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Abstract
We investigate the problem of deciding whether
a given preference profile is close to a nicely
structured preference profile of a certain type, as
for instance single-peaked, single-caved, single-
crossing, value-restricted, best-restricted, worst-
restricted, medium-restricted, or group-separable
profiles. We measure this distance by the number of
voters or alternatives that have to be deleted so as to
reach a nicely structured profile. Our results clas-
sify all considered problem variants with respect to
their computational complexity, and draw a clear
line between computationally tractable (polyno-
mial time solvable) and computationally intractable
(NP-hard) questions.

1 Introduction
The area of Social Choice (and in particular the subarea of
Computational Social Choice) is full of so-called negative re-
sults. On the one hand there are many axiomatic impossibility
results, and on the other hand there are many computational
intractability results. For instance, the famous impossibility
result of Arrow [1950] states that there is no perfectly fair
way (satisfying certain desirable axioms) of aggregating the
preferences of a society of voters into a single preference or-
dering. As another example, Bartholdi et al. [1989] establish
that it is computationally intractable (NP-hard) to determine
whether some particular candidate wins an election under a
voting scheme designed by Lewis Carroll. Most of these neg-
ative results hold for general preference profiles where any
combination of preference orderings may occur.

One branch of Social Choice studies restricted domains of
preference profiles, where only certain nicely structured com-
binations of preference orderings are admissible. The stan-
dard example for this approach are single-peaked preference
profiles as introduced by Black [1948]: A preference profile
is single-peaked if there exists a linear ordering of the alter-
natives such that any voter’s preference along this ordering
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is either always strictly increasing, always strictly decreas-
ing, or first strictly increasing and then strictly decreasing.
Single-peakedness implies a number of interesting proper-
ties, such as non-manipulability (Moulin [1980]) and tran-
sitivity of the majority rule (Inada [1969]). Under single-
peaked profiles, Arrow’s impossibility result collapses. In a
similar spirit (but in the algorithmic branch), Walsh [2007],
Brandt et al. [2010], and Faliszewski et al. [2011b] show
that many electoral bribery, control and manipulation prob-
lems that are NP-hard in the general case become tractable
under single-peaked profiles. Besides the single-peaked do-
main, the literature contains many other restricted domains of
nicely structured preference profiles (see Section 2 for precise
mathematical definitions).
• Sen [1966] and Sen and Pattanaik [1970] introduced

the domain of value-restricted preference profiles which
satisfy the following: for any triple of alternatives, one
alternative is not considered as the most preferred by any
individual (best-restricted), or one is not considered as
the least preferred by any individual (worst-restricted),
or one is not considered as the intermediate alternative
by any individual (medium-restricted).
• Inada [1964; 1969] considered the domain of group-

separable preference profiles which satisfy the follow-
ing: the alternatives can be split into two groups such
that every voter prefers every alternative in the first
group to those in the second group, or prefers every al-
ternative in the second group to those in the first group.
Every group-separable profile is also medium-restricted.
• Single-caved [Inada, 1964] preference profiles result

from a single-peaked profiles by reversing the prefer-
ences of every voter. Sometimes single-caved profiles
are also called single-dipped [Klaus et al., 1997].
• Single-crossing preference profiles go back to a seminal

paper of Roberts [1977] on income taxation. A pref-
erence profile is single-crossing if there exists a linear
ordering of the voters such that for any pair of alterna-
tives along this ordering, either all voters have the same
opinion on the ordering of these two alternatives or there
is a single spot where the voters switch from preferring
one alternative to the other one.

Just like single-peakedness, each of these restrictions guaran-
tees many nice properties, such as the transitivity of the sim-
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Restriction Voters deletion Alternatives del.

Single-peaked NP-c (*, Cor. 9) P (*)
Single-caved NP-c (*, Cor. 9) P (*)
Single-crossing P (Thm. 10) NP-c (Thm. 13)
Group-separable NP-c (Cor. 9) NP-c (Cor. 12)
Worst-restricted NP-c (Thm. 8) NP-c (Thm. 11)
Medium-restricted NP-c (Thm. 8) NP-c (Thm. 11)
Best-restricted NP-c (Thm. 8) NP-c (Thm. 11)
Value-restricted NP-c (Thm. 8) NP-c (Thm. 11)

Table 1: Summary of the results where NP-c means NP-
complete and P means polynomial-time solvable. Entries
marked by “*” are due to Erdélyi et al. [2013].

ple majority rule. Unfortunately, real-world elections are al-
most never single-peaked, value-restricted, group-separable,
single-caved or single-crossing. Often there are maverick
voters whose vote is determined by race, religion or gender.
Mavericks destroy nice combinatorial structures in the pref-
erence profiles. In a very recent line of research, Faliszewski
et al. [2011a] searched a cure against such mavericks, and
arrived at nearly single-peaked preference profiles: A profile
is nearly single-peaked, if it is very close to a single-peaked
profile. Of course, there are many mathematical ways of mea-
suring the distance of profiles. Perhaps, the most natural way
is (i) by deletion of voters or (ii) by deletion of alternatives.
Faliszewski et al. analyze various control and bribery prob-
lems under such nearly single-peaked profiles, and derive a
number of somewhat unexpected results.

In a closely related paper (with a disjoint set of results),
Erdélyi et al. [2013] study various notions of nearly single-
peaked profiles. Besides deletion of voters and deletion of
alternatives, they also study distance measures that are based
on swapping alternatives in the preferences of some voters,
or on introducing additional political axes. However, their
investigations are limited to single-peaked profiles.
Results of this paper. We investigate the problem of de-
ciding the distance (by deletion of voters and by deletion of
alternatives) of a given preference profile to a nicely struc-
tured one of a certain type (like being single-crossing, value-
restricted, or group-separable). We focus on some of the most
fundamental definitions of distance measures and on the most
popular restricted domains. Our results draw a clear line be-
tween computationally tractable (polynomial-time solvable)
and computationally intractable (NP-hard) questions as they
classify all considered problem variants with respect to their
computational complexity. See Table 1 for an overview.

This paper is organized as follows. Section 2 summarizes
all the basic definitions and notations. Section 3 surveys our
main results. We conclude in Section 4. Due to lack of space,
we defer some proofs to a full version of the paper.

2 Preliminaries and Basic Notations
Let a1, . . . , am be m alternatives and let v1, . . . , vn be n vot-
ers. A preference profile specifies the preference orderings of
the voters, where voter vi ranks the alternatives according to
a strict linear order�i. For alternatives a and b, a �i bmeans

that voter vi strictly prefers a to b. We omit the subscript i if
it is clear from the context whose preference ordering we are
referring to.

Given two sets A and B of alternatives, we write A �i B
to express that voter vi prefers set A to set B, that is, for
each alternative a ∈ A and each alternative b ∈ B it holds
that a �i b. In a similar way, we use A �i a to denote
that voter vi prefers every alternative inA to alternative a and
a �i A for the reverse situation. If we define the canoni-
cal ordering of the alternatives in A, then 〈A〉 denotes this
canonical linear ordering. Further, 〈A1〉 � 〈A2〉 denotes the
preference ordering that is consistent with 〈A1〉 as well as
〈A2〉 and prefers all vertices in A1 to all vertices in A2.

Next, we review some concrete preference profiles of small
size with special properties studied in the literature [Ballester
and Haeringer, 2011; Bredereck et al., 2012]. We call such
profiles configurations.
Value-restricted profiles. The first three configurations de-
scribe profiles with three alternatives where each alternative
is at the best, medium, or worst position in some voter’s pref-
erence ordering.
Definition 1 (Best-diverse configuration). A profile with three
voters v1, v2, v3 and three distinct alternatives a, b, c is a
best-diverse configuration if it satisfies the following:
v1 : a �1 {b, c}; v2 : b �2 {a, c}; v3 : c �3 {a, b}.

Definition 2 (Medium-diverse configuration). A profile with
three voters v1, v2, v3 and three distinct alternatives a, b, c is
a medium-diverse configuration if it satisfies the following:

v1: b �1 a �1 c or c �1 a �1 b;
v2: a �2 b �2 c or c �2 b �2 a;
v3: a �3 c �3 b or b �3 c �3 a.

Definition 3 (Worst-diverse configuration). A profile with
three voters v1, v2, v3 and three distinct alternatives a, b, c is
a worst-diverse configuration if it satisfies the following:
v1 : {b, c} �1 a; v2 : {a, c} �2 b; v3 : {a, b} �3 c.

We use these three configurations to characterize several
restricted domains: A profile is best-restricted (resp. medium-
restricted, worst-restricted) with respect to a triple T of al-
ternatives if it contains no three voters that form a best-
diverse configuration (resp. a medium-diverse configuration,
a worst-diverse configuration) with respect to T . A best-
restricted (resp. medium-restricted, worst-restricted) profile
is best-restricted (resp. medium-restricted, worst-restricted)
with respect to every possible triple of alternatives.

A profile is value-restricted [Sen, 1966] if for any triple T
of alternatives, it is best-restricted, medium-restricted, or
worst-restricted with respect to T .
Single-peaked profiles and single-caved profiles. The
single-peaked property requires the existence of a “natu-
ral” linear ordering of the alternatives: A profile is single-
peaked [Black, 1948] if there is an ordering L of alternatives
such that for each voter v,L can be split into two orderingsL1

and L2, and v prefers each alternative a in L1 to any alterna-
tive to a’s left while he prefers each alternative b in L2 to any
alternative to b’s right. Single-peaked preferences are nec-
essarily worst-restricted. In addition, we need the following
configuration to fully characterize the single-peaked domain:
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Definition 4 (α-configuration). A profile with two voters v1
and v2, and four distinct alternatives a, b, c, d is an α-
configuration if it satisfies the following:

v1: a �1 b �1 c and d �1 b;
v2: c �2 b �2 a and d �2 b.

The α-configuration represents a situation where two vot-
ers have opposite opinions on the ordering of three alterna-
tives a, b and c but agree that a fourth alternative d is “better”
than the one ranked in the middle. The profile is not single-
peaked, as alternatives b and d must be put between alterna-
tives a and c, but then voter v1 prevents us from putting b next
to a and voter v2 prevents us from putting d next to a.

Ballester and Haeringer [2011] show that a profile is
single-peaked if and only if it is worst-restricted and contains
no α-configurations. They also show that a profile is single-
caved if and only if it is best-restricted and contains no ᾱ-
configurations, where an ᾱ-configuration is a α-configuration
with both preference orderings being reversed.
Group-separable profiles. The group-separable property
requires that the set A of alternatives can be partitioned into
two subsets A1 and A2 such that for each voter vi: A1 �i A2

or A2 �i A1. Group-separable profiles are necessarily
medium-restricted. In addition, we need the following con-
figuration to fully characterize this property:
Definition 5 (β-configuration). A profile with two vot-
ers v1 and v2 and four distinct alternatives a, b, c, d is a β-
configuration if it satisfies the following:

v1: a �1 b �1 c �1 d; v2: b �2 d �2 a �2 c.

The β-configuration represents a situation where the best
and least preferred alternatives of the first voter are a and d
which are different from the ones of the second voter: b and c.
Both voters agree that b is better than c, but disagree whether
d is better than a. This profile is not group-separable: We
cannot partition the four alternatives into a one-alternative set
and a three-alternatives set as each alternative is ranked in the
middle once, and we cannot partition them into two subsets
of size two each since voter v1 prevents us from putting alter-
natives a and c or alternatives a and d together and voter v2
prevents us from putting alternatives a and b together.

A profile is group-separable if and only if it con-
tains neither medium-diverse configurations nor β-
configurations [Ballester and Haeringer, 2011].
Single-crossing profiles. The single-crossing property re-
quires the existence of a “natural” linear ordering of the vot-
ers. A profile is single-crossing if there exists a linear order-
ing of the voters such that for any two alternatives along this
ordering, there is a single spot where the voters switch from
preferring one alternative to the other one. To characterize
single-crossing preferences, we need the following two con-
figurations.
Definition 6 (γ-configuration). A profile with three voters
v1, v2, v3 and six (not necessarily distinct) alternatives
a, b, c, d, e, f is a γ-configuration if it satisfies the following:

v1: b �1 a and c �1 d and e �1 f ;
v2: a �2 b and d �2 c and e �2 f ;
v3: a �3 b and c �3 d and f �3 e.

The γ-configuration represents a situation where each voter
disagrees with the other two voters on the ordering of exactly
two distinct alternatives. The profile is not single-crossing, as
none of the three voters can be put between the other two: The
pair {a, b} prevents us from putting v1 into the middle, the
pair {c, d} forbids voter v2 in the middle, and the pair {e, f}
forbids v3 in the middle.
Definition 7 (δ-configuration). A profile with four voters v1,
v2, v3, v4 and four (not necessarily distinct) alternatives
a, b, c, d is a δ-configuration if it satisfies the following:

v1: a �1 b and c �1 d; v2: a �2 b and d �2

c;
v3: b �3 a and c �3 d; v4: b �4 a and d �4

c.

The δ-configuration shows a different kind of voter behav-
ior: Two voters disagree with the other two voters on the
ordering of two alternatives, but also disagree between each
other on the ordering of two further alternatives. As before,
this profile is not single-crossing, as the pair {a, b} forces us
to place v1 and v2 next to each other, and to put v3 and v4
next to each other; the pair {c, d} forces us to place v1 and v3
next to each other, and to put v2 and v4 next to each other.
This means that no voter can be put into the first position.

A profile is single-crossing if and only if it contains nei-
ther γ-configurations nor δ-configurations [Bredereck et al.,
2012].
Two central problems. As already discussed before, two
natural ways of measuring the distance of profiles to some
restricted domains is by deleting voters and by deleting alter-
natives. Hence, for Π∈{worst-restricted, medium-restricted,
best-restricted, value-restricted, single-peaked, single-caved,
single-crossing, group-separable}, we study the following
two types of modification problems: Π MAVERICK DELE-
TION and Π ALTERNATIVE DELETION.
Π MAVERICK DELETION
Input: A profile with n voters and an integer k ≤ n.
Question: Can we delete at most k voters such that the re-
sulting profile has the Π-property?
Π ALTERNATIVE DELETION
Input: A profile with m alternatives and an integer k ≤ m.
Question: Can we delete at most k alternatives such that the
resulting profile has the Π-property?

3 Results
It is easy to see that both Π MAVERICK DELETION and
Π ALTERNATIVE DELETION are in NP with Π being one of
the eight properties we consider: Given a preference profile,
one can check in polynomial time whether it is Π, since the
Π-property is characterized by a fixed number of forbidden
substructures. Thus, in order to show the NP-completeness
of Π MAVERICK DELETION and Π ALTERNATIVE DELE-
TION, we only have to show their NP-hardness.

We will use the NP-complete VERTEX COVER (VC) prob-
lem [Garey and Johnson, 1979] to show many of our NP-
hardness results: Given an undirected graph G = (U,E) and
a non-negative integer k, VC asks whether there is a vertex
cover U ′ ⊆ U of at most k vertices, that is, each edge is
incident to at least one vertex in U ′.
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On deleting maverick voters. We start our findings on in-
tractability results with the four domain-restrictions which are
characterized by configurations with three alternatives.

Theorem 8. Π MAVERICK DELETION is NP-complete
for every Π ∈ {best-restricted, medium-restricted, worst-
restricted, value-restricted}.

Proof. We reduce from VC to show the NP-hardness re-
sult. Let (G, k) denote a VC-instance with vertex set U =
{u1, . . . , ur} and edge set E = {e1, . . . , es}; without loss
of generality r ≥ 4. The set of alternatives consists of three
edge alternatives aj , bj , and cj for each edge ej ∈ E. The
voter set one-to-one corresponds to vertex set U . In total, the
number m of alternatives is 3s and the number n of voters
is r. All voters prefer {aj , bj , cj} to {aj′ , bj′ , cj′} whenever
j < j′. Moreover, voter vi has aj � bj � cj if vi /∈ ej . Oth-
erwise, let edge ej = {vi, vi′}. Voter vi ranks cj � aj � bj
if i < i′, and ranks bj � cj � aj , otherwise. In this way,
the two vertex voters in ej and any other voter vz not in ej
form a worst-diverse configuration, a medium-diverse con-
figuration as well as a best-diverse configuration regarding
the three edge alternatives ai,bi, and ci. The parameter k is
the same. The whole construction runs in polynomial time.
Due to lack of space, its correctness proof is deferred to a full
version of the paper.

The profile constructed in the proof of Thm. 8 does
not contain α-configurations, ᾱ-configurations, or β-
configurations. Hence, NP-hardness transfers to single-
caved, group-separable, and single-peaked cases, respec-
tively. Note that NP-hardness for SINGLE-PEAKED MAV-
ERICK DELETION is already known by a different proof of
Erdélyi et al. [2013]. However, their proof does not work for
Π MAVERICK DELETION with Π∈{best-restricted, medium-
restricted, worst-restricted, group-separable}.
Corollary 9. Π MAVERICK DELETION is NP-complete for
every Π∈{single-caved, group-separable, single-peaked}.

In contrast to all NP-complete Π MAVERICK DELETION
problems above, SINGLE-CROSSING MAVERICK DELE-
TION is tractable. The algorithm, which is similar to the
single-crossing detection algorithm of Elkind et al. [2012],
does not only solve the decision problem but the optimization
problem asking for the smallest number k of voters to delete
in order to make the profile single-crossing.

Theorem 10. SINGLE-CROSSING MAVERICK DELETION is
solvable in O(n3 ·m2) time, where n denotes the number of
voters and m denotes the number of alternatives.

Proof. In the following, we assume that the voters have pair-
wise distinct preference orderings. By using arc weights in
the graphs to be constructed, the algorithm can be extended
to also work for general preference profiles. Let vi, vi′ , and
vi′′ be three distinct voters. We say that voter vi′ is �i-swap-
transferable to voter vi′′ if one can transform the preference
ordering of vi′ to the one of vi′′ by repetitive swapping of two
alternatives aj and aj′ with aj �i aj′ and aj �i′ aj′ .

Let L = 〈v1, . . . , vi′ , . . . , vi′′ , . . . 〉 be a linear ordering
of voters with vi′ and vi′′ being two distinct voters. Then,

by definition of single-crossing profiles, vi′ is �1-swap-
transferable to vi′′ , but vi′′ is not�1-swap-transferable to vi′ .

The idea is to guess (by testing all) the first voter in a
single-crossing ordering and to compute a maximum set of
possible successive voters. This idea is realized as follows.

For each voter vi, build a directed graphDi with one vertex
for each voter. Add an arc from vertex x to vertex y if x
is �i-swap-transferable to y. By the definition of the swap-
operation, the graph becomes acyclic. Now, a vertex ordering
in a longest directed path among these graphs represents a
single-crossing ordering of a subset of voters of maximum
size. Thus, the minimum number k of voters to delete to make
the profile single-crossing is n − ` with n being the number
of voters and ` the length of a longest path.

ConstructingDi takesO(n2 ·m2) time: Check for each or-
dered pair (x, y) of vertices whether the voter corresponding
to x is �i-swap-transferable to y by checking any two alter-
natives. Computing the longest path in each Di takes O(n2)
time. Thus, checking all n graphs takes O(n3 ·m2) time.

On deleting alternatives. Another way of obtaining nicely
structured preference profiles is to delete alternatives. The
corresponding problems are studied in the remainder of this
section.
Theorem 11. Π ALTERNATIVE DELETION is NP-complete
for every Π ∈ {best-restricted, medium-restricted, worst-
restricted, value-restricted}.

Proof. We show a polynomial-time many-one reduction from
VC to Π ALTERNATIVE DELETION with Π ∈ {medium-
restricted, value-restricted, worst-restricted}. For BEST-
RESTRICTED ALTERNATIVE DELETION one has to reverse
all preference orderings in the forthcoming construction.

Let (G, k) denote a VC-instance with vertex set U =
{u1, . . . , ur} and edge set E = {e1, . . . , es}. The set of
alternatives consists of all vertices in U and of k + 1 new
dummy alternatives. Let D denote the set of these new
dummy alternatives. We arbitrarily fix a canonical ordering
of D and set 〈U〉 = 〈u1, . . . , ur〉. The number m of con-
structed alternatives is r + k + 1. We introduce a voter v0
with the special preference ordering 〈D〉 � 〈U〉. Further-
more, for each edge ei = {uj , uj′} with j < j′, we intro-
duce two edge voters v2i−1 and v2i with preference orderings
uj � uj′ � 〈D〉 � 〈U \ ei〉 and uj′ � 〈D〉 � 〈U \ {uj′}〉,
respectively. Together with voter v0, these two voters v2i−1
and v2i form a worst-diverse configuration and a medium-
diverse configuration with respect to the two vertex alterna-
tives uj , uj′ and any dummy alternative. In total, the num-
ber n of constructed voters is 2s+1. The parameter k remains
the same. This completes the construction.

Our reduction runs in polynomial time. It remains to show
its correctness. In particular, we show that (G, k) has a vertex
cover of size at most k if and only if the constructed profile
can be made worst-restricted (resp. medium-restricted), and
hence, value-restricted by deleting at most k alternatives.

For the “only if” part, suppose that U ′ ⊆ U with |U ′| ≤ k
is a vertex cover. First, we show that after deleting the ver-
tex alternatives corresponding to U ′, the resulting profile is
worst-restricted and, hence, value-restricted. Suppose for the
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sake of contradiction that the resulting profile still contains a
worst-diverse configuration σ. Since all voters have the same
ranking over D, σ contains at most one dummy alternative.
But if σ contains one dummy alternative d ∈ D, then there
is a voter with u � u′ � d, u, u′ ∈ U which means that
edge {u, u′} is not covered by U ′. Hence, σ contains no
dummy alternative. This means that σ contains three vertex
alternatives uj , uj′ , and uj′′ with j < j′ < j′′ and by the def-
inition of the worst-diverse configuration, σ concerns three
voters with preferences {uj , uj′}�uj′′ , {uj , uj′′}�uj′ , and
{uj′ , uj′′} � uj , respectively. However, the last preference
implies that {uj′ , uj′′} is an edge which is not covered by
U ′—a contradiction.

Second, we show that after deleting the vertex alterna-
tives corresponding to U ′ the resulting profile is medium-
restricted. Suppose for the sake of contradiction that the
resulting profile still contains a medium-diverse configura-
tion σ′. Since all voters have the same ranking over D and
no voter ranks d � u � d′ with d, d′ ∈ D and u ∈ U ,
σ′ can contain at most one dummy alternative. Now, if σ′
involves one dummy alternative d ∈ D and two vertex alter-
natives uj , uj′ ∈ U with j < j′, then the voter ranking uj′
between uj and d must have uj � uj′ � d. But this means
that {uj , uj′} is an uncovered edge—a contradiction. Hence,
assume that σ′ contains no dummy alternative. This means
that σ′ must involve three vertex alternatives uj , uj′ , uj′′ with
j<j′<j′′. However, there is no voter with uj�uj′′�uj′ or
uj′�uj′′�uj in the resulting profile—a contradiction.

For the “if” part, suppose that the constructed profile is a
yes-instance for the worst-restricted or the medium-restricted
case. Let U ′ ⊆ U be the set of deleted vertex alternatives
with |U ′| ≤ k. Then U ′ is also a vertex cover of G. Assume
towards a contradiction that ei = {uj , uj′} (j < j′) is an un-
covered edge. Since |D|>k, at least one dummy alternative d
is not deleted. Then, v0 and v2i, v2i−1 form a worst-diverse
configuration as well as a medium-diverse configuration re-
garding uj , uj′ , d—a contradiction.

The profile which results from deleting alternatives from
the profile constructed in the proof of Thm. 11 is not only
medium-restricted, but it even contains no β-configurations.
By the definition of group-separability, this means that the
NP-completeness result of MEDIUM-RESTRICTED ALTER-
NATIVE DELETION also holds for the group-separable case.
Corollary 12. GROUP-SEPARABLE ALTERNATIVE DELE-
TION is NP-complete.

While making a profile single-crossing by deleting as few
maverick voters as possible is in P, the decision variant of this
problem becomes NP-hard if one instead deletes alternatives.
Theorem 13. SINGLE-CROSSING ALTERNATIVE DELE-
TION is NP-complete.

Proof. For the NP-hardness result we reduce from
the NP-complete satisfiability problem MAXIMUM 2-
SATISFIABILITY (MAX2SAT) [Garey and Johnson, 1979].
Given a set U of Boolean variables, a collection C of
size-two clauses over U and a positive integer k′, MAX2SAT
asks whether there is a truth assignment for U such that at
least k′ clauses in C are satisfied.

Let (U,C, k′) be a MAX2SAT-instance with variable
set U ={x1, . . . , xr} and clause set C={c1, . . . , cs}. There
are two sets O and O of 2(rs + r + s) + 1 dummy alterna-
tives each. For each variable xi ∈ U , there are two sets Xi

and Xi of s + 1 variable alternatives each. We say that Xi

corresponds to xi and that Xi corresponds to xi. The canon-
ical orderings 〈O〉, 〈O〉, 〈Xi〉 and 〈Xi〉, i ∈ {1, . . . , r},
are arbitrary but fixed. Let X be the union

⋃r
i=1Xi ∪Xi

of all variable alternatives. The canonical ordering 〈X〉 is
〈X1〉 � 〈X1〉 � . . .� 〈Xr〉 � 〈Xr〉. For each clause cj ∈ C,
there are two clause alternatives aj and bj . Let A denote the
set of all clause alternatives. The canonical ordering 〈A〉 is
a1 � b1 � . . . � as � bs. The total number m of alterna-
tives is 6(rs+ r + s) + 2.

The rough idea is that deleting all alternatives in Xi corre-
sponds to setting xi to true, and deleting all alternatives in Xi

corresponds to setting xi to false. Furthermore, deleting bj
or aj corresponds to not-satisfied clause cj .

To this end, let the parameter k be r(s + 1) + (s − k′).
There are two sets V and W of voters with |V | = 2r and
|W | = 4s. Voter set V consists of two voters v2i−1 and v2i
for each variable xi. Their preference orderings are

〈O〉�〈O〉�〈X1〉�〈X1〉. . .〈Xi〉�〈Xi〉. . .〈Xr〉�〈Xr〉�〈A〉 and

〈O〉�〈O〉�〈X1〉�〈X1〉. . .〈Xi〉�〈Xi〉. . .〈Xr〉�〈Xr〉�〈A〉.

These two voters together with any other two voters vl and
vl′ ∈ V \ {v2i−1, v2i} with odd l and even l′ form a δ-
configuration regarding o ∈ O, o ∈ O, x ∈ Xi, x ∈ Xi:

v2i−1: o � o and x � x; v2i : o � o and x � x;

vl : o � o and x � x; vl′ : o � o and x � x.
Voter setW consists of four votersw4j−3, w4j−2, w4j−1, and
w4j for each clause cj . These four voters have the same pref-
erence ordering 〈O〉 � 〈O〉 � 〈A1〉 � 〈X〉 � 〈A2〉 over
set O ∪ O ∪ A1 ∪ A2 ∪ X , where A1 = {aj′ , bj′ | j′ < j}
and A2 = {aj′ , bj′ | j′ > j}. The positions of aj and bj
are placed as follows: Let X̂j

1 denote the set of variable al-
ternatives corresponding to the literal in cj with lower index
and X̂j

2 denote the set of variable alternatives corresponding
to the literal in cj with higher index. Voters w4j−3 and w4j−2
rank clause alternatives aj right below the last alternative in
〈X̂j

1〉 while voters w4j−1 and w4j rank it right above the first
alternative in 〈X̂j

1〉. As for alternative bj , voters w4j−3 and
w4j−1 rank bj right above the first variable alternative in 〈X̂j

2〉
while voters w4j−2 and w4j rank it right below the last vari-
able alternative in 〈X̂j

2〉. Thus, these four voters form a δ-
configuration regarding aj , bj , x ∈ X̂j

1 , and y ∈ X̂j
2 :

w4j−3: x � aj and bj � y; w4j−2 : x � aj and y � bj ;
w4j−1: aj � x and bj � y; w4j : aj � x and y � bj .

The reduction clearly runs in polynomial time. It remains
to show that (U,C, k′) is a yes-instance for MAX2SAT if
and only if the constructed profile together with k is a yes-
instance for SINGLE-CROSSING ALTERNATIVE DELETION.

For the “only if” part, suppose that there is a truth assign-
ment U→{true, false}r of the variables such that at least k′
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clauses are satisfied. We delete all variable alternatives in Xi

if xi is assigned to true, and delete all variable alternatives
in Xi, otherwise. Furthermore, we delete the clause alterna-
tive bj if cj is not satisfied by the assignment. Let X ′ be the
set of remaining variable alternatives, and A′ the set of all
remaining clause alternatives. Then the number of deleted al-
ternatives is |X|+|A|−(|X ′|+|A′|) ≤ r(s+1)+(s−k′) = k.

For each j ∈ {1, . . . , s}, we define zj by 〈zj〉 =
〈w4j−2, w4j , w4j−3, w4j−1〉 if the literal in clause cj
with lower index is satisfied; otherwise, 〈zj〉 =
〈w4j−3, w4j−2, w4j−1, w4j〉. The resulting profile is
single-crossing with respect to the voter ordering L :=
〈v1, v3, . . . , v2r−1, v2, v4, . . . , v2r, z1, z2, . . . , zs〉. To show
this, we define the concept of “separation”: If 〈L〉 is a linear
ordering of voters, then we say that a pair {a, b} of distinct
alternatives separates ordering 〈L〉 (into two orderings 〈L1〉
and 〈L2〉) if 〈L〉 = 〈L1,L2〉 and no voter in 〈L1〉 agrees with
any voter in 〈L2〉 on the ordering of a and b. Obviously, L is
single-crossing if it can be separated by every possible pair of
alternatives.

Suppose for the sake of contradiction that L is not a single-
crossing ordering which means that L cannot be separated
by a pair {a, a′} ⊂ O ∪ O ∪ X ′ ∪ A′ of alternatives. Note
that all voters along L up to and including voter v2r−1 rank
〈O〉 � 〈O〉 � 〈X〉 while all voters from v2 onwards rank
〈O〉 � 〈O〉 � 〈X〉. Hence, a and a′ can neither both be in
O ∪O, nor both be in X ′. Furthermore, a and a′ cannot both
be in A′, as all voters have the same ranking 〈A〉. Since all
voters rank (O ∪ O) � (X ∪ A), a and a′ are not in O ∪ O.
This means, without loss of generality, a ∈ X ′ and a′ ∈ A′.

Assume that alternative a′ ∈ {aj , bj}. Then, alterna-
tive a cannot be in X ′ \ (X̂j

1 ∪ X̂
j
2) since pair {a′, a′′} with

a′′ ∈ X ′ \ (X̂j
1 ∪ X̂

j
2) separates ordering L into two or-

derings L1 and L2 where either L1 = 〈v1, v3, . . . , v2r−1,
v2, v4, . . . , v2r, z1, z2, . . . , zj〉 and L2 = 〈zj+1, zj+2, . . . , zs〉,
or L1 = 〈v1, v3, . . . , v2r−1, v2, v4, . . . , v2r, z1, z2, . . . , zj−1〉
and L2 = 〈zj , zj+1, . . . , zs〉. Thus, a ∈ X̂j

1 ∪ X̂j
2 .

If the literal in cj with lower index is satisfied, then
all variable alternatives in X̂j

1 are deleted and zj =

〈w4j−2, w4j , w4j−3, w4j−1〉. Hence, a ∈ X̂j
2 . All voters

along L up to and including w4j prefer a to a′, and all vot-
ers onwards w4j−3 prefer a′ to a. Hence, L is separated by
{a, a′}. Otherwise, either bj or all alternatives in X̂j

2 are
deleted, thus, zj = 〈w4j−3, w4j−2, w4j−1, w4j〉. If bj is
deleted, then all voters along L up to and including w4j−2

prefer each a ∈ X̂j
1 ∪ X̂

j
2 to a′ = aj , and all voters on-

wards w4j−3 prefer a′ = aj to each a ∈ X̂j
1 ∪ X̂

j
2 . Oth-

erwise, all alternatives in X̂j
2 are deleted. So, all voters

along L up to and including w4j−2 prefer each a ∈ X̂j
1

to each a′ ∈ {aj , bj}, and all voters onwards w4j−3 prefer
each a′ ∈ {aj , bj} to each a ∈ X̂j

1 ∪ X̂
j
2 . Hence, L is sep-

arated by {a, a′}. In summary, L can always be separated
by {a, a′}—a contradiction to the assumption that L is not a
single-crossing ordering.

For the “if” part, suppose that deleting a set K of at most k
alternatives makes the remaining profile single-crossing. This

means that by deleting K one eliminates all δ-configurations.
Note that deleting K \ (O ∪ O) also results in a single-
crossing profile: Assume towards a contradiction that there
is a δ-configuration involving a set D of alternatives with
D∩(K\(O∪O)) = ∅. Clearly,D contains exactly two alter-
natives in O and in O each since otherwise σ does not form a
δ-configuration or K is not a solution. Since |O| = |O| > k,
there are two alternatives o∗ ∈ O and o∗ ∈ O which are not
in K. If we replace the alternatives in D that are from O ∪O
with o∗ and o∗, then we get a δ-configuration for the profile
which remains after deleting K—a contradiction. Hence, in
the following we assume without loss of generality that none
of the dummy alternatives is deleted.

For each xi ∈ U , all variable alternatives in either Xi

or Xi must be deleted to destroy all δ-configurations involv-
ing alternatives in O ∪ O ∪ Xi ∪ Xi. Let X ′ be the set
of all deleted variable alternatives and let A′ be the set of
all deleted clause alternatives. Then, |X ′| ≥ r(s + 1) and
|A′| ≤ k − r(s + 1) = s − k′. We show that by setting
variable xi ∈ U to true if Xi ⊆ X ′, and false otherwise, all
clauses cj with {aj , bj} ∩ A′ = ∅ are satisfied. Suppose for
the sake of contradiction that clause cj with {aj , bj}∩A′ = ∅
is not satisfied. This means both X̂j

1 as well as X̂j
2 are not

completely in X ′. But then, voters w4i−3, w4i−2, w4i−1,
and w4i form a δ-configuration regarding aj , bj , x, x

′ with
x ∈ X̂j

1 \X ′ and x′ ∈ X̂j
2 \X ′ —a contradiction.

4 Conclusion
In terms of computational complexity theory, little is known
about preference profiles which are “close” to being nicely
structured. We showed that making a profile single-crossing
by deleting as few voters as possible can be solved in poly-
nomial time. In contrast, making a profile nicely structured
by deleting at most k voters or at most k alternatives is NP-
hard for all other considered cases. However, we mention in
passing that all these problems become tractable when k is
small: All considered properties are characterized by a fixed
number of forbidden substructures. Thus, by branching over
all possible voters (resp. alternatives) of each forbidden sub-
structure in the profile one obtains a fixed-parameter algo-
rithm [Downey and Fellows, 1999; Flum and Grohe, 2006;
Niedermeier, 2006] that is efficient for small distances. One
line of future research is to investigate more sophisticated and
more efficient (fixed-parameter) algorithms to compute the
distance of a profile to a nicely-structured one.

A second line of research which has already been started
by Erdélyi et al. [2013] for single-peaked profiles is to study
further distance measures.

A third line of research is to investigate whether and in
which way properties of nicely structured preference profiles
transfer to profiles that are only close to being nicely struc-
tured. This has been started by Faliszewski et al. [2011a] for
some notion of nearly single-peakedness which is different
from, but related to ours. They investigate cases where the
computational tractability of attacks on single-peaked pro-
files transfers to nearly single-peaked preferences, and cases
where the vulnerability disappears even if the preference pro-
file is extremely close to being single-peaked.
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