
[6] M. Dror. Arc Routing: Theory, Solutions, and Applications. Kluwer Academic

Publishers, 2000.
[7] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part II: The rural

postman problem. Oper. Res., 43(3):399–414, 1995.
[8] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
[9] G. N. Frederickson. Approximation algorithms for some postman problems.

J. ACM, 26(3):538–554, 1979.
[10] W. Höhn, T. Jacobs, and N. Megow. On Eulerian extensions and their application

to no-wait flowshop scheduling. J. Sched, 2011. To appear.
[11] J. K. Lenstra and A. H. G. R. Kan. On general routing problems. Networks, 6(3):

273–280, 1976.
[12] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University

Press, 2006.
[13] C. S. Orloff. A fundamental problem in vehicle routing. Networks, 4(1):35–64,

1974.
[14] C. S. Orloff. On general routing problems: Comments. Networks, 6(3):281–284,

1976.
[15] N. Perrier, A. Langevin, and J. F. Campbell. A survey of models and algorithms

for winter road maintenance. Part IV: Vehicle routing and fleet sizing for plowing
and snow disposal. Comput. Oper. Res., 34(1):258–294, 2007.

[16] M. Sorge. On making directed graphs Eulerian. Diplomarbeit, Institut für
Informatik, Friedrich-Schiller-Universität Jena, 2011. Available electronically.
arXiv:1101.4283 [cs.DM].


