
A New View on Rural Postman
Based on Eulerian Extension and MatchingI

Manuel Sorge1, René van Bevern2, Rolf Niedermeier, Mathias Weller3

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin

Abstract

We provide a new characterization of the NP-hard arc routing problem Rural Postman
in terms of a constrained variant of minimum-weight perfect matching on bipartite
graphs. To this end, we employ a parameterized equivalence between Rural Postman
and Eulerian Extension, a natural arc addition problem in directed multigraphs. We
indicate the NP-hardness of the introduced matching problem. In particular, we use the
matching problem to make partial progress towards answering the open question about
the parameterized complexity of Rural Postman with respect to the parameter “number
of weakly connected components in the graph induced by the required arcs”. This is
a more than thirty years open and long-neglected question with significant practical
relevance.

Keywords: Arc Routing, Arc Addition, Chinese Postman, Parameterized Complexity

1. Introduction

The Rural Postman (RP) problem [13, 28] with its special case, the Chinese Post-
man problem [26], is a famous arc routing problem in combinatorial optimization. Given
a directed, arc-weighted graph G and a subset R of its arcs (called “required arcs”), the
task is to find a minimum-cost closed walk in G that visits all arcs of R. The practical
applications of RP include snow plowing, garbage collection, and mail delivery [1, 3,
5, 12, 14, 30]. Recently, it has been observed that RP is closely related (more precisely,
“parameterized equivalent”) to the arc addition problem Eulerian Extension (EE) [10].

IThis work is based on the Diploma thesis of one of the authors [33]. A preliminary version of this work
has been presented at the 22nd International Workshop on Combinatorial Algorithms (IWOCA ’11), Victoria,
Canada, June 2011 [35]. We also give full versions of some results which have been presented at the 37th
International Workshop on Graph-Theoretic Concepts in Computer Science (WG ’11), Teplá Monastery,
Czech Republic, June 2011 [34].

Email addresses: manuel.sorge@tu-berlin.de (Manuel Sorge), rene.vanbevern@tu-berlin.de
(René van Bevern), rolf.niedermeier@tu-berlin.de (Rolf Niedermeier),
mathias.weller@tu-berlin.de (Mathias Weller)

1Partially supported by the DFG, project AREG, NI 369/9 and project PABI, NI 369/7.
2Supported by the DFG, project AREG, NI 369/9.
3Supported by the DFG, project DARE, NI 369/11.

Preprint submitted to Elsevier April 3, 2012

In EE, a directed multigraph G and a function assigning a weight value to each
potential arc on the vertices of G is given. The task is to find a minimum-weight set
of arcs to add to G such that the resulting multigraph is Eulerian. RP and EE are
NP-hard [22, 23]. In fact, their mentioned parameterized equivalence means that many
algorithmic and complexity-theoretic results for one of them transfer to the other. In
particular, this gives a new view on RP, perhaps leading to novel approaches to attack
its computational hardness.

A key issue in both problems is to determine the influence of the number c of
connected components on each problem’s computational complexity [10, 17, 18, 23, 29].
More precisely, c refers to the number of weakly connected components in the input
graph for EE and the number of weakly connected components in the graph induced by
the required arcs for RP. If c = 1, then RP is efficiently solvable in polynomial-time [10].
Indeed, Frederickson [17, 18] observed that, generally, RP is polynomial-time solvable
when c is constant. However, c influences the degree of the polynomial in the running
time of Frederickson’s algorithm. To date, it is open whether this is unavoidable4 or
whether RP can be solved in f (c) · nO(1) time for some function f . In other words,
it remains open whether RP (and EE) is fixed-parameter tractable with respect to the
parameter c [10]. See Section 2 and the literature [11, 15, 27] for more on parameterized
complexity analysis. We remark that the parameter c is presumably small in a number of
applications [10, 17, 18]. This motivates addressing this seemingly hard open question.

Related Work. The RP problem and its various variants have received much attention in
the past. Subsequent to RP’s introduction [13, 28] it has been shown NP-complete [23].
Heuristics and approximation algorithms have been presented [3, 17, 18, 20, 32] as well
as exact exponential-time algorithms based on integer linear programs [7, 8, 19, 25].
See also overview articles by Eiselt et al. [14], by Assad and Golden [1] and the book
edited by Dror [12]. There is also a number of papers that evaluate algorithms for
RP in practical settings [5, 31]. However, we are not aware of studies in the realm of
parameterized complexity except in the context of Eulerian extensions.

Höhn et al. [22] recently introduced a variant of EE in the context of scheduling and
proved it to be NP-complete. EE has been shown to be polynomial-time solvable in
some special cases [4, 10, 22, 24]. Dorn et al. [10] also proved that EE is fixed-parameter
tractable with respect to the parameter “number of arcs in the sought Eulerian extension”.
Note that this parameter is an upper bound for c, however, it is reasonable to assume
that c is much smaller in practice. Also, the parameterized complexity of a number
of vertex and edge deletion problems related to Eulerian graphs has been considered
recently [6, 9, 16].

Our Results. In this work, we contribute new insights concerning the seemingly hard
open question whether RP (and EE) is fixed-parameter tractable with respect to the
parameter “number c of components”. To this end, our main contribution is a new
characterization of RP in terms of a variant of minimum-weight perfect matching
on (undirected) bipartite graphs: Conjoining Bipartite Matching (CBM). Here, in

4Under reasonable complexity-theoretic assumptions.

2

addition to searching a matching that matches every vertex and that is of weight at
most some given maximum, further constraints are given: The vertices in the input
graph are grouped and the additional constraints are of the form “between vertex
group A and vertex group B, there must be at least one edge in the matching”. A more
formal definition is given in Section 4. We show that EE and CBM are parameterized
equivalent with respect to the parameters “number of components” for EE and “number
of additional constraints” for CBM.

To prove the equivalence of EE and CBM, we use a parameterized Turing reduction;
thus, we have to separately show that CBM is still NP-hard under classical many-one
reductions. As it turns out, this is the case even when the input graph has maximum
degree two. We address the open question of whether EE is fixed-parameter tractable
with respect to the parameter “number of weakly connected components”: We obtain that
CBM is fixed-parameter tractable with respect to the parameter “number of additional
constraints” when restricted to bipartite graphs where one partition set has maximum
vertex degree two. This implies corresponding fixed-parameter tractability results for
relevant special cases of RP and EE which would perhaps have been harder to formulate
and to detect using the original definitions of these problems. Indeed, we hope that CBM
might help to finally answer the puzzling open question concerning the parameterized
complexity of RP with respect to the number c of components.

As a side result, we also obtain a fixed-parameter algorithm for EE from one of the
reductions we give. It implies that EE is fixed-parameter tractable with respect to the
parameters c and “the sum b of positive balances of vertices in the input”. Together,
these parameters measure the problem’s distance from triviality [21].

In this paper, we focus on decision problems. However, our results easily transfer
to the corresponding optimization problems. Note that, for the sake of notational
convenience and justified by the known parameterized equivalence [10], most of our
results and proofs refer to EE instead of RP.

Structure of the Paper. This work is organized as follows. In Section 2, we provide
some notation, preliminary observations and useful results. Next, the parameterized
equivalence of RP and CBM is proven in two steps. First, in Section 3, variants of
EE are introduced and reductions are given that are used as intermediate steps for
the reductions that yield the equivalence. This also yields the above-mentioned fixed-
parameter algorithm for EE with respect to the parameters b and c. Second, in Section 4,
it is shown that CBM can be reduced to one of the variants of EE and another variant
of EE can be reduced to CBM. This then concludes the proof of equivalence of CBM,
EE, and, thus, RP. Next, in Section 5, we take a closer look at CBM. In particular, we
show the fixed-parameter tractability for the mentioned special case. See Figure 1 for an
overview of the reductions given in the paper. We conclude in Section 6 with directions
for future research.

2. Preliminaries and Preparations

In this section, we first define our notation, then recapitulate preprocessing routines
for Eulerian Extension that give useful restrictions on the instances we have to consider.

3

EE

EEA

EE∅CA

CBM

3SAT
pT

pt-pp-m

pt-pp-m

pt-pp-m
pt-m

Figure 1: Schematic overview on the reductions given in this work. The label “pT” indi-
cates a parameterized Turing reduction, the label “pt-pp-m” indicates a polynomial-time
polynomial-parameter many-one reduction, and the label “pt-m” indicates a classical
polynomial-time many-one reduction. EE∅CA and EEA are variants of EE which
we use as intermediate problems for proving the equivalence of EE and CBM. The
reductions from and to EE are covered in Section 3 (Theorem 3.1 and Theorem 3.2).
The reductions between variants of EE and CBM are given in Section 4 (Theorem 4.1
and Theorem 4.2). NP-hardness of CBM is proven in Section 5 via a reduction from
3SAT (Theorem 5.1).

Finally, using the preprocessing routines, we prove a theorem about the structure of
Eulerian extensions of minimum weight.

2.1. Notation and Problem Definition

We mainly consider directed multigraphs and we follow the notation of Bang-Jensen
and Gutin [2]. For a directed multigraph G = (V, A), we use V(G) and A(G) to denote the
set of vertices and the multiset of arcs, respectively. For undirected graphs H = (V, E),
we instead use E(H) to refer to the set of edges. Where it is appropriate, we use n to
refer to |V(G)| and m to refer to |A(G)| or |E(G)|, respectively, for a given graph G. For
a given graph G = (V, A) and an arc set B, we sometimes denote the graph (V, A ∪ B)
by G + B. The underlying undirected multigraph of a directed multigraph G is the graph
obtained by removing the direction of each arc. Two vertices of a directed multigraph G
are weakly connected if they are connected in the underlying undirected multigraph
of G. A maximal subset of pairwise weakly connected vertices of G is called a weakly
connected component. Since we never consider strongly connected components, we
omit the adverb “weakly”.

A walk w in the multigraph G is a sequence of arcs in G such that each arc ends in
the same vertex as the next arc starts in. We sometimes abuse notation and use w to
refer to the arc-induced graph instead, that is, to the graph defined by all arcs of w and
all vertices it traverses. The first vertex in the sequence is called the initial vertex of
the walk and the last vertex in the sequence is called the terminal vertex of the walk. A
trail is called closed if its initial vertex is also its terminal vertex and open otherwise. A
walk w in G such that A(w) is a submultiset of the multiset A(G) is called a trail of G.
A trail t in G such that every vertex in G has at most two incident arcs in A(t) is called
a cycle if t is closed, and path otherwise. If G is clear from the context, we omit it.
Undirected walks, trails, paths, and cycles are defined in the obvious way.

For a directed multigraph G = (V, A) and and a vertex v, indegG(v) denotes |{(u, v) ∈
A}| and outdegG(v) is defined analogously. We use balanceG(v) B indegG(v)−outdegG(v)

4

to denote the balance of a vertex v in G and I+
G and I−G to denote the set of all vertices v

in G with balanceG(v) > 0 and balanceG(v) < 0, respectively. A vertex v is balanced
in G if balanceG(v) = 0. When the graph is clear from the context, we omit the subscript
in indeg, outdeg, and balance.

Our results are in the context of parameterized complexity [11, 15, 27]. A param-
eterized problem L ⊆ Σ∗ ×� is called fixed-parameter tractable (FPT) with respect
to a parameter k if (x, k) ∈ L is decidable in f (k) · |x|O(1) time, where f is a computable
function only depending on k.

We consider two types of parameterized reductions between problems: A polynomial-
parameter polynomial-time many-one reduction (≤PPP

m -reduction) from a parameterized
problem L to a parameterized problem L′ is a polynomial-time computable function g
such that (x, k) ∈ L ⇔ (x′, k′) ∈ L′, with (x′, k′) B g(x, k), and k′ ≤ p(k), where p is a
polynomial only depending on k. If such a reduction exists, then we write L≤PPP

m L′. A
parameterized Turing reduction (≤FPT

T -reduction) from a parameterized problem L to a
parameterized problem L′ is an algorithm that decides (x, k) ∈ L in f (k) · |x|O(1) time,
where queries of the form (x′, g(k)) ∈ L′ are assumed to be decidable in O(1) time and
f , g are functions solely depending on k. If such a reduction exists, we write L≤FPT

T L′. If
L≤FPT

T L′ and L′ ≤FPT
T L, then we say that L and L′ are ≤FPT

T -equivalent. Note that every
≤PPP

m -reduction is a ≤FPT
T -reduction. Also, if L′ ∈ FPT and L≤FPT

T L′, then L ∈ FPT.
In this work, we consider the problem of making a given directed multigraph Eu-

lerian by adding arcs. A directed multigraph G is Eulerian if it is connected and each
vertex is balanced. An Eulerian extension E for G = (V, A) is a multiset over V × V
such that the directed multigraph G + E = (V, A ∪ E) is Eulerian.

Eulerian Extension (EE)
Input: A directed multigraph G = (V, A), an integer ωmax, and a weight func-

tion ω : V × V → [0, ωmax] ∪ {∞}.
Question: Is there an Eulerian extension E of G whose weight is at most ωmax?

In the context of EE, we speak of allowed arcs a ∈ V × V if ω(a) , ∞.

2.2. Preprocessing Routines
In this section, we observe that in instances of Eulerian Extension (EE) we may

assume that every unbalanced vertex misses at most one incoming or outgoing arc
and that the weights fulfill the triangle inequality. The first observation is helpful for
simplifying reductions. The second observation is crucial for restricting the structure of
Eulerian extensions that we have to consider (see Section 2.3).

A polynomial-time preprocessing routine for EE introduced by Dorn et al. [10]
ensures that the balance of every vertex is in {−1, 0, 1}. Given an imbalanced vertex v,
the transformation adds a new, balanced vertex u that is connected to v. It then moves
one arc involving v to u such that the absolute imbalance of v decreases by one. Iterating
this, we can decrease the absolute imbalance of each vertex to one.

Dorn et al. [10] showed that the corresponding transformation can be computed
in O(n(n + m)) time. In the following, we assume that all input instances of EE have
been transformed in this way and, hence, we assume that the following holds.

Fact 2.1. In a preprocessed instance of EE, balance(v) ∈ {−1, 0, 1} for each vertex v.

5

We use a second preprocessing routine to make further observations about trails in
Eulerian extensions. This preprocessing is a variant of the algorithm used by Dorn
et al. [10] to remove isolated vertices from the input graph. It simply replaces the
weight of a vertex pair by the weight of a “lightest” path in the graph (V,V × V) with
respect to ω. Note that the resulting weight function respects the triangle inequality.
This transformation can be computed in O(n3) time using an all-pairs shortest path
algorithm. In the following, we assume all input instances of EE to have gone through
this transformation, and hence, we assume that the following holds.

Fact 2.2. The weight-function ω of a preprocessed instance of EE respects the triangle
inequality, that is, for any vertices x, y, z, it holds that ω(x, z) ≤ ω(x, y) + ω(y, z).

In the subsequent sections, we use this preprocessing in fixed-parameter algorithms
and parameterized reductions. To this end, we note that both transformations are
parameter-preserving, that is, they do not change the number of connected components.

The presented transformations lead to useful observations regarding trails in Eulerian
extensions, see Section 2.3.

2.3. The Structure of Minimum-Weight Eulerian Extensions

To restrict the structure of solutions we are seeking, we now make some observations
on optimal solutions. To conveniently state our results, we first introduce the following
notation.

Definition 2.1. The component graph �G of a directed multigraph G is a clique whose
vertices one-to-one correspond to the weakly connected components of G. For a trail t
in a multigraph G, �G(t) is the trail in �G that is obtained in the following way: Take
the underlying undirected multigraph of t and, for every connected component C of G,
substitute every maximal length subtrail t′ of t with V(t′) ⊆ C by the vertex in �G

corresponding to C.

Based on the preprocessing routines from Section 2.2, we obtain the following theorem.

Theorem 2.1. Let G be a directed multigraph with c connected components. Let G and
the weight function ω : V × V → [0, ωmax] ∪ {∞} constitute an instance of Eulerian
Extension such that Fact 2.1 and Fact 2.2 hold. Then, there is a set S := {t1, . . . , tk} of
pairwise edge-disjoint paths and cycles in the graph (V,V × V) such that

(i)
⋃k

i=1 A(ti) is an Eulerian extension of minimum weight for G,
(ii) each ti ∈ S contains at most c + 1 vertices,

(iii) for ti, t j ∈ S , both containing at least two arcs, the trails �G(ti) and �G(t j) are
edge-disjoint, and

(iv) the graph defined by the union of all trails �G(t1), . . . ,�G(tk) without their initial
vertices does not contain a cycle.

Particularly the last condition helps to improve the running time of deriving a structure
that helps finding Eulerian extensions—we use this in Section 3.

We now prove Theorem 2.1 successively, by giving four observations that, in concert,
yield the theorem. At first, observe that it is easy to decompose Eulerian extensions into

6

vA vΩ

Figure 2: Example of an application of Transformation 2.1. Solid arcs and dotted arcs
belong to a trail t, dotted arcs to a subtrail s of t and the dashed arc is substituted for the
dotted arcs in t′ by the shortcut transformation.

trails: greedily remove a maximal trail t from an Eulerian extension E and repeat.5 Also
observe that if E is an Eulerian extension for G, then E \ A(t) is an Eulerian extension
for G + A(t) and, thus, it suffices to show the properties in Theorem 2.1 for maximal
trails in Eulerian extensions. These properties will mainly be proven by taking such
a trail in an Eulerian extension and “shortcutting” it such that the Eulerian extension
still connects all components and retains the balance of every vertex. Next, we formally
introduce the shortcut transformation.

Transformation 2.1. Let E be an Eulerian extension of G, let t be a trail in the multi-
graph (V(G), E) and let s be a subtrail of t with initial vertex vA and terminal vertex vΩ.
Obtain a new trail t′ by substituting the arc (vA, vΩ) for s in t and derive a new arc set E′

by substituting A(t′) for A(t) in E. Define shortcut(E, t, s) := (E′, t′).

Figure 2 illustrates Transformation 2.1. Next, we observe in which cases we can safely
shortcut trails in Eulerian extensions.

Lemma 2.1. Let shortcut(E, t, s) = (E′, t′) where the trail s has initial vertex vA and
terminal vertex vΩ. The following statements hold:

(i) ω(E′) ≤ ω(E).
(ii) Each vertex in V(s) is balanced in G + E′.

(iii) If each vertex of s except vA and vΩ is contained in a connected component of G
that also contains a vertex of t′, then the arc set E′ is an Eulerian extension for G.

Proof. Statement (i) is trivial because of Fact 2.2.
By substituting (vA, vΩ) for s, both the indegree and outdegree of each vertex on s

except vA and vΩ decreases by one. Hence, augmenting G with E′ results in a graph
without unbalanced vertices (statement (ii)).

For statement (iii), it remains to show that the graph (V(G), A ∪ E′) is connected: If
every vertex of s except vA and vΩ is contained in a connected component of G that also
contains another vertex of t′, then augmenting G with E′ results in a connected graph,
making E′ an Eulerian extension for G. �

Let us apply the shortcut transformation for an assumption about how often trails
in Eulerian extensions visit a connected component of G.

5By such a maximal trail t, we mean a trail such that adding any further arc from E to t would not result in
a trail.

7

Observation 2.1. For any Eulerian extension E of a multigraph G, there is an Eulerian
extension E′ of G of at most the same weight such that any trail t in E′ does not visit a
connected component of G twice, except for the initial and terminal vertex of t.

Observation 2.1 is easy to prove, since, clearly, Lemma 2.1(iii) holds for a minimum
subtrail of t that represents the second visit of a connected component. Observe that
Observation 2.1 also implies that every maximal trail t in an Eulerian extension is either
a path or cycle, because if t would visit a vertex twice, then it would visit its connected
component twice. Hence, we get that for every Eulerian extension there is an Eulerian
extension of at most the same weight that can be decomposed into paths and cycles that
contain at most c + 1 vertices, where c is the number of connected components in G.

We now have decompositions of Eulerian extensions according to Theorem 2.1(i)
and (ii). To prove the remaining two statements we have to refine our observations by
looking at the component graph of G and multiple trails. The following lemma is a
generalization of statement (iii) in Lemma 2.1.

Lemma 2.2. Let E be an Eulerian extension of G, let t and r be trails in the directed
multigraph (V(G), E) such that the trails �G(r) and �G(t) are not vertex-disjoint. Fur-
thermore, let s be a subtrail of t in the directed multigraph (V(G), E) such that �G(s) is
a subtrail of �G(r). Let s′ be a subtrail of t such that s is a subtrail of s′ and s traverses
exactly one vertex less than s′. Set (E′, t′) = shortcut(E, t, s′). Then E′ is an Eulerian
extension for G.

Proof. Lemma 2.1 shows that the vertices in G + E′ are balanced. It remains to show
that the resulting graph is connected: Any connected component that is traversed by s is
also traversed by r. The trails �G(r) and �G(t′) still share a vertex, because of the way
we have chosen s. Thus, G + E′ is connected. �

By shortcutting subtrails s that are shared by two trails t1, t2 in an Eulerian extension,
in the sense that �G(s) is a subtrail of both �G(t1) and �G(t2), Observation 2.2 directly
follows from Lemma 2.2.

Observation 2.2. For any Eulerian extension E of G, there is an Eulerian extension E′

of G of at most the same weight such that for any two edge-disjoint trails t1, t2 in E′ it
holds that �G(t1),�G(t2) either are vertex-disjoint, share at most one vertex, or share
only their initial and terminal vertices.

This proves statement (iii) in Theorem 2.1. Next, we turn to statement (iv):

Observation 2.3. For any Eulerian extension E of G, there is an Eulerian extension E′

of G of at most the same weight such that for any set of edge-disjoint trails {t1, . . . , tk}
in E′ it holds that the graph defined by the union of all trails �G(t1)′, . . . ,�G(tk)′ does
not contain a cycle as subgraph, where �G(ti)′ is �G(ti) without the initial vertex.

Proof. Assume that the graph C defined by the union of �G(t1)′, . . . ,�G(tk)′ contains a
cycle c. Let e ∈ ti be an arbitrary edge on c. There is a subtrail s of ti such that �G(s)
traverses e and exactly one further edge—recall that �G(ti)′ is �G(ti) without the initial
vertex. Let (E′, t′i) = shortcut(E, ti, s). Since �G(t′i) is not vertex-disjoint from c, the
Eulerian extension E′ still connects the graph G (Lemma 2.2). Iterating the shortcutting

8

for every cycle in the graph C eventually removes every cycle after a finite number of
steps, because obviously the statement of Observation 2.3 holds true if t1, . . . , tn have
length one, and because in every step the number of arcs in E decreases by one. �

This concludes the proof of Theorem 2.1.

3. Advice

This section introduces special restricted variants of Eulerian Extension (EE) that
serve as intermediate problems for our reductions from EE to Conjoining Bipartite
Matching and back. We give a reduction from EE to one of the variants and a reduction
from another variant problem to EE. These reductions represent the first step towards
proving the equivalence of EE and Conjoining BipartiteMatching and the second and
final step is given in Section 4.

Since Eulerian extensions have to balance every vertex, they contain paths starting
in vertices with positive balance and ending in vertices with negative balance. These
paths together with cycles have to connect all connected components of the input graph.
In order to further restrict solutions, we are searching for, we use so-called “advice” as
additional information on the structure of optimal Eulerian extensions. Advice consists
of hints which specify that there must be a path or cycle in an Eulerian extension that
visits connected components in a specified order. Hints, however, do not specify exactly
which vertices these paths or cycles visit.

Definition 3.1. A hint for a directed multigraph G = (V, A) is an undirected path or
cycle t of length at least one in the component graph �G together with a flag determining
whether t is a cycle or a path.6 Depending on this flag, the hints are called cycle hints
and path hints, respectively. A set of hints H is an advice for the graph G if the hints
are edge-disjoint.7 A path p in the directed graph (V,V × V) realizes a path hint h
if �G(p) = h and the initial vertex of p has positive balance and the terminal vertex
has negative balance in G. A cycle c in the graph (V,V × V) realizes a cycle hint h
if �G(c) = h. An Eulerian extension E heeds the advice H if it can be decomposed into
a set of paths and cycles that realize all hints in H.

A topic in this work is how having an advice helps in solving an instance of Eulerian
extension. In order to discuss this, we introduce the following version of EE.

Eulerian Extension with Advice (EEA)
Input: A directed multigraph G = (V, A), an integer ωmax, a weight function ω : V ×

V → [0, ωmax] ∪ {∞}, and advice H.
Question: Is there an Eulerian extension E of G that is of weight at most ωmax and

heeds the advice H?
For an example of advice, see Figure 3. We will see that the hard part of computing an
Eulerian extension that heeds a given advice H is to choose initial and terminal vertices

6The flag is necessary because a hint to a path in �G may correspond to a cycle in G.
7Note that there is a difference between advice in our sense and the notion of advice in computational

complexity theory. There, an advice applies to every instance of a specific length.

9

1

2

3 4 5

6

7

8

Figure 3: An instance of EEA comprising the vertices 1 through 8 and the solid arcs.
Gray objects represent components of the input graph G and the the dashed lines
constitute a hint h that forms a piece of advice P = {h} for G. The dotted arcs form
an Eulerian extension E of G. Both the paths traversing the vertices 1, 3, 5 and 7, 4, 2
realize h. Thus, E heeds P.

for path hints in H. In fact, when the endpoints are given, it is possible to compute a
realization of a path hint in quadratic time. We use this fact in reductions and formalize
it as follows.

Definition 3.2. Let the directed multigraph G = (V, A) and the weight function ω :
V × V → [0, ωmax] ∪ {∞} constitute an instance of EE. Let p be a path in �G and
let u be a vertex in the component of G that corresponds to the initial vertex of p
and let v be a vertex in the component that corresponds to the terminal vertex of p.
Then, minpath(G, ω, p, u, v) denotes the shortest path s from u to v in the complete
graph (V,V × V) such that �G(s) = p.

Lemma 3.1. minpath(G, ω, p, u, v) is computable in O(n2) time.

Proof. To determine minpath(G, ω, p, u, v), compute a shortest path in the graph (V,V ×
V) with a modified weight-function ω′: Simply orient the path p such that it leads from
the component that contains u to the component that contains v. Then, set the weight
to ∞ for all arcs in G that lead from one component to another component such that
there is no corresponding arc on p.

The above described algorithm can be carried out in O(n2) time using Dijkstra’s
algorithm. By Fact 2.2 we may assume that for the shortest path s computed using ω′ it
holds that �G(s) = p and, thus, the algorithm is correct. �

By a simple modification of the algorithm for minpath, we can also compute an optimal
realization for a cycle hint in any given advice in O(n3) time.

Observation 3.1. Let (G, ωmax, ω,H) be an instance of EEA. In O(|H|n3) time, we can
compute an equivalent instance (G′, ωmax, ω,H′) such that H′ does not contain a cycle
hint. Furthermore, the number of components does not increase.

Proof. For any cycle hint h, we can choose one connected component C that it traverses
and introduce a copy of it into G, extending the weight function accordingly. Then for
every vertex v in C we proceed as in Lemma 3.1, computing a shortest path from v to
its copy with a modified weight function and keeping the shortest of these paths. Then,
merging C and its copy, we get a cycle l such that �G(l) = h. �

10

Since we want to derive Eulerian extensions from an advice and every Eulerian extension
for a multigraph connects all of the multigraphs connected components, we are mainly
interested in “connecting” advice. We say that an advice for a directed multigraph G
is connecting if all of its hints together connect all vertices in �G. Furthermore, if there
is no connecting advice H′ with H′ ⊂ H for a connecting advice H, then H is called
minimal connecting advice. We consider the following restricted version of EEA that
allows only minimal connecting advice (note that, by Observation 3.1, we can assume
the given advice to be cycle-free).

Eulerian Extension with Cycle-freeMinimal Connecting Advice (EE∅CA)
Input: A directed multigraph G = (V, A), an integer ωmax, a weight function ω : V ×

V → [0, ωmax] ∪ {∞}, and minimal connecting cycle-free advice H.
Question: Is there an Eulerian extension E of G that is of weight at most ωmax and

heeds the advice H?

In Section 3.1, we will show how each minimal connecting cycle-free advice can
be obtained from a forest in �G, yielding a parameterized Turing reduction from EE
to EE∅CA.

3.1. Deriving Advice from a Minimum-Weight Eulerian Extension

We now combine Theorem 2.1 with the notion of advice and an algorithm to
enumerate relevant advices. This yields a Turing reduction from EE to EE∅CA and
enables us to use EE∅CA as intermediate problem in a reduction from EE to CBM. In
this section, we prove the following.

Theorem 3.1. Eulerian Extension is ≤FPT
T -reducible to Eulerian Extension with Cycle-

freeMinimal Connecting Advice in O(c3c+1n3) time, where both problems are parame-
terized by the number c of connected components in the input graph.

To prove Theorem 3.1, first, let us apply Theorem 2.1 to advice in order to restrict the
number of advices we have to consider:

Lemma 3.2. Let G be a directed multigraph with c connected components and let E be
a minimum-weight Eulerian extension with respect to a weight function ω : V × V →
[0, ωmax] ∪ {∞} for G. There is a minimal connecting advice H = {h1, . . . , hi} such that

(i) E heeds H,
(ii) |H| ≤ c, and

(iii) the graph defined by the union of all trails h1, . . . , hi without their initial vertices
does not contain a cycle.

Proof. By Theorem 2.1, there is a decomposition of E into paths and cycles t1, . . . , tk
such that the graph defined by the union of all trails �G(t1), . . . ,�G(tk) without their
initial vertices does not contain a cycle. We greedily take paths �G(t j) of length at
least one into H that connect new vertices in �G. Statement (i) is trivial. Statement (ii)
follows, because there are at most c connected components in G and we only take
paths into H that connect new components. Finally, from Theorem 2.1(iv) we get
statement (iii). �

11

Using the above Lemma 3.2 about minimal connecting advice, we can restrict its size,
giving a relatively efficient way to enumerate all such advices.

Proof of Theorem 3.1. Let the directed multigraph G = (V, A) and the weight func-
tion ω : V × V → [0, ωmax] ∪ {∞} constitute an instance of EE and let c be the number
of connected components in G. We give an algorithm that decides EE using an oracle
for EE∅CA.

We simply generate all relevant advices, realize each cycle hint, and apply the oracle
to the resulting instances. If one of the oracle calls accepts the advice-instance, then,
clearly, the original instance is a yes-instance. Also, for every yes-instance of EE, there
is an advice derivable from a solution to the instance because of Lemma 3.2. Clearly,
the number of components does not increase in instances passed to the oracle.

Concerning the generation of the advices, by Lemma 3.2 we may assume that the
hints without their initial vertices form a forest in �G. Thus, since there are at most c
hints in a minimal connecting advice, every minimal connecting advice contains at
most 2c edges. Thus, we may construct hints in the component graph in a recursive
fashion as follows: First, choose one of the c vertices as starting point for a hint, then
branch into the cases of extending the hint to one of the remaining at most c− 1 vertices.
For each of them then recursively branch into the cases of ending the hint or extending
it further to one of the remaining vertices. When choosing to end the hint, if the graph is
not connected yet, create a next hint, by again choosing a starting vertex and branching
analogously to the first hint. End the procedure when the graph is connected, c hints
have been generated, or the hints generated so far contain 2c edges. Output the set of
hints as an advice, if the hints connect all vertices in the component graph.

In this way, the algorithm branches at most 2c + c times (2c extensions and c starting
vertices) into at most c cases (ending the hint, or extending it to one of at most c −
1 vertices). Checking whether the hints connect all vertices can be done in O(c) time.
This gives an algorithm to enumerate all advices according to Lemma 3.2 in O(c3cc) time.
Additionally, we have to account for posing the oracle question in linear time and for
computing realizations for all cycle hints, which can be done O(cn3) time. Thus, iterating
over all relevant advices and applying the oracle takes altogether O(c3c+1n3) time. �

Using the above reduction, we also obtain a simple fixed-parameter algorithm for EE
with respect to the combination of the parameters c and a slightly more complicated
parameter:

Corollary 3.1. Eulerian Extension can be solved in O((bc)3cn3 log n) time, where c is
the number of components in the input graph and b =

∑
v∈I+

G
balance(v) is the sum of all

positive balances.

Proof. To prove this, we use a result of Dorn et al. [10]: EE is solvable in O(n3 log n) time
if the input multigraph is connected. An algorithm for general EE achieving the above
running time first preprocesses instances of EE in O(n3) time such that Fact 2.1 and
Fact 2.2 holds. Then, it uses the Turing reduction from Theorem 3.1 to enumerate
instances of EE∅CA. In each of these instances, it enumerates all possible combina-
tions of initial and terminal vertices for realizations of the path hints and computes a

12

weight-minimal realization for each of the hints using these initial and terminal ver-
tices (Lemma 3.1). Since both the number of vertices of positive balance and the number
of vertices of negative balance is bounded by b, there are at most b2c such combinations.
Implementing the realizations yields a connected graph, and the algorithm finally solves
the resulting instance in O(n3 log n) time using the above mentioned result by Dorn
et al. [10].

It is not hard to see that this algorithm is correct. To prove the running-time bound,
we first need to note that the preprocessing routines we introduced in Section 2.2
preserve b. For the routine used for Fact 2.2, this is easy to see, since modifying the
weight function does not alter balances of vertices. The routine used for Fact 2.1 also
preserves b, because in each modification step a balanced vertex is introduced and an
arc is shifted from one vertex to another. Thus, the sum of all positive balances remains
the same. Theorem 3.1 also preserves b since instances of EE are only modified by
adding advice and realizing cycle hints. Hence, the running time is O(n(n + m) + n3 +

c3cc(b2c(cn2 + n3 log n)) ⊆ O((bc)3cn3 log n) in total. �

3.2. Removing Advice

In order to prove the parameterized equivalence of EE and CBM, we also use
an advice problem—in particular, Eulerian Extension with Advice (EEA)—as an
intermediate problem in the reduction from CBM to EE. Thus, we have to prove that
the advice in a given instance of EEA can be removed, yielding an equivalent instance
of EE. That is, we have to prove the following theorem.

Theorem 3.2. Eulerian Extension with Advice is ≤PPP
m -reducible to Eulerian Exten-

sion with respect to the parameter “number of components in the input graph.”

To eventually prove Theorem 3.2, we show that there is only a polynomial number of
optimal ways to realize a hint in an advice. Each of these realizations will be modeled
by a pair of imbalanced vertices. These pairs will reside in a new component and this
component then can only be connected to the rest of the graph by taking arcs into an
Eulerian extension that also connect each component corresponding to inner vertices of
the hint.

For convenience, due to Observation 3.1, we assume that all instances of EEA
contain cycle-free advice. We first give an intuitive description of the reduction, followed
by a detailed construction and then a correctness proof. The construction uses the
minpath function introduced in Section 3.

Outline of the Reduction. We look at the hints present in an EEA instance and eliminate
them one at a time: For every hint pi in the advice, first, a connected component is
introduced (vertex set W i

1, arc sets Bi,±
1 , Bi,=

1 in the construction below) and copied for
every inner vertex of the hint (vertex sets W i

l , arc sets Bi,±
l , Bi,=

l for 2 ≤ l ≤ k − 1).
Each copy is connected to the component corresponding to its vertex in the hint (by the
arc set Bi,γ

l). The new component and its copies consist of interconnected imbalanced
pairs of vertices. In the construction below, these are the vertices si,±

l,u,v, t
i,±
l,u,v contained

in the i-th component. Each pair corresponds to a pair of vertices u, v forming the
endpoints of a path that realizes the currently considered hint pi.

13

A slightly modified weight function ensures that adding an arc (u, ti,+
1,u,v) or an

arc (si,−
1,u,v, v) to an Eulerian extension has the same weight as a minimum-weight re-

alization of the hint that goes from u to v or from v to u, respectively. Notice that
the superscript “+”corresponds to paths in one direction and the superscript “−” to
paths in the opposite direction. The weight function also ensures that if such an arc is
present in an Eulerian extension, then the connected components traversed by the hint
are connected to each other.

Construction 3.1. Let the directed multigraph G0 = (V0, A0), the integer ωmax, the
weight function ω0 : V0 × V0 → [0, ωmax] ∪ {∞}, and the advice P constitute an
instance IEEA of EEA. Let p1, . . . , pd be the elements of P and let C1, . . . ,Cc be the
connected components of G.

For every pi, 1 ≤ i ≤ d, inductively define Gi and ωi as follows: Let C j1 , . . . ,C jk be
the components of G that correspond to the vertices traversed by pi, ordered according
to an arbitrary path orientation of pi. For every 1 ≤ l ≤ k − 1, introduce the vertex set

W i,+
l B {t

i,+
l,u,v, s

i,+
l,u,v : u ∈ C j1 ∩ I+

G ∧ v ∈ C jk ∩ I−G}, and

W i,−
l B {s

i,−
l,u,v, t

i,−
l,u,v : u ∈ C j1 ∩ I−G ∧ v ∈ C jk ∩ I+

G}.

Set W i
l B W i,+

l ∪W i,−
l . Make all these vertices imbalanced via the arc set

Bi,±
l B {(t

i,+
l,u,v, s

i,+
l,u,v), (ti,−

l,u,v, s
i,−
l,u,v)}.

Let w1
l , . . . ,w

h
l be the vertices in W i

l . For each 1 ≤ l ≤ k − 1, interconnect these vertices
via a cycle, using the following arc set

Bi,=
l B {(w

g
l ,w

g+1
l) : 1 ≤ g < h} ∪ {(wh

l ,w
1
l)}.

Furthermore, for each 2 ≤ l ≤ k − 1, choose c jl ∈ C jl and wl ∈ W i
l arbitrarily and add

the following arc set connecting W i
l to C jl :

Bi,γ
l B {(wl, c jl), (c jl ,wl)}.

Now set Gi = (Vi, Ai) B (Vi−1 ∪
⋃k−1

l=1 W i
l , Ai−1 ∪

⋃k−1
l=1 (Bi,±

l ∪ Bi,=
l) ∪

⋃k−1
l=2 Bi,γ

l)) and
create a new weight function as follows:

ωi(u, v) B

ωi−1(u, v), if u, v ∈ Vi−1

ω0(minpath(G0, ω0, pi, u, x)), if u ∈ C j1 ∩ I+
G, v = ti,+

1,u,x

ω0(minpath(G0, ω0, pi, x, v)), if u = si,−
1,x,v, v ∈ C j1 ∩ I−G

0, if u = si,+
k−1,x,v, v ∈ C jk ∩ I−G

0, if u ∈ C jk ∩ I+
G, v = ti,−

k−1,u,x

0, if u = si,±
l,x,y, v = ti,±

l,x,y

0, if u = si,±
l,x,y, v = ti,±

l+1,x,y

∞, otherwise

The graph Gd, the weight function ωd and the integer ωmax constitute an instance IEE
of EE.

14

1

2

3 4 5

6

7

8

(a) EEA instance

1

2 3 4

5

6

7

8

s1,−1,6,2 t1,−1,6,2

s1,−1,8,2 t1,−1,8,2

t1,+1,1,5 s1,+1,1,5

t1,+1,1,7 s1,+1,1,7

s1,−2,6,2 t1,−2,6,2

s1,−2,8,2 t1,−2,8,2

t1,+2,1,5 s1,+2,1,5

t1,+2,1,7 s1,+2,1,7

W 1
1 W 1

2

(b) EE instance

Figure 4: Example for Construction 3.1 explained in Example 3.1.

Example 3.1. See Figure 4. At the top, an instance IEEA of EEA is shown. It comprises
three connected components and an advice consisting of a single hint p1 represented
by the dashed edges. Below, there is an instance IEE of EE produced by Construc-
tion 3.1. The dotted arcs represent the only arcs incident to the new vertices with weight
potentially lower than∞.

In the new instance, the hint p1 is removed and a new component W1
1 is introduced.

A copy W1
2 of the vertex set W1

1 is introduced and connected to the component that
corresponds to the inner vertex of p1. The induced subgraphs of W1

1 ,W
1
2 consist of

pairs ti,+
l,u,v, s

i,+
l,u,v of vertices that are made imbalanced and that are connected via a directed

cycle. Each of the vertices si,+
l,u,v—the “sources”—has balance 1 and, because of the

way that the weight function is defined, can either be connected to a vertex ti,+
l,u,v—the

“targets”—inside the same component or to another component. Analogously, targets
can only accept at most one arc from either inside the same component or from outside.

Consider a solution E to IEEA that also contains the arcs (1, 3), (3, 5) as realization

15

of p1. We may remove these arcs and add the arcs

(1, t1,+
1,1,5), (s1,+

1,1,5, t
1,+
2,1,5), (s1,+

2,1,5, 5)

to E, and add arcs from all remaining sources to their corresponding targets that reside
in the same component to obtain a solution to IEE. Also, every solution to IEE has to
connect the connected component W1

1 to the rest of the graph. This is only possible by
adding an arc from a source to outside its component, for example at s1,−

1,6,2. Then the
vertex t1,−

1,6,2 has to fetch an arc from s1,−
2,6,2 in the Eulerian extension in order to become

balanced. This means that then also the arc (6, t1,−
2,6,2) has to be included in an Eulerian

extension for IEEA and thus we can include the path from vertex 6 to vertex 2 that
realizes p1 computed by the minpath function.

Polynomial-time Computability and Correctness. We first prove that Construction 3.1
is polynomial-time computable and that the parameter in the reduced instance is poly-
nomial in the original parameter. We then proceed to show the correctness of the
construction.

Observation 3.2. Construction 3.1 can be performed in polynomial-time. There
are O(c2) components in Gd.

Proof. We first look at the running time of the construction: The size of W i
l and the arc

sets Bi,±
l , Bi,=

l , Bi,γ
l is at most O(n2). It holds that l ≤ c and there are at most O(c2) hints

in an advice (recall that hints in an advice are edge-disjoint). Hence, at most O(c3n2)
vertices and edges are added. This can be done in time linear in the number of added
vertices and edges. Thus, the new weight-function can be computed in O(c6n4) time and
this yields a polynomial-time algorithm for Construction 3.1.

Since there are at most O(c2) hints in an advice and for every hint there is exactly
one new component (the component with vertex set W i

1) in the reduced instance, the
value of the new parameter is in O(c2). �

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. By Observation 3.2 it only remains to show that Construction 3.1
is correct. For this, first consider an Eulerian extension E that is a solution to IEEA. For
every hint pi, the set E contains a set of paths that realize pi. Without loss of generality,
we may assume that among those paths is the path s := minpath(G0, ω0, pi, u, v). Here,
u and v are chosen suitably from components that pi starts and ends in, respectively.
If s is not contained in E, then we can obtain a Eulerian extension of at most the same
weight that contains s by simply substituting s for the corresponding realization of pi.
Thus, in order to connect the component W i

l to the rest of the graph, we may remove s
from E and add the arcs

(u, ti,+
1,u,v), (si,+

1,u,v, t
i,+
2,u,v), . . . , (si,+

k−2,u,v, t
i,+
k−1,u,v), (si,+

k−1,u,v, v).

This does not increase the weight of E. To balance all vertices ti,+
l,u′,v′ , s

i,+
l,u′,v′ with 1 ≤ l ≤

k − 1, u′ , u, v′ , v, we may add the corresponding arcs (si,+
l,u′,v′ , t

i,−
l,u′,v′) and analogously

16

for vertices in W i,−
l , again without increasing the weight. Thus, doing this for every hint

yields an Eulerian extension for IEE of the same weight.
Now consider an Eulerian extension E that is a solution to IEE. The set E has to

connect the component W i
1 to the rest of the graph for every hint pi. Thus, without

loss of generality, there is an arc (u, ti,+
1,u,v) for some vertices u, v in the components that

correspond to the endpoints of pi. For every vertex t j,±
l,x,y, there are only incoming arcs

with weight lower than∞, and since it has balance −1, there is exactly one arc incident
to it in E. The same is true for vertices s j,±

l,x,y since all arcs with weight lower than ∞
start at them and they have balance 1. Hence the arc (si,+

1,u,v, t
i,+
2,u,v) is present in E, by

induction also (si,+
l,u,v, t

i,+
l+1,u,v) ∈ E, 1 ≤ l ≤ k − 2, and finally also (si,+

k−1,u,v, v) ∈ E. Thus
we can remove these arcs from E, add minpath(G0, ω0, pi, u, v), and repeat this for all
hints to obtain an Eulerian extension for G0 that heeds the advice P and has weight at
most ωmax. �

4. Eulerian Extension and Conjoining Bipartite Matching

This section gathers the remaining building blocks for the parameterized equivalence
of Eulerian Extension (EE) and Conjoining Bipartite Matching (CBM). We first
introduce CBM—a variant of perfect bipartite matching—and then show how CBM
relates to the two variants of EE we have introduced in Section 3.

Definition 4.1. Let G be a bipartite graph and let P be a vertex partition with the
cells C1, . . . ,Ck. An unordered pair {i, j} of integers 1 ≤ i < j ≤ k is a join and a set J of
such pairs is a join set with respect to G and P. We say that a join {i, j} ∈ J is satisfied by
a matching M ⊆ E(G) if there is at least one edge e ∈ M with e∩Ci , ∅ and e∩C j , ∅.
We say that a matching M of G is J-conjoining with respect to a join set J if all joins
in J are satisfied by M. If the join set is clear from the context, we simply say that M is
conjoining. A matching M in the graph G is called perfect, if each vertex in G has an
incident edge in M.

Using these definitions, we can conveniently state CBM.

Conjoining BipartiteMatching (CBM)
Input: A bipartite graph G = (V1] V2, E), an integer ωmax, a weight func-

tion ω : E → [0, ωmax], a partition P = {C1, . . . ,Ck} of the vertices in G,
and a join set J.

Question: Is there a matching M in G such that M is perfect, M is conjoining
and M has weight at most ωmax?

CBM can be interpreted as a job assignment problem with additional constraints: an
assignment of workers to tasks is sought such that each worker is busy and each task
is being processed. Furthermore, every worker must be qualified for the assigned task.
Both, the workers and the tasks, are grouped and the additional constraints are of the
form “At least one worker from group A must be assigned a task in group B”. An
assignment that satisfies such additional constraints may be favorable in settings where
the workers are assigned to projects and the projects demand at least one worker with
additional qualifications.

17

4.1. From Eulerian Extension to Matching

In this section, we give a reduction from EE∅CA to CBM yielding the following
theorem.

Theorem 4.1. Eulerian Extension with Cycle-free Minimal Connecting Advice is
≤PPP

m -reducible to Conjoining BipartiteMatching with respect to the parameters “num-
ber of components” and “join set size.”

Outline of the Reduction. The basic idea of our reduction is to use vertices of positive
balance and negative balance in an instance of EE∅CA as the two cells of the graph
bipartition in a designated instance of CBM. Edges between vertices in the new instances
represent shortest paths between these vertices that consist of allowed extension arcs in
the original instance. Every connected component in the original instance is represented
by a cell in the partition in the matching instance and hints are basically modeled by joins.

Description of the Reduction. For the description of the reduction, we need the follow-
ing definition.

Definition 4.2. Let C1, . . . ,Cc be the connected components of a directed multigraph G,
and let H be a cycle-free advice for G. For every h ∈ H, define connect(h) B {i, j},
where Ci,C j are the components corresponding to the initial and terminal vertices of h.

First, consider an EE∅CA-instance (G, ωmax, ω,H) such that H is a cycle-free min-
imal connecting advice that contains only hints of length one. We will deal with longer
hints later. We create an instance ICBM of CBM by first defining B0 = (I+

G] I−G, E0)
as a bipartite graph. Here, the set E0 consists of all edges {u, v} such that u ∈ I+

G,
v ∈ I−G, and ω(u, v) < ∞. This serves the purpose of modeling the structure of “al-
lowed” arcs in the matching instance. Next, we derive a vertex partition {V ′1, . . . ,V

′
c}

of B0 by intersecting the connected components of G with (I+
G] I−G). The vertex par-

tition obviously models the connected components in the input graph, and the need for
connecting them according to the advice H is modeled by an appropriate join-set J0,
defined as {connect(h) : h ∈ H}. Finally, we make sure that matchings also corre-
spond to Eulerian extensions weight-wise, by defining the weight function ω′({u, v}) for
every u ∈ I+

G, v ∈ I−G as ω(u, v) with ω′max = ωmax.
By Observation 2.1 we may assume that every hint in H of length one is realized

by a single arc. Since the advice connects all connected components, by the same
observation, we may assume that all other trails in a valid Eulerian extension have length
one. Finally, by Fact 2.1, we may assume that every vertex has at most one incident
incoming or outgoing arc in the extension and, hence, we get an intuitive correspondence
between conjoining matchings and Eulerian extensions.

To model hints of length at least two, we utilize gadgets similar to the one shown
in Figure 5. The gadget comprises two vertices (u ◦ v and u • v) for every pair (u, v)
of vertices with one vertex in the component the hint starts and one in the component
the hint ends. The vertices u ◦ v and u • v are adjacent and each of these two vertices is
connected with one vertex of the pair it represents. The edge {u • v, u} is weighted with
the cost it takes to connect u, v with a path that realizes h. This cost is computed using
the minpath function introduced in Section 3. The edges {u • v, u ◦ v} and {u ◦ v, v} have

18

1

2

3 4 5

6

7

8

(a) EE∅CA instance

1

2 5

6

7

81 • 7

1 ◦ 7

1 • 5

1 ◦ 5

8 • 2

8 ◦ 2

6 • 2

6 ◦ 2

(b) Long-hint gadget in CBM instance

Figure 5: Example of the long-hint gadget. In (a), an EE∅A-instance is shown, consist-
ing of a graph with three connected components and an advice that contains a single path
hint h (dashed lines). In (b), a part of an instance of CBM is shown, comprising the cells
that correspond to the initial and terminal vertices of h and a gadget to model h. The gad-
get consists of new vertices put into a new cell which is connected by two joins (dashed
and dotted lines) to the cells corresponding to the initial and terminal vertices of h.

weight 0. Intuitively these three edges in the gadget represent one concrete realization
of h. If u ◦ v and u • v are matched, this means that this specific path does not occur in
a designated Eulerian extension. However, by adding the vertices of the gadget as cell
to the vertex partition and by extending the join set to the gadget, we enforce that there
is at least one outgoing edge that is matched. If a perfect matching matches u ◦ v with u,
then it also matches u • v with v and vice versa. This introduces an edge to the matching
that has weight corresponding to a path that realizes h.

More formally, we use the following construction:

Construction 4.1. Let the directed multigraph G = (V, A), the integer ωmax, the weight
function ω : V × V → [0, ωmax] ∪ {∞} and the advice H constitute an instance of
EE∅CA. Let V1, . . . ,Vc be the connected components of G.

Let H=1 be the set of hints of length one in H and let H≥2 be the set of hints in H
that have length at least two. Define J0 by the set {connect(h) : h ∈ H=1}. Let W1

0 B I+
G,

W2
0 B I−G, and let B0 = (W1

0]W2
0 , E0) be a bipartite graph where

E0 B {{u, v} : u ∈ I+
G ∧ v ∈ I−G ∧ ω(u, v) < ∞}.

Define V ′i B Vi ∩ (I+
G ∪ I−G), 1 ≤ i ≤ c, and ω′0({u, v}) B ω(u, v) where {u, v} ∈ E, u ∈ I+

G.
Next, “long-hint gadgets” are introduced for every hint of length at least two: Let

h≥2
1 , . . . , h≥2

j be the hints in H≥2. Inductively define Bk, V ′c+k, ω′k and Jk, 1 ≤ k ≤ j, as

19

follows: Let connect(h≥2
k) = {o, p}. Introduce the vertex sets

U1 B {v ◦ u : v ∈ I+
G ∩ Vo ∧ u ∈ I−G ∩ Vp ∧ ω(minpath(G, ω, h≥2

k , v, u)) < ∞} ∪

{v ◦ u : v ∈ I−G ∩ Vo ∧ u ∈ I+
G ∩ Vp ∧ ω(minpath(G, ω, h≥2

k , u, v)) < ∞},

and U2 B {v • u : v ◦ u ∈ U1}. Introduce the edge sets

E1
k B {{v ◦ u, v} : v ∈ I−G ∧ v ◦ u ∈ U1},

E2
k B {{v • u, v} : v ∈ I+

G ∧ v • u ∈ U2}, and

E3
k B {{v ◦ u, v • u} : v ◦ u ∈ U1 ∧ v • u ∈ U2}.

Set Ek B E1
k ∪ E2

k ∪ E3
k , and set the graph

Bk B ((W1
k−1 ∪ U1)] (W2

k−1 ∪ U2), Ek−1 ∪ Ek),

set V ′c+k B U1 ∪ U2, set Jk B Jk−1 ∪ {{o, c + k}, {p, c + k}} and the weight function as
follows:

ω′k({u, v}) B

ω′k−1({u, v}), {u, v} ∈ Ek−1

0, {u, v} ∈ E1
k ∪ E3

k

ω(minpath(G, ω, h≥2
k , v,w)), {u, v} = {v • w, v} ∈ E2

k

Then the graph B j, the integer ωmax, the weight function ω′j, the vertex partition P B
{V1, ...,Vc+ j} and the join set C j constitute an instance of CBM.

For the remainder of this section, let the directed multigraph G = (V, A), the weight
function ω : V × V → [0, ωmax] ∪ {∞} and the cycle-free minimal connecting advice H
constitute an instance of EE∅CA and let the bipartite graph B B B j, the weight
function ω′ B ω′j with the maximum weight ωmax, the vertex partition P and the join
set J B J j as in Construction 4.1 constitute an instance of CBM. We first prove both
directions of the correctness of the construction and then prove that the running time is
polynomial.

Before continuing, we need the following observation.

Observation 4.1. A maximum trail in an Eulerian extension for a graph G either is
closed or starts in I+

G and ends in I−G.

Proof. Consider the initial vertex vA and terminal vertex vΩ of a trail t in the Eulerian
extension E. The vertices vA and vΩ are balanced in G + E.

Assume that vΩ is not balanced in G. Every time t traverses vΩ, it uses one arc in E
that enters vΩ and one that leaves it. This implies that vΩ , vA because vΩ is balanced
in G + E and thus there is an odd number of arcs in E incident to vΩ (recall that t is
maximum). Since t ends in vΩ, this also implies that vΩ ∈ I−G. Analogously, we get
that vA ∈ I+

G.
Now assume that vΩ is balanced in G. Since t cannot be extended, it already uses

every arc incident to vA and vΩ. However, if vΩ is not equal to vA, then there are more
arcs entering vΩ than leaving vΩ in E. This means that vΩ is not balanced in G + E, a
contradiction. �

20

Next, we show how one can obtain a conjoining matching from a valid Eulerian extension
for the original instance of EE∅CA.

Lemma 4.1. Let E be an Eulerian extension for G that heeds the advice H. Then there
is a perfect conjoining matching M for B with ω′(M) ≤ ω(E).

Proof. We construct the matching successively by first looking at every long-path gadget
in B and then matching the remaining vertices.

Consider the cell V ′c+k ∈ P for k > 0. There are two joins {c + k, o} and {c + k, p}
in J. Thus, there is a path hint h from Vo to Vp in H and there is a path s in E that
realizes h and starts in a vertex v ∈ V in the component Vo and ends in a vertex u ∈ V
in Vp. By the definition of minpath, the weight ω(s) is at least ω(minpath(G, ω, h, u, v)).
Thus we may match u • v with v, match u ◦ v with u (these two edges have weight
ω(minpath(G, ω, h, u, v))), and match every other pair w • x,w ◦ x of vertices in V ′c+k
with each other (each of these edges have weight 0). Matching like this, we obtain a
matching for the long-hint gadget of h that fulfills its two joins and is perfect when
restricted to the gadget. The weight of the matching is at most the realization of h in E.

The definition of advice ensures that there is a set of paths in E that is edge-disjoint
and realizes all hints in H. Because of this, we may find a matching M≥2 for B that
satisfies the joins of every long-hint gadget and is perfect with respect to the vertex
set of each long-hint gadget—as in the previous paragraph, iterated for every gadget.
Furthermore, ω′(M≥2) is at most the weight according to ω of all paths in E that realize
hints of length at least two in H.

Now it is easy to extend M≥2 to a conjoining matching M≥1 for B and J just by
adding to M≥1 edges between vertices that realize hints of length one in E. We may
assume by Observation 2.1 that each hint of length one is realized by a single arc
in E. The weight of such an added edge is exactly the cost of the arc between the
corresponding vertices. Because of this, we maintain that ω′(M≥1) is at most the weight
of all paths in E that realize hints.

Finally, we have to extend M≥1 to a perfect matching M by matching the remaining
non-gadget vertices. We can do this by looking at paths in E that start and end in
the vertices in G, corresponding to still unmatched vertices in B. A set of such paths
must exist, because each such vertex has at least one incident arc in E and because, by
Observation 4.1, maximal open trails in Eulerian extensions start and end in unbalanced
vertices. The edges between initial and terminal vertices of these paths in B have at
most the weight of such a path (because of Fact 2.2 and because of the definition of ω′).
Thus, we can add those edges to M≥1, obtaining an edge set M. This set is a matching
for B that is perfect, conjoining and ω′(M) ≤ ω(E). �

The following Lemma 4.2 shows that a solution to the matching instance implies a valid
Eulerian extension for the original instance. Thus, it concludes the proof of correctness
for Construction 4.1.

Lemma 4.2. Let M be a perfect conjoining matching for B. We can construct an
Eulerian extension E for G that heeds the advice H such that ω(E) = ω′(M).

Proof. We simply look at every edge in M that has non-zero weight and add a corre-
sponding path to a designated Eulerian extension E of G: For non-gadget edges in M

21

(edges that match vertices in V ′1, . . . ,V
′
c), the corresponding path is the arc between

the two vertices in G. For edges that match a vertex v in a cell V ′o, 1 ≤ o ≤ c, and
a vertex u • v ∈ V ′c+k, 1 ≤ k ≤ j, where u ∈ V ′p, 1 ≤ p ≤ c, the corresponding path
is minpath(G, ω, hk, u, v). Here, hk is the path in H that lead to the introduction of V ′c+k
(that is, the kth long-hint gadget) in Construction 4.1.

We immediately see that ω(E) = ω′(M). Also, it is clear that every hint of length one
in H is realized in E because every hint h1 of length one leads to the pair connect(p1) in J.
Hints p≥2 of length two are also realized, because every such path leads to a cell V ′c+k,
where 1 ≤ k ≤ j, and also leads to the corresponding joins {o, c + k} and {p, c + k}
in J, where {o, p} = connect(h≥2). Thus, E heeds the advice H. Since M is a perfect
matching, every unbalanced vertex in G is the initial or terminal vertex of exactly one
path added to E in the above paragraph. By Fact 2.1 we may assume that this suffices to
make every vertex in G + E balanced. Also, G + E is connected, because E heeds the
advice H which is a connecting advice. �

To prove Theorem 4.1, it now only remains to show that Construction 4.1 can be carried
out in polynomial time.

Lemma 4.3. Construction 4.1 can be performed in O(|H|n4 + m) time.

Proof. Computing B0 takes O(n2) time. To compute J0 one needs O(|H|) time by
iterating over every path in H. Computing the initial partition {V ′1, . . . ,V

′
c} takes O(n +

m) time and the initial weight function ω′0 can also be computed within this time. Hence,
creating the initial instance is possible in O(n2 + m) time.

Regarding the addition of the gadget for one path in H, it takes O(n4) time to
compute the sets U1 and U2, because n2 instances of minpath have to be computed,
each taking O(n2) time (see Lemma 3.1). There are only three edges in the gadget for
every vertex v ∈ U1, thus computing the edge sets does not increase the running time
bound. For the weight function, we can reuse the values of minpath computed for every
pair of vertices v ∈ I+

G, u ∈ I−G and thus we can conclude an overall running time bound
of O(|H|n4 + m). �

By Lemma 4.1 and Lemma 4.2, Construction 4.1 is correct, and, by Lemma 4.3, it can
be carried out in polynomial time. Hence, Theorem 4.1 follows.

4.2. From Matching to Eulerian Extension with Advice
In the previous section, we have shown that a variant of Eulerian Extension reduces

to Conjoining Bipartite Matching (CBM). Now, in the opposite direction, we show
that CBM reduces to Eulerian Extension with Advice (EEA). This constitutes the final
building block for the equivalence of Eulerian Extension and CBM.

Theorem 4.2. Conjoining BipartiteMatching is ≤PPP
m -reducible to Eulerian Extension

with Advice with respect to the parameters “join set size” and “connected components
in the input graph”.

To prove Theorem 4.2 we first observe that for every instance of CBM there is an
equivalent instance such that every cell in the input vertex partition contains equal
numbers of vertices from both cells of the graph bipartition. This observation enables us

22

to model cells as connected components and vertices in the bipartite graph as unbalanced
vertices in the designated instance of EEA.

Lemma 4.4. For every instance of CBM, there is an equivalent instance comprising
the bipartite graph G = (V1] V2, E), the vertex partition P = {C1, . . . ,Ck} and the join
set J, such that

(i) for every 1 ≤ i ≤ k it holds that |V1 ∩Ci| = |V2 ∩Ci|, and
(ii) the graph (P, {{Ci,C j} : {i, j} ∈ J}) is connected.

This equivalent instance contains at most one cell more than the original instance and
is polynomial-time computable.

To prove this lemma, we first need the following auxiliary observation.

Observation 4.2. Let G = (V1] V2, E) be a bipartite graph such that |V1| = |V2| and
let the set P = {C1, . . . ,Ck} be a partition of the vertices in G. It holds that∑

i:|Ci∩V1 |>|Ci∩V2 |

|Ci ∩ V1| − |Ci ∩ V2| =
∑

i:|Ci∩V1 |<|Ci∩V2 |

|Ci ∩ V2| − |Ci ∩ V1|.

Proof. Observe that the equation holds if and only if |V1| = |V2|: Without loss of
generality we may assume that there are no cells Ci with |Ci ∩ V1| = |Ci ∩ V2| because
these do not contribute summands to the equation. Then we can rewrite the equation
such that the left-hand side reads as follows∑

i:|Ci∩V1 |>|Ci∩V2 |

|Ci ∩ V1| +
∑

i:|Ci∩V1 |<|Ci∩V2 |

|Ci ∩ V1|.

This is equal to |V1|. Analogously, the left-hand side in the rewritten formula is equal
to |V2|. �

Now, we are able to prove Lemma 4.4.

Proof of Lemma 4.4. We first prove that there is an equivalent instance corresponding
to statement (i) and then turn to statement (ii). Let the bipartite graph G = (V1] V2, E),
the weight function ω : E → [0, ωmax] ∪ {∞}, the vertex partition P = {C1, . . . ,Ck}

and the join set J constitute an instance ICBM of CBM. First observe that if ICBM is a
yes-instance then |V1| = |V2|, otherwise there could not be a perfect matching. Thus,
if |V1| , |V2| we may simply output a trivial no-instance for which the statement of
the lemma holds. Otherwise, for each 1 ≤ i ≤ k let αi B |Ci ∩ V1| − |Ci ∩ V2|. By
Observation 4.2, the following procedure can be carried out: Add a new empty cell Ck+1
to P. At the end of the procedure, Ck+1 will contain

∑
i:αi>0 αi vertices in V1 and the

same number of vertices in V2. Modify the graph G and each cell Ci ∈ P with αi > 0 as
follows: Add new vertices v1, . . . , vαi to V2 and to the cell Ci, and add an edge from v j

to a vertex in Ck+1 ∩ V1 for every 1 ≤ j ≤ αi such that every vertex in Ck+1 gets at most
one incident edge. Proceed analogously for cells Ci with αi < 0 by adding vertices to V1
and adding corresponding edges to Ck+1. Finally, expand the weight function ω to the
new edges by giving each of them weight 0.

This construction is obviously correct, since each new vertex can only be matched
to its corresponding vertex in Ck+1.

23

Concerning statement (ii), assume that the statement does not hold for an instance
that contains the vertex partition P = {C1, . . . ,Ck} and a join set J. We greedily
choose two cells Ci,C j that are in different connected components in the “cell-join
graph” (P, {{Ci,C j} : {i, j} ∈ J}), remove them from P, add the cell Ck B Ci ∪ C j, and
update J accordingly—that is, we replace every join {m, l} ∈ J where m ∈ {i, j} by
the join {k, l}. This is correct because all joins satisfied by any solution M for the new
instance are also satisfied by M in the original instance and vice versa. Iterating the
merging of cells in different connected components makes the cell-join graph connected
and the statement follows. �

Description of the Reduction. To reduce instances of CBM that conform to Lemma 4.4
to instances of EEA we use the simple idea of modeling every cell as connected
component, vertices in V1 as vertices with balance −1, vertices in V2 as vertices with
balance 1, and joins as hints.

Construction 4.2. Let the bipartite graph B = (V1]V2, E), the weight functionω : E →
[0, ωmax], the vertex partition P = {C1, . . . ,Ck} and the join set J constitute an in-
stance ICBM of CBM that corresponds to Lemma 4.4. Let v1

1, v
2
1, . . . , v

1
n/2, v

2
n/2 be a se-

quence of all vertices chosen alternatingly from V1 and V2. Let the graph G = (V, A) B
(V1 ∪ V2, A1 ∪ A2) where the arc set A1 assures that each vertex in V1 has balance −1
and vertices in V2 have balance 1. The arc set A2 introduces cycles into the graph such
that vertices that stem from the same cell in ICBM are in one connected component of G.
For example, we may construct A1, A2 as follows: A1 B {(v1

i , v
2
i) : 1 ≤ i ≤ n/2}. For

every 1 ≤ j ≤ k, let C j = {v1, . . . , v jk }, let

A j
2 B {(vi, vi+1) : 1 ≤ i ≤ jk − 1} ∪ {(v jk , v1},

and define A2 B
⋃k

j=1 A j
2. Then, define a new weight function ω′ for every pair of

vertices (u, v) ∈ V × V by

ω′(u, v) B

ω({u, v}), u ∈ V2, v ∈ V1, {u, v} ∈ E
∞, otherwise.

Finally, derive an advice H for G by adding a length-one hint h to H for every
join {o, p} ∈ J such that h consists of the edge that connects vertices in �G that corre-
spond to the connected components Co, and Cp. The graph G, the weight function ω′,
the maximum weight ωmax and the advice H constitute an instance of EEA.

By showing that the above is a ≤PPP
m -reduction we obtain a proof for Theorem 4.2:

Proof of Theorem 4.2. We show that the application of Lemma 4.4 and Construction 4.2
is a ≤PPP

m -reduction from CBM to EEA. It can easily be checked that it can be carried out
in polynomial time. Also, by Lemma 4.4 and the definition of A2 in Construction 4.2, it
follows that the instances of EEA generated in this way have a number of connected
components that is at most the size of the join set plus one.

Assume that there is a perfect conjoining matching M with weight at most ωmax
for the instance ICBM as in Construction 4.2. Then, we derive an Eulerian extension E

24

for G that heeds the advice H with the same weight by simply choosing E B {(u, v) :
u ∈ I−G ∧ {u, v} ∈ M}. By the definition of ω′, ω′(E) = ω(M). Every hint is realized
by E because for every join there is an edge in M that satisfies it. Most importantly,
E is an Eulerian extension for G: Since M is perfect, every vertex in G has exactly one
arc incident in E. Since every vertex in G has balance −1 or 1 (due to the definition
of A1), this suffices to make all vertices balanced. By Lemma 4.4(ii), the advice H is a
connecting advice and thus G + E is connected.

Now assume that there is an Eulerian extension E for G that heeds the advice H and
has weight at most ωmax. Choosing M B {{u, v} : (u, v) ∈ E} yields a perfect conjoining
matching of the same weight: It holds the ω′(E) = ω(M), because all extension arcs that
do not correspond to an edge in B have weight∞. The matching M is perfect, because
every vertex in I−G (in I+

G) has balance −1 (balance 1), has only incoming (outgoing)
allowed arcs and thus has exactly one arc incident in E. The matching M is conjoining,
because E heeds the advice H. �

4.3. Summary

Over the course of the preceding sections, we gathered the building blocks for
proving the following theorem.

Theorem 4.3. If the problem Conjoining BipartiteMatching is W[t]-hard for some t,
then Eulerian Extension is W[t]-hard. If the problem Conjoining BipartiteMatching is
fixed-parameter tractable, then Eulerian Extension is fixed-parameter tractable. Both
statements are with respect to the parameters “join set size” and “number of connected
components in the input graph”.8

It is easy to see that the ≤PPP
m -equivalence of Eulerian Extension (EE) and Rural

Postman given by Dorn et al. [10] also holds for the parameters “number of components”
and “number of components in the graph induced by the required arcs.” Thus, a
statement that is analogous to Theorem 4.3 holds for Rural Postman, when substituting
Rural Postman for EE and substituting the parameter accordingly.

Proof of Theorem 4.3. Assume that Conjoining Bipartite Matching (CBM) is W[t]-
hard. Then, combining the hardness reduction with the many-one reductions from CBM
to Eulerian Extension with Advice (Theorem 4.2) and from there to EE (Theorem 3.2),
we obtain a W[t]-hardness reduction for EE.

Now assume that CBM is fixed-parameter tractable. Then, using the ≤FPT
T -reduction

from EE to Eulerian Extension with Cycle-free Minimal Connecting Advice (The-
orem 3.1), many-one reducing each instance in an oracle question to an instance of
CBM (Theorem 4.1), and solving it via the fpt-algorithm yields fixed-parameter tractabil-
ity for EE. �

In the previous sections, we have set out to step-by-step restrict the solutions for
Eulerian Extension that we have to consider. Originally, we hoped for polynomial-time

8Note that this is a stronger statement than ≤FPT
T -equivalence of both problems, since it is not clear whether

W[t]-hardness under ≤FPT
T -reductions implies W[t]-hardness under parameterized many-one reductions.

25

algorithms for CBM. However, as we will observe in Section 5, CBM is still NP-
hard. Nevertheless, we deem CBM to be more accessible for parameterized complexity
analysis. Moreover, we will obtain a tractability result on restricted graphs in the
following. This raises hope that CBM might help us to eventually derive a fixed-
parameter algorithm for EE.

5. Conjoining Bipartite Matching: Properties and Special Cases

This section investigates the properties of CBM introduced in Section 4. As dis-
cussed before, CBM might eventually help us derive a fixed-parameter algorithm for EE
with respect to the parameter “number of connected components”. Section 5.1 first shows
that also CBM is NP-complete. Section 5.2 then establishes tractability of the problem on
restricted graph classes and translates this tractability result into the world of EE and RP.

5.1. NP-Hardness
NP-hardness for Conjoining BipartiteMatching (CBM) does not follow from the

parameterized equivalence to Eulerian Extension (EE) we gave in Section 4, since
the reduction from EE we gave is a parameterized Turing reduction. To show that
CBM is NP-hard, we polynomial-time many-one reduce from the well-known 3SAT,
where a Boolean formula φ in 3-conjunctive normal form (3-CNF) is given and it is
asked whether there is an assignment to the variables of φ that satisfies φ. Herein, a
formula φ in 3-CNF is a conjunction of disjunctions of three literals each, where each
literal is either x or ¬x and x is a variable of φ. In the following, we represent each
clause as three-element-set γ ⊆ X × {+,−}, where (x,+) ∈ γ means that x is contained
in the clause represented by γ and (x,−) ∈ γ means that ¬x is contained in the clause
represented by γ.

Construction 5.1. Let φ be a Boolean formula in 3-CNF with the variables X B
{x1, . . . , xn} and the clauses γ1, . . . , γm ⊆ X × {+,−}. We translate φ into an instance of
CBM that is a yes-instance if and only if φ is satisfiable. To this end, for every variable xi,
introduce a cycle with 4m edges consisting of the vertex set Vi B {v

j
i : 1 ≤ j ≤ 4m} and

the edge set Ei B {ek
i B {v

k
i , v

k+1
i } ⊆ Vi} ∪ {e4m

i B {v
1
i , v

4m
i }}. Let G B (

⋃n
i=1 Vi,

⋃n
i=1 Ei),

and let ω(e) B 0, e ∈ Ei for any 1 ≤ i ≤ n, and define ωmax B 1. To construct an
instance of CBM, it remains to find a suitable partition of the vertices of G and a join set.

Inductively define the vertex partition Pm of V(G) and the join set Jm as follows:
Let J0 = ∅, and let P0 B ∅. For every clause γ j, introduce the cell

C j B {v
4 j−1
i : (xi,+) ∈ γ j ∨ (xi,−) ∈ γ j} ∪ {v

4 j−2
i : (xi,+) ∈ γ j} ∪ {v

4 j
i : (xi,−) ∈ γ j}.

Define P j B P j−1 ∪ {C j} and J j B J j−1 ∪ {{0, j}}.
Finally, define C0 B V(G) \ (

⋃m
j=1 C j). The graph G, the weight function ω, the

vertex partition Pm ∪ {C0} and the join set Jm constitute an instance of CBM.

Example 5.1. Figure 6 shows an instance of CBM produced from the formula φ B
(¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) by Construction 5.1. For simplicity, we chose a formula
in 2-conjunctive normal form. The instance comprises the graph G that consists of

26

v11 v21

v31 v41

v51 v61

v71v81

v12

v22 v32

v42 v52 v62

v72v82

C0

C1

C2

Figure 6: Example of Construction 5.1 explained in Example 5.1.

two directed cycles (solid edges and dotted edges, respectively), three cells C0,C1,C2
forming a partition of V(G) (shaded in gray), and a join set with two joins represented
by the dashed lines.

Construction 5.1 introduces the solid-edge cycle for variable x1 and the dotted-
edge cycle for variable x2. The cycle corresponding to xi has exactly the two perfect
matchings

Mtrue
i B {{vk

i , v
k+1
i } : k odd} and

Mfalse
i B {{vk

i , v
k+1
i } : k even} ∪ {{v1

i , v
8
i }}.

The cell C1 models the clause ¬x1 ∨ x2 and the vertices are chosen such that only edges
of Mfalse

1 and edges of Mtrue
2 connect the cells C0 and C1. Analogously, only edges

of Mfalse
1 and edges of Mfalse

2 connect the cells C0 and C2.
There is a correspondence between the clauses a variable xi satisfies using a particular

truth assignment and the joins that are satisfied by matching the cycle that corresponds
to xi using one of the two available matchings. For example, the variable x1 satisfies
both clauses in φ when assigned false and no clause when assigned true. Accordingly,
the matching Mfalse

1 satisfies both the joins {0, 1}, and {0, 2} and the matching Mtrue
1

satisfies no join. This holds true analogously for x2 and thus finding a perfect conjoining
matching in G is equivalent to satisfying φ.

Using Construction 5.1, we can prove the following theorem.

Theorem 5.1. CBM is NP-complete, even in the unweighted case and when the input
graph G = (V]W, E) has maximum degree two, and for every cell Ci in the given vertex
partition of G it holds that |Ci ∩ V | = |Ci ∩W |.

Proof. CBM is contained in NP because a perfect conjoining matching of weight at
most ωmax is a certificate for a yes-instance.

We prove that Construction 5.1 is a polynomial-time many-one reduction from 3SAT
to CBM. Notice that in instances created by Construction 5.1 any matching has weight
lower than ωmax and, thus, the correctness of the reduction implies that CBM is hard
even without the additional weight constraint. Also, since the cells in the instances

27

of CBM are disjoint unions of edges, every cell in the partition Pm contains the same
number of vertices from each cell of the graph bipartition.

It is easy to check that Construction 5.1 is polynomial-time computable. For the
correctness, we first need the following definition: For every variable xi ∈ X, let

Mtrue
i B {ek

i ∈ Ei : k odd} and

Mfalse
i B Ei \ Mtrue

i = {ek
i ∈ Ei : k even}.

Observe that all perfect matchings in G are of the form
⋃n

i=1 Mν(xi)
i , where ν is an

assignment of truth values to variables in X. We show that the matching
⋃n

i=1 Mν(xi)
i is a

conjoining matching for G with respect to the join set Jm if and only if ν satisfies φ. For
this, it suffices to show that for every variable xi ∈ X it holds that

{ j : (xi,+) ∈ γ j} = { j : Mtrue
i satisfies the join {0, j}}, and (1)

{ j : (xi,−) ∈ γ j} = { j : Mfalse
i satisfies the join {0, j}}. (2)

We only show that (1) holds; (2) can be proven analogously. Assume that (xi,+) ∈ γ j.
By Construction 5.1 v4 j−2

i ∈ C j, v
4 j−3
i ∈ C0 and thus, since

{v4 j−2
i , v4 j−3

i } = e4 j−3 ∈ Mtrue
i ,

the matching Mtrue
i satisfies the join {0, j}. Now assume that (xi,+) < γ j, that is, either

(1) (xi,±) < γ j or (2) (xi,−) ∈ γ j. If (xi,±) < γ j, then Vi and C j are disjoint and, thus,
no matching in G[Vi] can satisfy the join {0, j}. If (xi,−) ∈ γ j, then the only edges in Ei

that can satisfy the join {0, j} are e4 j−2
i and e4 j

i . Both edges are not in Mtrue
i and, thus,

this matching cannot satisfy the join {0, j}. �

5.2. Tractability on Restricted Graph Classes
This section presents data reduction rules and employs them to give an algorithm

for CBM on a restricted graph class, leading to the following theorem:

Theorem 5.2. Conjoining BipartiteMatching can be solved in O(2 j(j+1)n + n3) time,
where j is the size of the join set, provided that in the bipartite input graph G =

(V1] V2, E) each vertex in V1 has degree at most two.

We note that there is a simple procedure that transforms in polynomial time any
instance of CBM into an instance where the bipartite graph has maximum degree three.9

This motivates to consider graphs of bounded degree. Despite this small difference, to
date we were not able to extend the tractability result to instances which allow vertices
of degree three in both cells of the graph bipartition. This is an intriguing open question.

In this section, let (G, ωmax, ω, P = {C1, . . . ,Cc}, J) be an instance of CBM, where
for G = (V1]V2, E) it holds that each vertex in V1 has degree at most two. The following

9The basic idea is to recursively replace a high-degree vertex v by a three-vertex path p and shifting the
incident edges of v to the initial and terminal vertices of p. The middle vertex then models that v is matched
to either of the groups of its incident edges.

28

lemma plays a central role in the proof of Theorem 5.2. It implies that, in a yes-instance,
every component of G consists of an even-length cycle with a collection of pairwise
vertex-disjoint paths incident to it.

Lemma 5.1. If G has a perfect matching, then every connected component of G contains
at most one cycle as subgraph.

For the proof, recall that a bipartite graph G = (V1] V2, E) has a perfect matching
if and only if |V1| = |V2| and for all subsets U of V1 it holds that |N(U)| ≥ |U | (Hall’s
condition). For a proof, see Bang-Jensen and Gutin [2], for example.

Proof of Lemma 5.1. We show that if G contains a connected component that contains
two cycles c1, c2 as subgraphs, then G does not have a perfect matching. First assume
that c1, c2 are vertex-disjoint. Then, there is a path p from a vertex v ∈ V(c1) to
a vertex w ∈ V(c2) such that p is vertex-disjoint from c1 and c2 except for v,w. It
is clear that v ∈ V2 and w ∈ V2 because they both have degree three. Consider the
vertices Vcp

1 B (V(c1)∪V(p)∪V(c2))∩V1 and the set Vcp
2 B (V(c1)∪V(p)∪V(c2))∩V2.

The set of vertices Vcp
2 is the set of neighbors of vertices in Vcp

1 , because they have
degree two and thus have neighbors only within p, c1, and c2. It is |Vcp

1 | = (|E(c1)| +
|E(p)| + |E(c2)|)/2 since neither of these paths and cycles overlap in a vertex in V1.
However, it is |Vcp

2 | = |V
cp
1 | − 1 because c1 and p overlap in v and c2 and p overlap in w.

This is a violation of Hall’s condition and thus G does not have a perfect matching.
The case where c1 and c2 share vertices can be proven analogously. (Observe that

then there is a subpath of c2 that is vertex-disjoint from c1 and contains an even number
of edges.) �

We now present four polynomial-time executable data reduction rules for CBM. It
is easy to verify that the first three rules are correct and can be applied exhaustively
in O(n3) time, thus, we omit the corresponding proofs.

Reduction Rule 5.1 removes paths incident to the cycles of a graph G in a yes-
instance. As a side-result, Reduction Rule 5.1 solves CBM in linear time on forests.

Reduction Rule 5.1. If there is an edge {v,w} ∈ E(G) such that deg(v) = 1, then
remove both v and w from G, and remove all joins {i, j} from J, with v ∈ Ci,w ∈ C j.
Decrease ωmax by ω({v,w}).

If exhaustively applying Reduction Rule 5.1 to G does not transform G such that each
connected component is a cycle, which is checkable in linear time, then, by Lemma 5.1,
G does not have a perfect matching and we can return “NO”. Hence, in the following,
assume that each connected component of G is a cycle. Reduction Rule 5.2 now deletes
connected components that cannot satisfy joins.

Reduction Rule 5.2. If there is a connected component D of G such that it contains
no edge that could satisfy any join in J, then compute a minimum-weight perfect
matching M in G[D], remove D from G and decrease ωmax by ω(M).

After exhaustively applying Reduction Rule 5.2, we may assume that each connected
component of G contains an edge that could satisfy a join. We next present a data
reduction rule that removes joins that are always satisfied. To this end, we need the
following definition.

29

Definition 5.1. For each connected component D (that is, each cycle) in G, denote
by M1(D) a minimum-weight perfect matching of D with respect to ω and denote
by M2(D) B E(D) \ M1(D) the other perfect matching of D.10 Furthermore, denote

σ1(D) B { j ∈ J : ∃e ∈ M1(D) : e satisfies j},
σ2(D) B { j ∈ J : ∃e ∈ M2(D) : e satisfies j},

and the signature σ(D) of D as {σ1(D), σ2(D)}.

Reduction Rule 5.3. Let D be a connected component of G. If there is a join j ∈
σ1(D) ∩ σ2(D), then remove j from J.

A final data reduction rule removes connected components that satisfy the same joins.

Reduction Rule 5.4. Let S = {D1, . . . ,D j} be a maximal set of connected components
of G such that σ(D1) = . . . = σ(D j) and j ≥ 2. Let M∗1 =

⋃ j
k=1 M1(Dk), let Dl ∈ S such

that ω(M2(Dl)) − ω(M1(Dl)) is minimum, and let M∼1 = M∗1 \ M1(Dl).
(i) If the matching M∗1 is conjoining for the join set σ1(D1) ∪ σ2(D1), then remove

each component in S from G, remove each join in σ1(D1) ∪ σ2(D1) from the join
set J, and reduce ωmax by ω(M∗1).

(ii) If the matching M∗1 is not conjoining for the join set σ1(D1)∪σ2(D1), then remove
each component in S \ {Dl} from G, remove any join in σ1(D1) from the join set J,
and reduce ωmax by ω(M∼1).

In either case, update the partition P accordingly.

Lemma 5.2. Reduction Rule 5.4 is correct.

Proof. Let G = (V1] V2, E) be a graph with maximum degree two, let ω : E →
[0, ωmax] ∪ {∞} be a weight function, let P = {C1, . . . ,Cc} be a vertex partition of G
and let J be a join set with respect to G and P. The objects G, ω, ωmax, P, and J
constitute an instance I of CBM. Furthermore, let the graph G′, the weight function ω,
the maximum weight ω′max, the vertex partition P′, and the join set J′ with respect to G′

and P′ constitute the instance I′ that is obtained from I by applying Reduction Rule 5.4
with the set S = {D1, . . . ,D j} as defined there.

Let M be a perfect J-conjoining matching for G with ω(M) ≤ ωmax and assume that
the matching M∗1 =

⋃ j
k=1 M1(Dk) is conjoining for the join set σ1(D1) ∪ σ2(D1). Then

either M∗1 ⊆ M, or we can obtain another perfect J-conjoining matching with weight at
most ω(M) that satisfies this property. Without loss of generality assume that M∗1 ⊆ M.
Then M\M∗1 is a perfect J′-conjoining matching for G′ of weight ω(M)−ω(M∗1) ≤ ω′max.

Now assume that M∗1 is not conjoining for the join set σ1(D1)∪σ2(D1). Then either
(1) M∗1 ⊆ M or
(2) there is an integer n such that M2(Dn) ⊆ M.

We first show that, in case (2), we may assume without loss of generality that n is
unique and that n = l as in Reduction Rule 5.4. Otherwise we can find another perfect J-
conjoining matching with weight at most ω(M) that satisfies this property: Since M∗1 is

10Note that in bipartite graphs every cycle is of even length.

30

not conjoining for the join set σ1(D1) ∪ σ2(D1), it holds that

σ1(D1) = . . . = σ1(D j), and σ2(D1) = . . . = σ2(D j),

because all signatures of the components in S are equal by prerequisite of Reduction
Rule 5.4. If n is not unique, there are n,m such that M2(Dn),M2(Dm) ⊆ M. How-
ever, by definition ω(M1(A)) ≤ ω(M2(A)) and if we substitute M1(Dm) for M2(Dm)
in M, the resulting matching has at most the same weight and is still J-conjoining
because σ2(Dn) = σ2(Dm). Hence we can assume that n is unique. We can also assume
that n = l because by definition of l

ω(M2(Dl)) − ω(M1(Dl)) ≤ ω(M2(Dn)) − ω(M1(Dn))

and thus we can substitute M1(Dn) for M2(Dn) and M2(Dl) for M1(Dl) in the matching M
to obtain a perfect J-conjoining matching of at most the same weight. Consider the
matching M∼1 =

⋃
1≤k≤ j,k,l M1(Dk). Both in case (1) and in case (2), when assuming

that n = l is unique, M \M∼1 is a perfect J′-conjoining matching for G′ of weight ω(M)−
ω(M∼1) ≤ ω′max.

We now have that if I is a yes instance then I′ is a yes instance. For the other direction,
assume that M′ is a perfect J′-conjoining matching for G′ of weight ω(M′) ≤ ω′max.
Assume that each component in S of G has been removed in G′ by Reduction Rule 5.4.
Then the matching M′ ∪ M∗1 for G is perfect, J-conjoining and of weight ω(M) +

ω(M∗1) ≤ ωmax. Now assume only the component Dl of the components in S is still
present in G′. Then, the matching M ∪ M∼1 is a perfect J-conjoining matching for G of
weight ω(M) + ω(M∼1) ≤ ωmax. �

Lemma 5.3. Reduction Rule 5.4 can be applied exhaustively in O(n3) time.

Proof. To apply Reduction Rule 5.4 once, we can first search for a set of components S
as defined there by first finding all connected components in linear time. Then we find
out the signature of each connected component. For this, we first compute a minimum-
weight perfect matching for every connected component in overall O(m) time by simply
iterating over the edges in each component, alternatingly summing up the edge weights
and choosing the lower one of the two values. We annotate every edge with whether it
is contained in the minimum-weight matching or not and which join it satisfies, if any,
in O(m2) time. We then iterate over every edge and add the information saved in the
annotation to the signature of the connected component it is contained in.

Having computed the signatures, we create a map in O(n log(n)) time that maps
every signature present to the list of connected components that have this signature.
We then simply iterate over every list present in the map to obtain a maximal list of
components that have the same signature or decide that there is no such list with at least
two elements. This is possible in O(n) time.

The removal of the connected components and joins, the update of ωmax and the
partition P is then possible in linear time, because the matchings for each component
have already been computed and thus the overall running time is O(m2 + n log n).
Observe that in graphs with only vertices of degree two m ∈ O(n) and thus we can derive
a running time bound in O(n2).

31

In any application, either no set S is found and thus the procedure terminates, or at
least 4 vertices are deleted—this is the minimum size of a connected component. Hence
the procedure can be applied at most n times and exhaustively applying Reduction
Rule 5.4 takes O(n3) time. �

Now, mainly using Reduction Rule 5.4, we are able to prove Theorem 5.2.

Proof of Theorem 5.2. An algorithm to solve CBM may first exhaustively apply Re-
duction Rule 5.1 through Reduction Rule 5.4. Then, since Reduction Rule 5.4 is not
applicable anymore, it follows that for every signature there is at most one connected
component in the reduced instance. If j is the size of the join-set, then there are at
most 2 j+1 signatures, and thus we may employ the following search tree algorithm to
achieve the claimed running time of O(2 j(j+1))n + n3): In O(n) time, choose an arbitrary
join k ∈ J that is not satisfied yet, and branch into all possibilities of choosing one of the
at most 2 j+1 connected components of the graph that can satisfy k. Match the vertices in
the chosen connected component such that it satisfies k and recurse until all joins are
satisfied. �

Analyzing the pre-images that lead to tractable instances of CBM under the reductions
we gave in Section 3 and Section 4, Theorem 5.2 can be translated to a tractability result
for EE. A similar tractability result can also be shown for Rural Postman.

Corollary 5.1. Let the graph G and the weight function ω constitute an instance IEE of
Eulerian Extension. Let c be the number of connected components in G.

(i) If every path or cycle in the set of allowed arcs with respect to ω has length at
most one,

(ii) if G contains only vertices with balance between −1 and 1,
(iii) if every vertex in I+

G (every vertex in I−G) has only outgoing allowed arcs (incoming
allowed arcs), and

(iv) if in every connected component C of G, either all vertices in I+
G ∩C or in I−G ∩C

have at most two incident allowed arcs,
then it is decidable in O(2c(c+3 log c+1)(n4 + m)) time whether IEE is a yes-instance.

6. Conclusion

The most important remaining open question is to determine whether Rural Postman
is fixed-parameter tractable with respect to the number of weakly connected components
of the graph induced by the required arcs. This question also extends to the presumably
harder undirected case of Rural Postman. The newly introduced Conjoining Bipartite
Matching (CBM) problem might also be useful in answering this question. Additionally,
it may enable us to spot new, computationally feasible special cases of Rural Postman
and Eulerian Extension. The development of polynomial-time approximation algo-
rithms for CBM or the investigation of other (structural) parameterizations for CBM
seem worthwhile challenges as well. Finally, we remark that previous work [10, 22]
also left open a number of interesting open problems referring to variants of Eulerian
Extension. Due to the practical relevance of the considered problems, our work is also
meant to further stimulate more research on these challenging combinatorial problems.

32

Acknowledgement. We thank Greg N. Frederickson for scanning relevant pages of his
PhD-thesis and making them available to us.

References

[1] A. A. Assad and B. L. Golden. Arc routing methods and applications. In Net-
work Routing, volume 8 of Handbooks in Operations Research and Management
Science, pages 375–483. Elsevier B. V., 1995.

[2] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications.
Springer, second edition, 2008.

[3] E. Benavent, A. Corberán, E. Piñana, I. Plana, and J. M. Sanchis. New heuristic
algorithms for the windy rural postman problem. Comput. Oper. Res., 32(12):
3111–3128, 2005.

[4] F. T. Boesch, C. Suffel, and R. Tindell. The spanning subgraphs of Eulerian graphs.
J. Graph Theory, 1:79–84, 1977.

[5] E. A. Cabral, M. Gendreau, G. Ghiani, and G. Laporte. Solving the hierarchical
chinese postman problem as a rural postman problem. European J. Oper. Res.,
155(1):44–50, 2004.

[6] L. Cai and B. Yang. Parameterized complexity of even/odd subgraph problems.
J. Discrete Algorithms, 9:231–240, 2011.

[7] N. Christofides, V. Campos, A. Corberán, and E. Mota. An algorithm for the rural
postman problem on a directed graph. Mathematical Programming Study, 26:
155–166, 1986.

[8] A. Corberán and J. M. Sanchis. A polyhedral approach to the rural postman
problem. Technical report, Departamento de Estadı́stica e Investigación Operativa,
Universidad de Valencia, Spain, 1991.

[9] M. Cygan, D. Marx, M. Pilipczuk, M. Pilipczuk, and I. Schlotter. Parameterized
complexity of Eulerian deletion problems. In Proc. 37th WG, volume 6986 of
LNCS, pages 131–142. Springer, 2011.

[10] F. Dorn, H. Moser, R. Niedermeier, and M. Weller. Efficient algorithms for
Eulerian extension. In Proc. 36th WG, volume 6410 of LNCS, pages 100–111.
Springer, 2010. Full version submitted to SIAM Journal on Discrete Mathematics.

[11] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[12] M. Dror. Arc Routing: Theory, Solutions, and Applications. Kluwer Academic
Publishers, 2000.

[13] J. Edmonds and E. L. Johnson. Matching, euler tours and the chinese postman.
Math. Program., 5:88–124, 1973.

33

[14] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part II: The
rural postman problem. Oper. Res., 43(3):399–414, 1995.

[15] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[16] F. V. Fomin and P. A. Golovach. Parameterized Complexity of Connected
Even/Odd Subgraph Problems. In Proc. 29th STACS, volume 14, pages 432–
440. LZI Dagstuhl, Germany, 2012.

[17] G. N. Frederickson. Approximation Algorithms for NP-hard Routing Problems.
PhD thesis, Faculty of the Graduate School of the University of Maryland, 1977.

[18] G. N. Frederickson. Approximation algorithms for some postman problems.
J. ACM, 26(3):538–554, 1979.

[19] G. Ghiani and G. Laporte. A branch-and-cut algorithm for the undirected rural
postman problem. Math. Program., 87:467–481, 2000.

[20] G. Groves and J. Van Vuuren. Efficient heuristics for the rural postman problem.
ORiON, 21(1):33–51, 2005.

[21] J. Guo, F. Hüffner, and R. Niedermeier. A structural view on parameterizing
problems: Distance from triviality. In Proc. 1st IWPEC, volume 3162 of LNCS,
pages 162–173. Springer, 2004.

[22] W. Höhn, T. Jacobs, and N. Megow. On Eulerian extensions and their application
to no-wait flowshop scheduling. J. Sched., 2011. Available electronically.

[23] J. K. Lenstra and A. H. G. R. Kan. On general routing problems. Networks, 6(3):
273–280, 1976.

[24] L. Lesniak and O. R. Oellermann. An Eulerian exposition. J. Graph Theory, 10
(3):277–297, 1986.

[25] A. N. Letchford. Polyhedral Results for some Constrained Arc-Routing Problems.
PhD thesis, Lancaster University, Lancaster, United Kingdom, 1996.

[26] K. Mei-Ko. Graphic programming using odd or even points. Chinese Math., 1:
273–277, 1962.

[27] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[28] C. S. Orloff. A fundamental problem in vehicle routing. Networks, 4(1):35–64,
1974.

[29] C. S. Orloff. On general routing problems: Comments. Networks, 6(3):281–284,
1976.

[30] N. Perrier, A. Langevin, and J. F. Campbell. A survey of models and algorithms
for winter road maintenance. Part IV: Vehicle routing and fleet sizing for plowing
and snow disposal. Comput. Oper. Res., 34(1):258–294, 2007.

34

[31] N. Perrier, A. Langevin, and C.-A. Amaya. Vehicle routing for urban snow plowing
operations. Transport. Sci., 42(1):44–56, 2008.

[32] M. Pérez-Delgado. A solution to the rural postman problem based on artificial ant
colonies. In Current Topics in Artificial Intelligence, volume 4788 of LNCS, pages
220–228. Springer, 2007.

[33] M. Sorge. On making directed graphs Eulerian. Diplomarbeit, Institut für
Informatik, Friedrich-Schiller-Universität Jena, 2011. Available electronically.
arXiv:1101.4283 [cs.DM].

[34] M. Sorge, R. van Bevern, R. Niedermeier, and M. Weller. From few components
to an Eulerian graph by adding arcs. In Proc. 37th WG, volume 6986 of LNCS,
pages 307–319. Springer, 2011.

[35] M. Sorge, R. van Bevern, R. Niedermeier, and M. Weller. A new view on rural
postman based on Eulerian extension and matching. In Proc. 22nd IWOCA, volume
7056 of LNCS, pages 310–322. Springer, 2011.

35

