
The Complexity of Routing with
Collision Avoidance

Fakultät IV
Fachgebiet Algorithmik und Komplexitätstheorie

Bachelor Thesis
2016

Marco Morik

Erstgutachter: Prof. Dr. Rolf Niedermeier
Zweitgutachter: Prof. Dr. Stephan Kreutzer

Betreuer: Till Fluschnik, Manuel Sorge

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie
ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten
Quellen und Hilfsmittel angefertigt habe.
Berlin, den

Unterschrift

Zusammenfassung

In dieser Arbeit untersuchen wir die Komplexität der Bestimmung von Routen mit Kol-
lisionsvermeidung. Eine Kollision entsteht, wenn zwei geplante Pfade in einem Graphen
zur selben Zeit die gleiche Kante benutzen. Dafür definieren wir das Minimum Time-
Shared Edges-Problem. Gegeben wird ein Startknoten s und ein Zielknoten t, ein
gerichter oder ungerichteter Graph G, eine Anzahl p von Pfaden und eine maximale
Anzahl k von Kollisionen bzw. geteilten Kanten. Die Frage ist, ob es k Pfade von s
nach t in G gibt, die maximal k Kanten teilen. Eine Kante ist geteilt, wenn es mehr als
einen Pfad gibt, die diese Kante zum selben Zeitpunkt nutzen. Wurde eine Kante geteilt,
kann sie von beliebig vielen Pfaden auch gleichzeitig benutzt werden. Wir betrachten
in unserem Problem ein diskretes Zeitmodell, in dem jeder Pfad für jede benutze Kante
genau einen Zeitschritt braucht.

In unserer Komplexitätsanalyse unterscheiden wir zwischen drei verschiedenen Defi-
nitionen von Pfaden: Der

”
path“, welcher jeden Knoten nur maximal einmal besuchen

darf, der
”
trail“, welcher jede Kante maximal einmal benutzen darf und der

”
walk“,

welcher sowohl Kanten als auch Knoten mehrfach benutzen kann.
Da Routing Probleme Anwendungen im Straßenverkehr haben und Straßennetze als

planare Netzwerke gesehen werden können, untersuchen wir die Komplexität auf sowohl
gerichteten als auch ungerichteten planaren Graphen. Auch für Abwassersysteme kann
Minimum Time-Shared Edges genutzt werden, um herauszufinden, welche Rohre aus-
gebessert werden müssen. In Kanalsystemen haben Rohre oft eine Fließrichtung bergab,
daher untersuchen wir gerichtete azyklische Graphen.

Des weiteren untersuchen wir die Komplexität, wenn wir keine Kollision zulassen, also
keine geteilte Kante erlaubt ist. Wir zeigen, dass wir Minimum Time-Shared Edges
mit

”
walks“ so sowohl auf ungerichteten als auch gerichteten Graphen in polynomieller

Zeit lösen können. Für
”
paths“ und

”
trails“ zeigen wir, dass Minimum Time-Shared

Edges aber sogar auf planaren Graphen NP-vollständig ist.
Auf gerichteten azyklischen Graphen ist jeder Pfad ein

”
path“, da keine Knoten und

Kanten doppelt verwendet werden können. Während Minimum Time-Shared Edges
auch auf diesen Graphen mit geteilten Kanten NP-vollständig ist, können wir für keine
geteilte Kante einen Polynomialzeitalgorithmus präsentieren. Als letztes führen wir
das Short Minimum Time-Shared Edges-Problem ein, in welchem die Länge des
längesten Pfades beschränkt ist. Wir beweisen, dass dieses Problem sowohl für

”
paths“

als auch
”
trails“als auch

”
walks“ auf ungerichteten Graphen NP-vollständig ist.

Summary

In this work, we analyze the complexity of Routing with Collision Avoidance. A collision
occurs when two s-t connections in a graph use the same edge at the same time. To
tackle this problem, we introduce the Minimum Time-Shared Edges problem. Given
a source s and a sink t, a directed or undirected Graph G, a number p of connections
and an upper bound k on collision edges, we are looking for p s-t connections in G with
at most k edges with collision. We later refer to a collision as a shared edge, since once
a collision occurs, this edge can be used by an unrestricted number of connections. An
edge is shared when there are at least two s-t connections using this edge at the same
time. We use a discrete time model, where each connection needs one step per used
edge.

We differentiate between three different versions of s-t connections. A path can contain
each vertex at most once, a trail can use each edge at most once, and a walk can use
both edges and vertices an unrestricted number of times.

Since routing problems have an application in road traffic and street networks can be
seen as planar graphs, we analyze the complexity of Minimum Time-Shared Edges
both on directed and undirected planar graphs. We can use Minimum Time-Shared
Edges also for wastewater systems to determine which drains need to be enlarged. In
canal systems, drains have often a direction of flow downhill, therefore, we analyze the
complexity of Minimum Time-Shared Edges on directed acyclic graphs (DAGs).

Moreover, we study the complexity for the case that we do not allow any collision, that
is k = 0 shared edges. For k = 0, we show how to solve Walk Minimum Time-Shared
Edges both on undirected and directed graphs in polynomial time. For paths and trails,
we prove that Minimum Time-Shared edges remains NP-complete even with k = 0
on directed and undirected planar graphs.

On DAGs, each s-t connection is a path, since neither vertices nor arcs can appear
more than once. We show that with shared arcs Minimum Time-Shared Edges is NP-
complete. However, for k = 0 shared edges, we provide a polynomial-time algorithm.

Last, we introduce the Short Minimum Time-Shared Edges problem. Here, the
length of the longest s-t connections is upper bounded. We prove that this problem is
NP-complete for trails and paths as well as walks on undirected graphs.

Contents

1 Introduction 1
1.1 Preliminaries . 2
1.2 Problem Definition . 6
1.3 Related Work . 6
1.4 Overview . 8
1.5 Basic Observations . 9

2 Complexity of Minimum Time-Shared Edges 11
2.1 Directed acyclic graphs . 11

2.1.1 DAGs with shared arcs . 11
2.1.2 DAGs without shared arcs . 14

2.2 Paths . 16
2.3 Trails . 18

2.3.1 Directed Trails . 19
2.3.2 Undirected Trails . 20

2.4 Walks . 24
2.4.1 Undirected Walks . 24
2.4.2 Directed Walks . 25

3 Complexity of Short Minimum Time-Shared Edges 28
3.1 Paths and Trails . 29
3.2 Walks . 29

4 Conclusion 31

1 Introduction

Some everyday problems like logistic problems, traffic problems, or security problems can
be considered routing problems. Think, for instance, of the maintenance of wastewater
systems. For the maintenance of wastewater networks, we cannot flood all drains at the
same time, but have to take into account when water reaches each drain. The overall
flow of the wastewater system should be constructed such that the flow never exceeds the
maximal capacity. We can look for the minimal amount of drains to enlarge to provide
a given flow.

A first approach to solve the wastewater maintenance is to describe the problem as a
maximum flow problem. We characterize locations where a drain flows into another one
by vertices and all drains by edges. However, the maximum flow does not consider the
time an edge is used. Each drain would only be used once and stay empty the rest of
the time. A more appropriate model which also considers the time is that of a dynamic
maximum flow; it can be solved in polynomial time [FF58]. However, in this model,
water could stay still, which is quite unrealistic. Moreover, both maximal flow models
characterize the network as it is. If we want to detect bottlenecks in order to enhance
the network, we need a different model. There, we do not want to constrain edges which
we want to enhance, but consider them having infinite capacity.

For another example, consider security problems. For instance, a very important
person arrives at a location, e.g., an airport, and needs to travel to a goal, e.g., the par-
liament. Several actors play the role of that VIP and are each using a different limousine
so that no assassin can be sure to target the VIP when attacking a car surrounded by
police forces. Of course, two such cars should not be at the same place at the same time!
This kind of collision must be avoided. A similar example is that of guiding fans of
opposing football clubs to the stadium or train station. They should not share a street,
because they could start a fight.

These problems can be described in a uniform manner. In all examples, we see a
network. The drains or the streets are edges and the junctions or intersections are the
vertices. An example is shown in Figure 1. When an event ends, people want to go
from the stadium to the subway station. Each edge represents a street and each vertex
represents an intersection. We want to route p opposing groups of fans from the stadium
s to the subway station t in a way that they share at most k edges. Without the aspect
of time, we can use the Minimum Shared Edges problem introduced by Omran et
al. [OSZ13]. It was originally designed for the guidance of VIPs. For each street used
by more than one limousine, one has to hire a guard to protect this street which can
afterwards be used by an unlimited number of limousines without extra costs. The
problem is to route p paths from a start s to a goal t and minimize the number k of
shared streets, in order to minimize the additional security personal. Nevertheless, the
security problem needs to include time aspects for a realistic model. The limousines
might drive on the same road, but not at the same time. This would not increase the
risk of a successful attack, since an assassin cannot attack both cars. Also the opposing
groups of fan can use the same road, as long as they are not on this road at the same
time. We introduce the Minimum Time-Shared Edges (MTSE) problem to add the

1

Figure 1: A map of the Berliner Olympiastadium and its closest subway station with the
underlying graph [Goo16].

dimension of time to this model. The definition is similar to Minimum Shared Edges,
we also route p paths from s to t with at most k shared edges. But we call an edge shared
only when at least two paths use this edge at the same time. For simplicity reasons,
we consider a discrete time model where each path takes exactly one step per edge. An
edge is shared if there are at least two paths which use the edge after the same amount
of steps. In this work, we investigate the complexity of MTSE not only for paths, but
also for trails and walks on different types of graphs. Moreover, we study the complexity
if we restrict the number of shared edges to zero.

1.1 Preliminaries

Before we define our problem, we need to clearify some notations used in this work.
First we state some basic mathematical conventions. With N we describe the natural

numbers without zero and with N0 the natural numbers including zero: N0 := N ∪ {0}.
To get the positive integers up to ` ∈ N, we define [`] := {1, . . . , `} ⊆ N and to get a
range of integers between a, b ∈ N with b ≥ a we define [a, b] := {a, a+ 1, . . . , b− 1, b}.

Notation of Graph Theory. A graph is defined as a tuple G = (V,E), where V are
the vertices and E are the edges. If we compare multiple graphs, then we write Vi for the
vertices in graph Gi and Ei for the edges in graph Gi. In this work, we consider both,

2

directed and undirected graphs. For directed graphs, we call an edge arc and each arc
e ∈ E is defined as a tuple e = (vi, vj). For the undirected graph each edge e is defined
as a set of size two: e = {vi, vj}. A planar embedding of a graph is a representation of
the graph on a plane. A vertex is on the outer face if it is not surrounded by edges and
belongs to the unbounded face of the embedding.

• An s-t walk is a sequence of vertices P = (v1, . . . , vq) with v1 = s and vq = t such
that for all i ∈ [q − 1] it holds that (vi, vi+1) ∈ E for the undirected graph and
{vi, vi+1} ∈ E for the directed graph respectively. We call the indices in P , the
use of one edge, steps. So, vi ∈ P is the vertex after i steps.

• An s-t trail is an s-t walk which can contain vertices several times, but contains
each edge at most once.

• An s-t path is an s-t walk which contains both edges and vertices at most once.

• We define an s-t connection as a placeholder for either a path, trail or walk:
connection ∈ {path, trail, walk}.

– The length of an s-t connection P is defined as |P | − 1, the number of edges
in P .

– An edge e ∈ E is called shared if there exist at least two s-t connections
Px = (v1, . . . , va), Py = (u1, . . . , ub) in a solution for MTSE such that
∃i ∈ [min(|Px|, |Py|)− 1]: e = {vi, vi+1} = {ui, ui+1} in the undirected graph
or e = (vi, vi+1) = (ui, ui+1) in the directed graph respectively. In words, an
edge is shared if and only if at least two s-t connections use that edge after
the same amount of steps.

– If an edge is already used by an s-t connection after the ith step, then we call
this edge blocked for this time. It can only be used by another s-t connection
in this ith step if it is a shared edge.

– Vertex-disjoint s-t connections are s-t connections which have no common
vertex except s and t.

• The degree of a vertex in an undirected graph is defined as the number of incident
edges degree(v)=|{{v, vi} ∈ E | ∀vi ∈ V }|. In a directed graph, we can distinguish
between in-degree and out-degree of a vertex. The in-degree of a vertex v is defined
as all incoming arcs, in-degree(v) = |{(vi, v) ∈ E | ∀vi ∈ V }|, and the out-degree
is defined as all outgoing arcs, out-degree(v) = |{(v, vi) ∈ E | ∀vi ∈ V }|. The
degree of a vertex in a directed graph is the sum of in-degree and out-degree.

• Subdivision is the expansion of an edge e = {v, u} by adding a new vertex w and
replace e with {v, w} and {w, u}.

• We call a path of length x between two vertices, containing only vertices with
degree two, an x-chain or chain of length x. An edge {v, u} between two vertices
can be expanded to an x-chain by subdividing x− 1 times.

3

• The distance between two vertices v, u is defined as the length of the shortest path
Pshort from v to u: dist(v, u) := length(Pshort)

A flow network consists of a directed graph G = (V,E), a source s ∈ V , a sink t ∈ V ,
and a capacity function u : E → R≥0 which assign every edge a capacity. An s-t flow
is a function f : E → R≥0 which satisfy the following two properties. First, the flow
capacity condition which requires that for each edge the flow is upper bounded by the
capacity of this edge: ∀e ∈ E : 0 ≤ f(e) ≤ c(e). Second, the flow conservation condition
which requires for each vertex except s and t that the incoming flow equals the outgoing
flow: ∀v ∈ V \{s, t} :

∑
(u,v)∈E f((u, v)) =

∑
(v,u)∈E f((v, u)). The value of an s-t flow is

defined by the outgoing flow of the source s: |f | :=
∑

(s,u)∈E f((s, u))−
∑

(u,s)∈E f((u, s)).

An s-t flow f is a maximum s-t flow if there is no s-t flow f ′ with |f ′| > |f |. An s-t cut
C ⊆ E is a set of edges such that the graph G\C is partitioned in two disconnected
sets S, V \S where s ∈ S and t ∈ V \S. The size of an s-t cut is defined by the sum of
capacities of the edges in the cut: val(C) :=

∑
e∈C c(e). An s-t cut C is a minimum

s-t cut if there is no cut C ′ separating s and t with val(C ′) < val(C). The size of a
minimum s-t cut is equal to the size of the maximum s-t flow. For more about network
flows we refer to the work of Kleinberg and Tardos [KT05].

An extension to the static network flow is the network flow over time, also called
dynamic flow. There is an additional time horizon T and each edge has a transit time
d : E → N0. The flow over time is a Lebesgueintegrable function for each edge fe :
[0, T)→ R≥0. An s-t flow over time fe(x) denotes the flow starting at the edge e at time
step x. It arrives at the other vertex of the edge at time step x+d(e). Flow over time is
both defined over a discrete time model as well as a continuous time model. In this work,
we only work with the discrete time model. The capacity condition requires that for each
edge and each time step the capacity is not exceeded: ∀e ∈ E,∀x ∈ [0, T) : fe(x) ≤ c(e).
The excess for vertex v at time x is the net amount of flow that enters the vertex up to

time x: ex(v, x) :=
∑

(u,v)∈E
∫ x−d((u,v))
0 f(u,v)(σ)dσ −

∑
(v,u)∈E

∫ x
0 f(v,u)(σ)dσ. The weak

flow conservation condition allows flow to wait in a vertex and requires for each vertex
v ∈ V \{s} and all time steps x ∈ [0, T) that ex(v, x) ≥ 0. Moreover, ex(v, T) = 0 must
hold for each v ∈ V \{s, t}. For strict flow conservation ex(v, x) = 0 must hold for all
v ∈ V \{s, t} and all x ∈ [0, T], here flow can not be stored in intermediate nodes. The
value of an s-t flow over time is defined by |f | := ex(t, T). For more about network flow
over time we refer to the work of Skutella [Sku08].

In this work, we investigate our problem on different types of graphs. First we in-
troduce bipartite graphs. In a bipartite graph one splits the vertices into two disjoint
partitions U and V such that each edge connects a vertex in U with a vertex in V .
Another simple graph is the complete graph. There every pair of vertices is adjacent.

A planar graph is a graph where an embedding in the plane, without intersections of
edges exists. An alternative definition follows from Kuratowskis Theorem [Tho80]. A
graph is planar if and only if it does not contain a subgraph which is a subdivision ofK5 or
K3,3. Here K5 is the complete graph with five vertices and K3,3 is the complete bipartite
graph with three vertices in each partition and each vertex is adjacent to the three
vertices in the other partition. The above graphs are defined both on undirected and

4

directed graphs. Directed acyclic graphs (DAGs) are directed graphs without directed
cycles. This means that, for every vertex v ∈ V , there is no walk starting and ending
in v, which uses at least one edge. The last graph we will use in this work is the cubic
graph, it is an undirected graph where all vertices have degree three. For more about
graph theory, we refer to the work of Diestel [Die00] and West et al. [Wes+01].

Computational Complexity Theory. There are basically two different kind of
problems in computational complexity. First, there are the decision problems. A de-
cision problem is a problem defined over some formal system with a yes-or-no answer
depending on the input. On the other hand, there are optimization problems. Instead
of a yes-or-no answer, a optimization problem has a cost function and tries to minimize
or maximize this cost function. In this work, we use decision problems for complex-
ity analysis. A problem instance is a specific input to a problem. We measure the
complexity of a problem depending on the input size instead of some scalar value. In
computational complexity, we analyze the asymptotic behavior of algorithms solving a
problem depending on the input size. To measure this we use the Big O notation. An
algorithm f running in O(g) denotes that the asymptotic running time of f is not es-
sential faster than g. Formally, there exists a x0 and a positive constant M such that
∀x ≥ x0 : |f(x)| ≤M |g(x)|.

Problems are classified in complexity classes. Classes are defined by their model
of computation, in this thesis deterministic or nondeterministic Turing machines, their
bounded resources, in most cases time or space, and their requirements to this resources.
In this work, we handle the complexity classes P and NP. Both require the calculation
time bounded by a polynomial depending on the input size, but for a problem in P there
exists a polynomial-time algorithm on a deterministic Turing machine and for a problem
in NP on a nondeterministic Turing machine. Clearly, P⊆NP, but whether P=NP or
P⊂NP is an open problem. In this work, we assume that P6=NP. Since all existing
computers are deterministic, we call a problem polynomial-time solvable only if it is in
P.

A problem is contained in NP if there is a deterministic polynomial-time algorithm
that can verify a “yes”-answer to this problem. To show that a problem A is NP-hard, we
can reduce an already known NP-hard problem B to the problem A in polynomial-time.
A polynomial-time reduction from A to B is an algorithm running in polynomial-time
which transform each instance of problem A to a corresponding instance of problem
B. If there is an algorithm solving problem B efficiently, this algorithm can be used as
a subroutine to solve problem A efficiently as well. When problem A is NP-hard, we
assume that there is no algorithm solving A in polynomial-time. Consequently, if there
is a polynomial-time reduction from A to B, then there cannot be an algorithm solving
B in polynomial-time. If an NP-hard problem is also contained in NP, then we call this
problem NP-complete.

There are several methods to deal with an NP-hard problem. Optimization problems
can be solved with approximation algorithms which may not provide an optimal solution,
but a solution upper-bounded by a certain function depending on the optimum. Other
problems can be solved in polynomial-time when some input parameters are fixed. We

5

speak of parameterized complexity. If there is an algorithm solving a problem with
running time in f(k) · nO(1), where k is an parameter, n the size of the input, and f(x)
an arbitrary function only depending on k, then this problem is called fixed-parameter
tractable with respect to the parameter k. If there is an algorithm solving a problem
with running time in nf(k) for some computational function f(k) depending only on the
parameter k, then this problem is in XP. For more about Computational Complexity,
we refer to the book of Arora et al. [AB09]. For more information about parameterized
complexity, we refer to the work of Downey and Fellows [DF13] and Niedermeier [Nie06].

1.2 Problem Definition

We define our main problem of interest as follows:

Problem: Minimum Time-Shared Edges (MTSE)

Input: A directed or undirected graph G = (V,E), s, t ∈ V , p ∈ N, and k ∈ N0.
Question: Are there p s-t connections in G that share at most k edges?

As defined in the preliminaries, an edge is shared when there are at least two connec-
tions using that edge at the same time. Since we consider a discrete time model where
a connection needs exactly one step per edge, an edge is shared when it appears at the
same position in at least two connections. The parameters k and p allow us to apply the
definition to varying problems. The number k of edges that are allowed to be shared can
be between zero and the overall number of edges. The amount p of s-t connections needs
to be at least one. The definition covers graphs, be they directed or undirected. It also
refers to s-t connections, which represent walks, trails, or paths. Hence, the definition
is general. To differentiate between walks, trails, or paths, we refer to Walk-MTSE,
Trail-MTSE, and Path-MTSE, respectively. If we refer to MTSE, then a statement
is valid for both walks, trails and paths. We explicitly state whether we consider directed
or undirected graphs. In this work, we address simple graphs without loops or multiple
edges between vertices.

1.3 Related Work

MTSE was inspired by Minimum Shared Edges (MSE) introduced by Omran et al.
[OSZ13]. The difference to Minimum Time-Shared Edges lies in the definition of
a shared edge. While we consider an edge as shared when at least two paths use an
edge after the same amount of steps, in MSE an edge is shared when it is contained in
more than one path regardless of time. MSE is NP-complete on directed [OSZ13] and

undirected graphs [Flu15] and admits no polynomial-time 2log
1−ε k-factor approximation1

for any constant ε > 0 [OSZ13]. Fluschnik et al. [Flu+15] showed that MSE is NP-
complete on graphs with maximum degree at least five but can be solved in constant time

1An approximation algorithm outputs a solution which size is upper bounded by a certain factor of the
optimal solution size.

6

on unbounded undirected Z ×Z-grid graphs. They also showed that MSE is W[2]-hard
relating to the maximum number k of shared edges but fixed-parameter tractable with
respect to the number p of paths. Ye et al. [Ye+13] showed that Minimum Shared

Edges can be solved in O(|V | · (p + 1)2
ω·(ω+1)/2

+ |V | · (p + 1)(ω+4)2·ω+8
) time, where ω

is the treewidth and p is the number of desired s-t paths.
Minimum Vulnerability is a generalization of MSE introduced by Assadi et al.

[Ass+14]:

Problem: Minimum Vulnerability (MV)

Input: Graph G = (V,E), s, t ∈ V , edge costs ce : E → R≥0, edge capacity
ue : E → N, r ∈ N0, p ∈ N, k ∈ R≥0

Question: Are there p s-t paths in G with costs of edges used in more than r s-t
paths are at most k.

Assadi et al. showed that MV can be approximated with a b k
r+1c factor which results

in a bk2c approximation for MSE. Moreover, they showed that, for any constant k, MV
can be solved exactly in polynomial time. Aoki et al. [Aok+14] showed that MV is
NP-hard even on undirected bipartite series-parallel graphs2 and undirected threshold
graphs3. They showed that MV can be solved in polynomial time on graphs with
bounded treewidth. The running time is |V | · (p+ 1)O(ω

(ω+1)), where ω is the treewidth
and p the number of desired s-t paths. Additionally, they proved that there is a fixed-
parameter algorithm with respect to the number of paths p for MV on chordal graphs4.
Another related concept is that of Dynamic Flow, also called Flow over Time,
introduced by Ford and Fulkerson [FF58; FF62]. It generalizes the network flow by
introducing the component of time. The dynamic flow in each arc is now stated per
discrete time interval and there is a time horizon which determines when the dynamic
flow has to reach the target t.

Problem: Maximum Dynamic Flow
Input: Graph G = (V,E), capacities c : E → R≥0, transit times d : E → N0,

s, t ∈ V , time horizon T ∈ N0

Task: Find a feasible s-t flow over time f with time horizon T and maximum value
|f |.

There are a few important differences between Maximum Dynamic Flow and Min-
imum Time-Shared Edges. The biggest difference is clearly that in MTSE we can
share edges which then have unlimited capacities. Furthermore, in Dynamic flow flow

2A series-parallel graph is obtained by a combination of series and parallel compositions starting with
a K2. Refer to the book of Brandstädt et al. [BLS99].

3A threshold graph is obtained by a combination of adding an isolated vertex or adding a dominating
vertex starting with a single vertex. Refer to the book of Brandstädt et al. [BLS99].

4In a chordal graph, every cycle of length four or more has an edge not part of the cycle connecting
two vertices of the cycle. Refer to the book of Brandstädt et al. [BLS99].

7

Path-MTSE Trail-MTSE Walk-MTSE

k = 0 Undirected NP-c (Theorem 2.4) NP-c (Theorem 2.7) P (Theorem 2.9)
k = 0 Directed NP-c (Theorem 2.4) NP-c (Theorem 2.6) P (Theorem 2.10)
k = 0 DAGs P (Theorem 2.2) P (Theorem 2.2) P (Theorem 2.2)

Undirected NP-c (Theorem 2.4) NP-c (Theorem 2.7) P (Theorem 2.9)
Directed NP-c (Theorem 2.4) NP-c (Theorem 2.6) NP-c (Theorem 2.1)
DAGs NP-c (Theorem 2.1) NP-c (Theorem 2.1) NP-c (Theorem 2.1)

Short MTSE NP-c (Theorem 3.1) NP-c (Theorem 3.1) NP-c (Theorem 3.2)

Table 1: Overview on the results of the complexity analysis. NP-c denotes that a problem
is NP-complete, P denotes that a problem is contained in P

is allowed to stop and wait at vertices including the source s; it is only important that
the flow reaches t within the time horizon. While we introduce in Section 3 the SMTSE
problem which provides MTSE also with a time horizon, we strictly forbid the wait-
ing in vertices. Finally, there is no restriction for the dynamic flow to use vertices and
edges at most once as we have in Path-MTSE or Trail-MTSE. These differences lead
to the different complexity of the two problems, since Maximum Dynamic Flow can
be solved in polynomial time using standard flow algorithms on time-expanded graphs
[Sku08], while Path-MTSE and Trail-MTSE are NP-complete.

1.4 Overview

In this work, we characterize the complexity of Walk-MTSE, Trail-MTSE, and
Path-MTSE.

• In Section 2.1 we prove that MTSE is NP-complete on directed acyclic graphs for
all walks, trails, and paths. However, if the number of shared edges is fixed, then
we can solve MTSE in polynomial time.

• In Section 2.2 we prove that Path-MTSE is NP-complete on both directed and
undirected planar graphs, even if we share no edge.

• In Section 2.3 we prove that Trail-MTSE is also NP-complete on both directed
and undirected planar graphs, even if we share no edge.

• In Section 2.4 we provide a polynomial-time algorithm for Walk-MTSE on di-
rected and undirected graphs, if we share no edge. For unrestricted k, we provide
a polynomial-time algorithm on undirected graphs.

• In Section 3 we analyze the complexity of a modified version of MTSE (S-MTSE),
where the longest s-t connection is restricted by an additional parameter α. We
determine that SMTSE is at least as hard as MTSE. While Walk-MTSE was
polynomial-time solvable on undirected graphs, SWalk-MTSE is NP-complete
on undirected graphs.

8

s v3v4

v1

v2

t

Figure 2: A graph G

Table 1 shows the theorems that, together, give a clear picture of the complexity of
the MTSE problem for various graph types and k.

1.5 Basic Observations

In this work, we differentiate between walks, trails, and paths. We show the differences
between the types of s-t connections using the example graph showed in Figure 2. For
k = 0 shared edges, the highest value of p so that the problem is a yes-instance is for
Path-MTSE p = 2 (P1, P2), for Trail-MTSE p = 3 (P1, P2, P3), and for Walk-MTSE
p = 4 (P1, P2, P3, P4):

P1 =(s, v3, t),

P2 =(s, v1, v3, t),

P3 =(s, v2, v3, v1, s, v3, t),

P4 =(s, v4, s , v3, t).

For higher values of p, each of the problems is a no-instance. The example also illustrates
the difference to the Minimum Shared Edge problem, since there is only one path for
k = 0.

Even if the size c of a minimum s-t cut is smaller than p, there could be a solution
without a shared edge. For a general graph G, given a minimum s-t cut C = (S, T) of
capacity c. Let Vcut := {v ∈ V | (v, u) ∈ E ∧ v ∈ S ∧u ∈ T} be the vertices in S incident
to this minimum cut. Let longv be the longest path from s to a vertex v ∈ Vcut and shortv
be the shortest path from s to a vertex v ∈ Vcut. We can set the upper bound of s-t
paths p that share no edge to the sum of the differences between the longest and shortest
path to each vertex v ∈ Vcut, p ≤

∑
v∈Vcut

|longv| − |shortv|. However, this upper bound
is not only weak, it is also NP-hard to determine the longest path on general graphs.

If the number of shared edges equals the shortest path, there is a solution for every p,
where each path is equal to the shortest path. Furthermore, for every yes-instance of
MTSE, there is a solution containing a shortest path, since always one path can follow a
shortest path, without blocking an edge for any other path than another shortest path.

A lot of tricks used on other graph problems do not work on MTSE, because we
added the dimension of time. We can neither subdivide all edges, nor contact an edge
to simulate a shared edge. If we subdivide an edge {v, u} shared by two s-t connections
P1, P2, this results either in two shared edges or no shared edge. If both connections

9

first use v or u and then u or v, then there are two shared edges in the graph after
subdivision. If one connection uses first v and the other one first u, then there is no
shared edge in the graph after subdivision.

All variants of MTSE presented in this work are contained in NP, since each solution
can be verified in polynomial time.

Lemma 1.1. Walk-MTSE, Trail-MTSE , and Path-MTSE are contained in NP
both on directed and on undirected graphs.

Algorithm 1 Verify a given solution P
1: procedure Verify(P = {P1, . . . , Pp}, V, E, s, t, p, k)
2: for i = 1 to i = p do
3: if Pi[0] 6= s ∨ Pi[length(Pi)] 6= t then return False

4: Shared = ∅
5: for i = 1 to p do
6: for l = 0 to length(P) do
7: e = {Pi[l], Pi[l + 1]}
8: if e /∈ E then return False

9: for j = i+ 1 to p do
10: if length(Pj) ≥ l then
11: if e = {Pj [l], Pj [l + 1]} ∧ e /∈ Shared then
12: Shared = Shared ∪ {e}
13: k = k − 1

14: if k ≥ 0 then return True
15: else return False

We will prove Lemma 1.1 by providing a polynomial verifier Algorithm 1. For the
verifier, we neither assume that a solution contains walks, trails, or paths nor that the
graph is directed or undirected. Therefore, the verifier holds for all variants of MTSE.

Proof. Given a solution P of MTSE, we will verify it in polynomial time as shown
in Algorithm 1. Note that with P [i] we access the vertex in P after i steps. If P =
(v0, v1, . . . , vl−1, vl), then P [i] := vi. The verifier handles s-t walks, therefore, for path
we have to check beforehand that each vertex appears at most once in each path, for
trails we have to check that each edge appears at most once in each trail.

First Algorithm 1 checks, whether each walk is an s-t walk. Next, for each walk Pi,
the algorithm iterates step wise through the vertices. For each step l, it first checks
whether the edge e = (Pi[l], Pi[l + 1]) between consecutive vertices is in E. Afterwards,
for each walk Pj with j > i, it compares if Pj uses the same edge at step i. If the
edge was not shared before, then we add e to the set of shared edges and decrease k
by one. Note that we compare Pi only with paths Pj for j > i, since sharing an edge
is a symmetric operation and we compared Pi with all paths Px for x < i in iterations
before. If k ≥ 0 after all iterations, then the solution shared at most k edges and is
therefore a suitable solution for the instance of MTSE. Otherwise, more than k edges

10

were shared. The algorithm has two loops over p and one loop over the length of the
longest walk lmax. This results in a running time of O(lmaxp

2). For trails lmax ≤ |E|,
since each edge can appear at most once in a trail. For paths lmax ≤ |V |, since each
vertex can appear at most once. In Lemma 2.11, we will show that the length of the
longest walk is upper-bounded by a polynomial in |E| and p. Therefore, we can verify
each solution in polynomial time for walks, trails, and paths. Hence, Walk-MTSE,
Trail-MTSE, and Path-MTSE are contained in NP.

2 Complexity of Minimum Time-Shared Edges

In this section we analyze the computational complexity of MTSE for several different
variants of input graphs. We first consider directed acyclic graphs, since for DAGs every
walk and trail is also a path, since no vertex can be revisited. After that, we analyze the
complexity of paths, trails, and walks separately. We consider the general case as well
as the case where no edge may be shared.

2.1 Directed acyclic graphs

In directed acyclic graphs, every walk or trail is also a path, since no vertex can be
revisited. By definition, DAGs do not contain any directed cycle, hence each vertex can
appear at most once in an s-t connection. Therefore, each s-t walk and s-t trail is also
an s-t path. In the following proofs, we consider s-t paths.

2.1.1 DAGs with shared arcs

Theorem 2.1. Minimum Time-Shared Edges on directed acyclic graphs is NP-
complete.

For the proof, we slightly modify the reduction from Set Cover to Minimum Shared
Edges given by Omran et al.[OSZ13]. Set Cover is a well-known NP-complete problem
defined as follows.

Problem: Set Cover (SC)

Input: A set X, a set of sets C ⊆ 2X , and ` ∈ N.

Question: Are there sets C1, . . . , C`′ ∈ C with `′ ≤ ` such that X =
`′⋃
i=1

Ci?

The basic idea of the reduction from SC to MTSE is to create a vertex for every set in
C and for every element in X. A vertex representing an element x ∈ X has an edge to a
vertex representing a set C ∈ C if and only if x ∈ C. Each of these vertices is connected
to s and all the vertices representing a set are adjacent to t. In each solution of MTSE
on our constructed graph, each vertex corresponding to an element of X appears in an s-t
path, which afterwards visits a vertex ci representing a set Ci in C and then has to share
the arc from ci to t. To determine a solution of Set Cover, we simply take the sets Ci,

11

1

2

3C1

C2

C3

s

v1

v2

v3

c1

c2

c3

t

(`+ 1)-c
hain

(`+ 2)-chain

Figure 3: Left an instance of Set Cover with X = {1, 2, 3}, on the right side a graph
of MTSE according our construction. Each red dashed line stands for an
(`+ 2)-chain and each blue dotted line stands for an (`+ 1)-chain.

where the corresponding vertices ci are incident to a shared arc. Our modification to
the proof of Omran et al. [OSZ13] is the length of chains connecting s with the vertices,
to force all paths arriving at the vertices representing the sets after the same amount of
steps.

Proof of Theorem 2.1. To prove that MTSE on DAGs is NP-hard, we reduce Set
Cover to MTSE in polynomial time. Let (X, C, `) be an instance of SC. We con-
struct an instance (G, s, t, p, k) of MTSE as follows.

Construction: See Figure 3 for an example of the following construction. Initially, G is
the empty graph. For every element xi ∈ X we add a vertex vi to VX , VX = {vi | xi ∈ X},
and for every set Ci ∈ C we add a vertex ci to VC , VC = {ci | Ci ∈ C}. At last we add
the source s and sink t to our graph. The vertices in G so far are VX ∪ VC ∪ {s, t}.
We connect s with each vertex ci ∈ VC via an (` + 2)-chain directed from s towards ci
and with each vertex vi ∈ VX via an (`+ 1)-chain directed from s towards vi. For each
vertex vi ∈ VX , we add an arc directed towards cj ∈ VC if and only if the corresponding
element xi ∈ X in our instance of Set Cover is in the set Cj ∈ C corresponding to cj ,
that is {(vi, cj) | i ∈ [|X|] ∧ j ∈ [|C|] ∧ xi ∈ Cj}. Last, we add an arc from every ci ∈ VC
directed to t. Note that the constructed graph is a directed acyclic graph. We set the

12

upper bound k of shared arcs to ` and the number p of desired paths to |X|+ |C|.

Correctness: We show that, given p s-t paths in G that share at most k arcs, we can
construct a set cover C′ ⊆ C for X with |C′| ≤ ` and vice versa.
First, we state some basic observations about the graph that we created. The vertex
s has p = |C| + |X| outgoing arcs, each is part of a chain of length at least (` + 1),
which is exceeding the budget of k = ` and can therefore not be shared. Therefore, in
any solution, every outgoing arc of s must appear in a distinct s-t path. Thus, every
vertex vi ∈ VX appears in exactly one path and also every vertex ci ∈ VC appears in at
least one s-t path. Note that all s-t paths arrive at the vertices in VC after exactly `+ 2
time-steps. Moreover, all s-t paths are vertex-disjoint up to the vertices in VC , and it
follows that the arcs between vertices in VC and t are the only arcs which can be shared
in any solution.
Suppose we have p s-t paths in G that share at most k arcs. As stated before, the
only arcs that can be shared are arcs between VC and t. Let V ′ = {ci ∈ VC | (ci, t)
is a shared arc} be the vertices in VC incident to shared arcs. We claim that the set
C′ = {Ci ∈ C | ci ∈ V ′} is a set cover of X. Each vertex ci ∈ VC has out-degree one,
so each ingoing path has to take the arc to t. Since every vertex ci ∈ VC appears in at
least one s-t path using the (`+ 2)-chain from s, for every s-t path using an arc (vj , ci)
between vj ∈ VX and ci ∈ VC the arc (ci, t) must be shared. We say that a set of vertices
covers a set of paths if each of the paths contains at least one of the vertices. Therefore,
the set V ′ covers all s-t path containing vertices in VX . Since every vertex in VX is
visited by a distinct s-t path, the set V ′ covers an s-t path for all the vertices in VX . By
construction of G, the arc (vi, ci) is contained in E if and only if xi ∈ Cj . Since every
vertex in VX is adjacent to a vertex in V ′, the set C′ covers every element in X. Thus,
the set C′ is a set cover of X of size |V ′| ≤ ` .

Conversely, assume that we have a set cover C′ ⊆ C of X with |C′| ≤ `. Let V ′ := {ci ∈
VC | Ci ∈ C′} be the vertices corresponding to the sets in the set cover, we show that there
is a solution of our constructed instance of Path-MTSE where Es := {(ci, t) | ci ∈ V ′}
are the shared arcs. By definition |Es| = |C′| ≤ `, thus we need to show that there
are p = |C|+ |X| s-t paths in G that do not share any arc beside those in Es. First we
construct |C| different s-t paths. Each of those s-t paths contains exactly one (`+2)-chain
going from s to a vertex in VC and the arc to t. Since there are |C| different (`+2)-chains
outgoing from s to a distinct vertex in VC , those s-t paths share no arc.
The remaining |X| s-t paths contain each a different (` + 1)-chain to a distinct vertex
in VX . Since C′ is a set cover of X, every vertex in VX is adjacent to at least one vertex
in V ′. Therefore, those s-t paths in VX use an arc to a vertex in V ′ and the thereby
shared arc to t. In total, we constructed p = |C| + |X| s-t paths which share at most
k = ` arcs.

NP-completeness: So far, we proved that MTSE on directed acyclic graphs is NP-
hard. MTSE on directed acyclic graphs is also contained in NP as proven in Lemma 1.1.
Hence, the problem is NP-complete.

13

2.1.2 DAGs without shared arcs

In this section, we investigate the complexity of MTSE on DAGs for the case that no
arc is allowed to be shared.

Theorem 2.2. Minimum Time-Shared Edges on directed acyclic graphs can be solved
in O(|V |3|E|) time if no arc is allowed to be shared.

Unlike the general case, if we restrict the parameter k to be equal to zero, MTSE
is polynomial-time solvable on directed acyclic graphs, as we argue in the following.
As mentioned before, there is no difference between a walk, trail, or path in DAGs, so
we consider s-t paths in the following algorithm. We make use of the concept of time
expansions introduced by Ford and Fulkerson [FF62]. Time-expanded graphs are mainly
used to reduce dynamic flow problems to static flow problems. In a time-expanded
graph, there is a copy of the whole static graph for each discrete time step in the time
horizon T . Other than in dynamic flow problems, we have no fixed time horizon T .
However, the maximal length of a path from s to t in a DAG is equal to the number of
vertices in G = (V,E), so T = n for n := |V |. The arcs are connected with the layer
according to their transit time, in our case always one.
More precisely, let G = (V,E) be the graph for an instance of MTSE with k = 0. We
construct a capacitated time-expanded graph G′ = (V ′, E′) where we can calculate the
p s-t paths of our solution by searching edge-disjoint paths in the time-expanded graph
using a maximum-flow algorithm. A sample construction is shown in Figure 4.

Lemma 2.3. There are p s-t paths without sharing an arc in a directed acyclic graph G,
if and only if there is a maximum s0-tT−1 flow of size at least p in the time-expanded
graph G′.

Proof. Construction: For every vertex v ∈ V , there are T = n copies v0, . . . , vT−1 ∈ V ′.
For each arc e = (u, v) ∈ E, there are T − 1 arcs e0, . . . , eT−2 ∈ E′, where ei = (ui, vi+1)
for every i ∈ [0, T − 2]. Those arcs have capacity c = 1. Additionally, there are T − 1
arcs (t0, t1), . . . , (tT−2, tT−1) connecting the copies of t with capacity c = p. The source
of G′ is s0 and the sink is tT−1.

Correctness: We show that there are p s-t paths without sharing an arc in a directed
acyclic graph G if and only if there is a maximum s0-tT−1 flow of size at least p in
the time-expanded graph G′. Beside the capacities of the arcs between the different
vertices ti, all capacities are equal to one. Therefore, a maximum flow of size p in
our constructed time-expanded graph G′ is equivalent to p arc-disjoint (except arcs
e ∈ {(ti, ti+1) | i ∈ [0, T −2]}) s-t paths in G′ [KT05]. We prove that given p arc-disjoint
s-t paths in G′, we can construct p s-t paths in G which do not share an arc, and vice
versa.

Given p arc disjoint s0-tT−1 paths P ′ = {P ′0, . . . , P ′p−1} in G′, we construct p s-t
paths P = {P0, . . . , Pp−1} in G which do not share an arc. By construction, each arc is
directed from layer x to the layer x+ 1. Since s0 is in the first layer and tT−1 in the T th
layer, each path P ′ has exactly length T containing exactly one vertex in each layer. If

14

s v

u

t

G G′

s0

s1

s2

s3

u0

u1

u2

u3

v0

v1

v2

v3

t0

t1

t2

t3

Figure 4: A sample graph G with its time-expanded graph G′. The solid arcs have
capacity c = 1, the dashed arcs capacity c = p

P ′i = (s0, x1, . . . , yl−1, tl, tl+1, . . . , tT−1) is an s0-tT−1 path in G′, then the corresponding
s-t path in G is constructed as Pi = (s, x, . . . , y, t). Since all arcs (xi, yi+1) in G′ have
an underlying arc (x, y) in G, the constructed s-t paths P are valid. Each arc in G′

represents an arc in G at a specific step. Since the paths in G′ are arc-disjoint, the paths
in G share no arc. Therefore, P contains p s-t paths in G sharing no edge.

Conversely, we can construct p arc-disjoint s0-tT−1 paths in G′, given p s-t paths in G
sharing no edge. For each s-t path Pi = (s, v, . . . , u, t) with length `i, the corresponding
s0-tT−1 paths will be P ′i = (s0, v1, . . . , u`i−1, t`i , . . . , tT−1). Since the paths in G share
no arc—which means that they are not using an arc after the same number of steps—
the constructed paths in the time-expanded graph G′ will be arc-disjoint till t`i . In G′

every s0-tT−1 path has exactly length T . Therefore, each path P ′i contains the vertices
{t`i+1, t`i+2, . . . , tT−1} to cover the difference from the sink in G to the sink in G′. Since
the arcs (tj , tj+1) have capacity p, we can construct from the paths P ′ a valid s0-tT−1
flow of size p.

Above we showed that we can construct p s-t paths for each instance (G, s, t, p, k = 0)
using a time-expanded graph G′. We use this, to prove the complexity of MTSE on
DAGs with k = 0.

Proof of Theorem 2.2. Since we can expand a graph G with time expansion in polyno-
mial time to an expanded graph G′ and solve the Maximum Flow problem also in
polynomial time on G′, which is equivalent to solving MTSE for k = 0 on G as proven
in Lemma 2.3, we can solve MTSE on directed acyclic graphs for k = 0 in polyno-
mial time. More precisely, the time-expanded graph G′ has n times more vertices and
arcs, so O(|V ′|) = O(|V |2) and O(|E′|) = O(|E| · |V |). We can compute the maximum
flow on a static graph in O(|V ||E|) time [Orl13], so we get an overall complexity of
O(|V |2 · |V ||E|) = O(|V |3|E|) time.

15

We remark without proof, that given a shared arc e = (u, v) ∈ E, we can include this
shared arc in the time-expanded graph G′ by setting the capacity of each expanded arc
e′ ∈ {(ui, vi + 1) | i ∈ [0, T − 2]} to ce′ = p. By this, we find s-t walks sharing specific
arcs. Testing each combination of shared arcs results in a brute-force algorithm with
running time in O((|V |3|E|) · |V |k). This is an XP algorithm with respect to the number
of shared edges k. Therefore, MTSE on DAGs has polynomial running-time for a fixed
value of k.

2.2 Paths

In Section 2.1, we showed that Path-MTSE is NP-complete on DAGs with an unbound
number k of shared edges, but polynomial-time solvable for k = 0 and constant k. In
this section, we show that Path-MTSE is NP-complete, both, on planar directed and
planar undirected graphs, even for k = 0.

Theorem 2.4. Path-Minimum Time-Shared Edges on planar graphs is NP-complete
for every number k ≥ 0 of shared edges.

To prove Theorem 2.4 we set the amount of shared edges k = 0, so we first prove that
the problem with general k is at least as hard as the problem with k = 0. Afterwards
we proof, that Path-MTSE is NP-complete for k = 0 shared edges.

Lemma 2.5. Path-Minimum Time-Shared Edges and Trail-Minimum Time-Shared
Edges are at least as hard with k > 0 shared edges as with k = 0 shared edges.

Proof. We can reduce every instance of Path-MTSE and Trail-MTSE (G, s, t, p, k =
0) with no shared edge to an instance of Path-MTSE or Trail-MTSE (G′, s′, t′ =
t, p′ = p, k′) with any value for k′. To construct G′, we add a new source s′ to G, which
is connected to s via a k′-chain. Since the degree of the new source s′ is one, every path
or trail has to use and share the k′-chain to s and will reach s after k′ steps with no edge
left to share in the subgraph G.

Given p′ s-t paths or s-t trails in G′ sharing k′ edges, they all share the chain between
s′ and s as mentioned above. Therefore, there is no shared edge in the subgraph G and
hence the paths or trails from s are a feasible solution for the instance of MTSE without
a shared edge.

Conversely, given p s-t paths or s-t trails in G without sharing an edge, we can clearly
construct the p′ paths or trails in G′ by concatenating the k′-chain with each of the paths
or trails. Since the paths or trails share no edge in G, the only shared edges are the
edges contained in the k′-chain between s′ and s.

Since we did not restrict the graph to be directed or undirected, this proof holds for
both, directed and undirected graphs.

For proving Theorem 2.4 we give a reduction from the NP-complete Hamiltonian
Circuit problem on planar, cubic graphs [GJT76], defined as follows:

16

s v1 v2 t

length=4

...

length=n+ 1

GH

x2

x1

x3

Figure 5: Illustration of the reduction of Hamiltonian Cycle to Path-MTSE. The
dashed lines represent chains of length 4 to n+1 and the ellipse GH represents
the graph of PHC, where x1, x2, x3 are vertices on the outer face of GH .

Problem: Planar Hamilton Cycle (PHC)

Input: Graph G = (V,E), where G is undirected, planar, and cubic.
Question: Is there a cycle in G visiting each vertex exactly once?

Proof of Theorem 2.4. To prove that Path-MTSE on undirected planar graphs remains
NP-hard for k = 0, we reduce every instance of PHC to an instance of Path-MTSE
in polynomial time. The basic idea is to force exactly one path to follow a Hamiltonian
cycle by blocking the only edge to t with the other paths. In particular, given an
instance GH = (VH , EH) of PHC, we construct an instance (GM = (VM , EM), s, t, p, 0)
of Path-MTSE as illustrated in Figure 5.

Construction: Let n := |VH | be the number of vertices in GH . Note that n ≥ 4 since
GH is a cubic graph. We set the number of desired paths p = n − 1. To construct the
planar graph GM , we copy the graph GH and add the vertices {s, t, v1, v2}. Next, we
connect s with v1 via a single edge and with v2 via n − 2 chains of length 4 to n + 1.
We select any vertex x1 ∈ GH and connect it with v1. Since GH is planar and cubic,
we can select two neighbours x2, x3 of x1 and connect them with v2 by a single edge
each. Last, we connect v2 with t via a single edge. The constructed graph GM is clearly
planar, since GH is planar and we provided a planar embedding of the rest graph with
x1, x2, x3 on the outer face of GH .

Correctness: We show that, given p s-t paths in GM , there is a Hamiltonian cycle
in GH and vice versa.
Suppose we have p s-t paths in GM that do not share any edge. Since s has degree
n − 1 = p, every incident edge must be used by exactly one path. The p − 1 paths
containing the chains arrive at v2 after 4 to n+ 1 steps, respectively, and must contain
the edge to t because they are not allowed to visit v2 more than once by our definition of

17

a path and v2 is the only adjacent vertex of t. Therefore, the edge e = {v2, t} is blocked
between the fifth and n + 2nd step. The remaining path containing v1 can arrive at v2
in not less than four steps. Since the edge e = {v2, t} is blocked between the fifth and
(n + 2)nd step, it must arrive at v2 after n + 2 steps. Hence, the last path must stay
in the subgraph GH for n steps. This is only possible if it visits every vertex at exactly
once, since a path can visit every vertex at most once and there are n vertices in GH .
The path enters the subgraph GH at vertex x1 and can only leave it at vertex x2 or x3,
which are adjacent to x1. Consequently, the last path contains a Hamiltonian path of
GH starting in x1 and ending in x2 or x3 which can be extended to a Hamiltonian cycle
of GH by adding the edge to x1 at the end. Therefore, this path is a feasible solution
for the instance of PHC.

Conversely, suppose that we have a Hamiltonian cycle Pc in GH . We construct p =
n − 1 s-t paths in GM as follows. By construction of GM , we can construct n − 2 s-t
paths using the chains between s and v2. The remaining path is going over v1 to the
subgraph GH . Here it follows the Hamiltonian cycle Pc starting in x1. Since every vertex
in GH has degree three, in the Hamiltonian cycle either x2 or x3 must be adjacent to x1.
The path follows the Hamiltonian cycle starting at x1 in the direction such that one of
x2 or x3 will be the last vertex on the cycle not equal to x1. Therefore, the path arrives
at x2 or x3 after n+ 1 steps and then using the edge to v2, so that it arrives there after
n + 2 steps. Since the first p − 1 paths have reached t after at most n + 2 steps, the
remaining path can use the edge to t without sharing it. By this, we provided p paths
in GM sharing not a single edge.

Directed: The proof handles undirected graphs, for the directed graphs we replace
every edge {a, b} in our construction by two arcs (a, b) and (b, a). Obviously, every path
in the undirected graph is also valid for the directed graph. Since no edge is shared, the
split of one edge into two arcs does not increase the amount of shared edges. Since there
is only one path in the subgraph GH and the s-t paths using the chains to v2 are forced
to use the edge to t it cannot happen that two paths use the same edge in a different
direction. Therefore, this can also not occur in the directed graph, where the edges are
split in two arcs. Consequently, the proof is also valid for directed graphs.

Completeness: Since the constructed graph GM is planar, we proved that Path-
MTSE on planar graphs is NP-hard for k = 0. Using Lemma 2.5, we conclude that
Path-MTSE is NP-hard for any value of parameter k. Path-MTSE on planar graphs
is contained in NP, since we showed in Lemma 1.1 that each solution of Path-MTSE
can be verified in polynomial time. Hence, the problem is NP-complete.

2.3 Trails

In Section 2.1, we showed that Trail-MTSE is NP-complete on DAGs with k shared
edges, but polynomial-time solvable if the number of shared edges k = 0. In this section,
we distinguish between directed and undirected trails and show that Trail-MTSE is
NP-complete on planar directed graphs and planar undirected graphs, even if the number
of shared edges k = 0.

18

s v1 v2 t

length=3

...

length=n+ 2

GHx1

Figure 6: Illustration of the reduction of the Hamiltonian Cycle to Trail-MTSE on
directed graphs. The dashed lines represent a chain of length 3 to n + 2 and
the ellipse GH represents the graph of DPHC.

2.3.1 Directed Trails

We first prove the NP-completeness for Trail-MTSE on directed planar graphs.

Theorem 2.6. Trail-Minimum Time-Shared Edges on planar directed graphs is
NP-complete for every k ≥ 0.

In order to prove Theorem 2.6, we adapt the proof for Theorem 2.4 in which we showed
that Path-MTSE is NP-complete. Instead of reducing from Hamiltonian Circuit
on planar, cubic graphs, we reduce from the NP-complete Hamiltonian Circuit on
planar, directed graphs with in-degrees and out-degrees at most two and the sum of
them at most three, shortly DPHC [Ple79].

Proof of Theorem 2.6. Let GH = (VH , EH) be an instance of DPHC, we will construct
an instance (GM = (VM , EM), s, t, p, 0) of Trail-MTSE as illustrated in Figure 6.

Construction: Let n := |VH | be the number of vertices in GH . We set the number p
of desired trails to n + 1. We copy the graph GH and add the vertices {s, t, v1, v2}, so
far the set of vertices of GM consists of VM = VH ∪ {s, t, v1, v2}, later on we will add
vertices contained in chains. We add an arc each from s to v1, from v1 to a vertex x1 on
the outer face of GH , from x1 to v2, and from v2 to t. Last, we connect s with v2 via
n− 1 chains of length 3, 4, . . . , n+ 2, respectively, directed towards v2.

Correctness: The idea is the same as in the proof of Theorem 2.4. At first, suppose we
have p s-t trails in GM sharing no arcs. The out-degree of s equals p, so every outgoing
arc must be in one distinct s-t trail. Therefore, there are p − 1 trails using the chains
from s to v2 and blocking the arc between v2 and t till step n + 3. Therefore, the last

19

trail using v1 and GH has to stay in GH for at least n + 1 steps. Since every vertex
in GH has at most two incoming and one outgoing or one incoming and two outgoing
arcs, every vertex except x1 can only occur at most once in a trail. Hence, to stay in GH

for at least n + 1 steps, the remaining trail contains a Hamiltonian cycle starting and
ending at x1.

Conversely, suppose that we have a Hamiltonian cycle in GH ; we need to construct
p = n+ 1 s-t trails in GM that do not share any arc. We construct n different s-t trails
using the chains between s and v2. The remaining trail uses the arc to v1 and then
the arc to the subgraph GH . Here, the trail follows the Hamiltonian cycle starting and
ending in x1 and afterwards uses the arc to v2 and arrives there after n+ 3 time steps.
Therefore, the arc to t is not blocked and the trail is using it in order to get to t.

NP-completeness: We proved that Trail-MTSE is NP-hard on directed planar graphs
and k = 0. Using Lemma 2.5, we conclude that Trail-MTSE is NP-hard for any value
of parameter k. Trail-MTSE on directed planar graphs is contained in NP as proven
in Lemma 1.1. Hence, the problem is NP-complete.

2.3.2 Undirected Trails

In the section before, we proved that Trail-MTSE on directed planar graphs is NP-
complete. We cannot use that proof for undirected graphs since the trails using the
chains do not have to use the edge from v2 to t afterwards. Therefore, it is not ensured
that one trail follows a Hamiltonian cycle. In the proof for undirected graphs, we will use
an other concept to ensure that the edge between v2 and t is blocked till one trail follows
a Hamiltonian Cycle, to prove that Trail-MTSE is also NP-complete on undirected
graphs.

Theorem 2.7. Trail-Minimum Time-Shared Edges on undirected planar graphs is
NP-complete for every k ≥ 0.

In the proof of Theorem 2.7, we reduce from the NP-complete Hamiltonian Cir-
cuit Problem on planar, cubic graphs [GJT76], shortly PHC (defined in Section 2.2).
We first construct a multigraph and discuss the correctness. Subsequently, we doubly
subdivide all edges to transform the multigraph into a simple graph. We define a double
subdivision as a replacement of an edge e = {u, v} by two additional vertices p, q and
three edges {u, p}, {p, q}, {q, v}. We first prove that the double subdivision does not
effect the correctness.

Lemma 2.8. Every instance (G, s, t, p, k = 0) of Minimum Time-Shared Edges is
equivalent to the instance (G′, s, t, p, k′ = 0) of MTSE, where G′ is the graph after
double subdividing each edge in G.

The proof handles s-t trails, but since every path is also a trail, Lemma 2.8 holds also
for paths.

Proof of Lemma 2.8. Given p s-t trails in graph G, without sharing an edge, we can con-
struct p s-t trails in the graph G′ after double subdivision of each edge, without sharing

20

an edge. Roughly speaking, for every s-t trail P in the solution for G, we enlarge the trail
by including the vertices of the subdivisions to construct a valid s-t trail P ′ for the so-
lution for G′. More precisely, for every trail P = (s, . . . , vi, vi+1, . . . , t), where each edge
e = {vi, vi+1} is subdivided to {vi, pi}, {pi, qi}, {qi, vi+1}, the corresponding s-t trail in G′

is P ′ = (s, . . . , vi, pi, qi, vi+1, . . . , t). Clearly, also the new trails connect s and t. Recall
that we call an edge shared if there exist at least two s-t trails Px = (v0, . . . , va), Py =
(u0, . . . , ub) in our solution such that there is a step i ∈ [min(length(Px), length(Py))]
where both use the same edge: e = {vi, vi+1} = {ui, ui+1}. After doubly subdividing all
edges, each vertex v after i steps in P will be the vertex after 3 · i steps in P ′. If there is
an edge e ∈ {{v3·i, v3·i+1}, {v3·i+1, v3·i+2}, {v3·i+2, v3·(i+1)}} shared by two trails, P ′x and
P ′y, in G′, then the edge e′ = {vi, vi+1} is shared by Px and Py in G. Since there is no
shared edge in G, there cannot be a shared edge in G′.

Conversely, given p s-t trails in G′ = (V ′, E′), we can construct p s-t trails in
G = (V,E), both without sharing an edge. By construction, every third vertex in
P ′ is in G, since in between there are two vertices of the subdivisions. We take the
corresponding vertices in G for every third vertex in P ′ to create P . Precisely, if
P ′ = (s, v1, v2, v3, v4, . . . , t) the constructed trail for G will be P = (s, v3, v6, v9, . . . , t).
There is an edge in G between the consecutive vertices in P since each of the two omit-
ted vertices of P ′ represents an edge in G. Since the steps are shifted equally in every
trail, if there is an edge e = {vi, vi+1} = {ui, ui+1} ∈ E shared in P , then there is an
edge e′ = {v3·i+1, v3·i+2} = {u3·i+1, u3·i+2} ∈ E′ shared in P ′, where the edge e was
subdivided into {v3·i, v3·i+1}, {v3·i+1, v3·i+2}, {v3·i+2, v3·(i+1)}. Since there is no shared
edge in G′, there is also no shared edge in G.

Lemma 2.8 is not valid for arbitrary k. To show this, we introduce the direction an
edge is shared. The direction an edge is shared is defined by the order in which a pair
of vertices appears in a trail. Let {u, v} be an edge shared by the trails P1 and P2.
If P1 = (s, . . . , u, v, . . . , t) and P2 = (s, . . . , v, u, . . . , t), then the edge {u, v} is shared
in opposite direction. If P1 = (s, . . . , u, v, . . . , t) and P2 = (s, . . . , u, v, . . . , t), then the
edge {u, v} is shared in the same direction. If an edge is shared by two trails in the
same direction, then this would result in three shared edges in the graph after double
subdivision. However, if an edge is shared in opposite direction, then this would result
in only one shared edge. Therefore, Lemma 2.8 holds only for k = 0.

Proof of Theorem 2.7. To prove that Trail-MTSE on undirected planar graphs is NP-
hard for k = 0, we reduce Planar Hamiltonian Cycle to Trail-MTSE. In par-
ticular, given an instance GH = (VH , EH) of PHC, we construct an instance (GM =
(VM , EM), s, t, p, k = 0) of Trail-MTSE as follows.

Construction: The construction is illustrated in Figure 7. Let n := |VH | be the number
of vertices in GH . We set the desired number of s-t trails p = 2 · n and the number of
shared edges k = 0. We obtain the graph GM from GH as follows. First, subdivide
each edge in GM once. Let G′H denote the obtained graph. To G′H we add the vertices
{s, t, v1, v2}. We select a vertex x1 on the outer face of G′H which was also contained
in GH and connect it with s and with v2 via a single edge. Next, we connect s with v1

21

s

v1

v2 tx1

G′H

...
n− 1

Figure 7: Illustration of the graph constructed in the reduction from Planar Hamil-
tonian Cycle (PHC) to Trail-MTSE. The ellipse represents the single
subdivided graph G′H of PHC.

and v1 with v2 via a single edge. Additionally, we connect v2 with t via a single edge.
Last, we add n− 1 vertices {ui | i ∈ [n− 1]} and connect these with two edges to s each.
We refer to them in the following as bows. Since GH is a planar graph and subdivisions
keep the planarity, G′H is also planar. Since we provided a planar embedding in Figure 7,
where x1 is on the outer face of G′H , the constructed graph GM is planar.

We note some basic observations about the constructed graph GM . Since k = 0, no
edge can be shared. We remark that a vertex of degree three can only appear once in
a trail. Since v2 is the only adjacent vertex of t and has degree three, every s-t trail
reaching v2 needs to use the edge to t afterwards. Moreover, since GH is a cubic graph,
an s-t trail can visit every vertex in G′H except x1 at most once. Since we subdivided
each edge in GH to obtain G′H , each trail in G′H arrives at a vertex in GH every two
steps. Therefore, each trail can leave G′H only after an even number of steps in G′H .

In the following, we state some observations on the vertex s. The incident edges are
the n − 1 bows and the edges to v1 and x1. Therefore, at most two trails can leave s
each step, the remaining trails have to stay in s. By stay we mean that a trail has to
use a bow and return to s after two steps. Since using a bow takes two steps, the trails
arrive at s only after an even number of steps. Therefore, at most two trails can leave s
every two steps. In the longest trail s can appear n times, since there are n − 1 bows
and each trail can use an edge/bow at most once by definition of a trail. Therefore, a
trail can contain s between one and n times. Each bow can be used by two trails at the
same time, it follows that there can be at most n ·2 s-t trails. Since p = n ·2 at least two
trails have to leave s each even step. Therefore, exactly two trails have to leave s each
even step. It is also necessary that these trails can stay in s without sharing an edge.
This is possible and easy to show. First we label the bows as l1, . . . , ln−1. We split the
trails in two groups of size p

2 = n. One group uses always first the “left” edge and then
the “right” edge of a bow, the other group the other way around. By this, each bow
can be used by two trails, without sharing an edge, since they are always at a vertex ui
after the same amount of steps. In each group, every trail uses a distinct bow except

22

one trail, which uses the edge to v1 or x1. For every second step when the trails arrive
at s, the two trails used the bow ln−1 leave s via the the edges to v1 or x1. The other
trails use a bow one rank higher in our order, so if a trail used the bow li in the last
step, it will use the bow li+1 in the next step. By this no bow is shared. Note that both
the edge to v1 and the edge to x1 is used by exactly n trails.

Correctness: Given 2 ·n s-t trails in GM sharing no edge, we construct a Hamiltonian
cycle in GH as follows. As mentioned before, n trails are using the edge to v1 and
n trails are using the edge to x1, each in a frequency of two steps. Since v1 has degree
two and v2 has degree three, the trails using the edge to v1 have to use the edge to v2
and then to t. Therefore, the edge (v2, t) is blocked after all even steps till 2 · n, that
is, after i ∈ {2, 4, 6, . . . , 2 · n} steps. In every solution for GM , the other n trails enter
the subgraph G′H in x1. A trail can leave the subgraph G′H only after an odd number
of steps since each trail arrives there after an odd number of steps and, because of the
subdivision of each edge, each trail has to stay in G′H an even number of steps. Since
x1 is connected to v2 via a single edge, every trail using the subgraph G′H arrives at v2
after an even number of steps. In every even step between two and 2 · n a trail from v1
blocks the edge between v2 and t, thus, the first trail arriving in x1 has to be in G′H for
at least 2 · n steps. Since it can visit every vertex except x1 only once, the trail has to
follow a Hamiltonian cycle starting and ending in x1 before leaving the subgraph to v2
and arriving there after 2 · n + 2 steps. At this time, the edge is not blocked anymore.
We now remove the vertices of the subdivision from this trail to obtain a Hamiltonian
cycle in GH starting and ending in x1. Since all vertices of the subdivision have exactly
degree two, they did not influenced the trail, except extending the length. Therefore,
this cycle is a valid solution for PHC.

Conversely, given a Hamiltonian cycle C in GH , we construct 2 · n trails in GM

without sharing an edge as follows. First, we construct n trails leaving consecutively in
a frequency of two steps by using the bows over v1 to v2 and then to t. As stated before,
this is possible without sharing a bow. These trails use the “left” edges of the bows, with
the order, that the trail used the bow ln−1 leaves to v1. The remaining trails uses the
“right” edges of the bows. The trail used the bow ln−1 uses the edge to x1 afterwards.
As mentioned, these trails share no edge in the bows. Each trail arriving in x1 follows
the same Hamiltonian cycle C ′ including the subdivisions and then uses the edge to v2.
The first trail from the subgraph G′H arrives at v2 after 2 · n + 2 steps, when the edge
to t is not blocked anymore. Since the trails in G′H follow the same Hamiltonian cycle
in a distance of two steps, no edge is shared in G′H . Since no edge is shared, this is a
valid solution for our instance of Trail-MTSE.

Subdivision: Last, we have to reduce the multigraph to a simple graph without affect-
ing the correctness. We double subdivide each edge in GM to convert the double edges
in the bows incident to s into cycles of length six. By Lemma 2.8, double subdivision is
allowed if we have k = 0 no shared edge. Hence, Trail-MTSE on planar simple graphs
is NP-hard.

NP-completeness: Above, we proved, that Trail-MTSE is NP-hard on undirected
planar graphs even for k = 0. In Lemma 1.1 we proved that Trail-MTSE is contained

23

in NP. Hence Trail-MTSE is also NP-complete.

2.4 Walks

In this section, we investigate walks. Unlike trails or paths, Walk-Minimum Time-
Shared Edges can be solved in polynomial time on undirected graphs. A walk can use
each edge an unrestricted number of times, therefore walks can alternate in an undirected
graph between two vertices by using the same edge multiple times in a row. This leads
to a simple polynomial time algorithm on undirected graphs. Walk-MTSE remains
NP-hard for general k on directed acyclic graphs, but is polynomial time solvable on
general directed graphs if the numbers of shared edges k is equal to zero.

2.4.1 Undirected Walks

Theorem 2.9. Walk-Minimum Time-Shared Edges on undirected graphs can be
solved in polynomial time.

In the proof, we distinguish between the case of k ≥ 1 and k = 0, but the idea of the
algorithm is the same. The walks are alternating between s and an adjacent vertex, and
then use the same path each from s to t consecutively.

Proof. Given an instance (G, s, t, p, k) of Walk-MTSE we want to find p walks from s
to t sharing at most k edges. First, we need to find an s-t path, this can be done for
example with Breath-First-Search in O(|V | + |E|) time [KT05]. This gives us a path
Pshort = (s, v1, . . . , t) if there is a connection between s and t. Otherwise, there will be
no solution for Walk-MTSE as well.

If k ≥ 1, then all walks of our solution P1, P2, . . . , Pp share the edge {s, v1}. The first
walk follows the path Pshort found in the Breath-First-Search directly. The ith path uses
the edge {s, v1} back and forward i times before following Pshort as well. More precisely,
P1 = Pshort, P2 = (s, v1, Pshort), P3 = (s, v1, s, v1, Pshort) and so on. Since all walks follow
the same path, but with a time difference of two steps, no edge except {s, v1} is shared.

If k = 0, we are not allowed to share any edge. Hence, the solution depends on the
degree of s. There is no solution if deg(s) < p. Since all walks start at the same time, not
more than deg(s) walks can leave s without sharing an edge. However, if deg(s) ≥ p, then
in a simple graph there are at least p neighbors v1, . . . , vp of s, where v1 is the neighbor
in Pshort. Each walk Pi uses the edge to vi and alternates 2 · (i − 1) steps between s
and vi. Then the walk follows Pshort. For example P1 = Pshort, P2 = (s, v2, Pshort),
P3 = (s, v3, s, v3, Pshort), and so on. In this case, no edge is shared, since the walks
have each a distinct edge to alternate and then follow the path Pshort to t with a time
difference of two steps. This is illustrated in Figure 8.

2.4.2 Directed Walks

On directed acyclic graphs Walk-Minimum Time-Shared Edges is NP-hard as shown
in Theorem 2.1. If the number of shared arcs k = 0, then Walk-MTSE on directed

24

2×3×

W1 = (s, v1, u, t)
W2 = (s, v2, s, v1, u, t)

W3 = (s, v3, s, v3, s, v1, u, t)
W4 = (s, v4, s, v4, s, v4, s, v1, u, t)

s uv1

v2v3v4

t

Figure 8: A sample graph G where the maximum amount of s-t walks without sharing an
edge is 4. A possible solution is illustrated, where each dashed line represents
a walk.

acyclic graphs becomes polynomial-time solvable, as shown in Theorem 2.2. In this
section, we prove that Walk-MTSE is polynomial-time solvable also on general directed
graphs for k = 0 by providing a polynomial-time algorithm using the concept of time-
expanded graphs similarly to the proof of Theorem 2.2.

Theorem 2.10. Walk-Minimum Time-Shared Edges on directed graphs can be
solved in polynomial time with the number of shared edges k = 0.

To show this, we prove that if an instance of Walk-MTSE (G, s, t, p, k = 0) is a yes-
instance, then there exists a solution that has the length of the longest walk restricted
by the length of the longest shortest path to t, called d, and the amount of walks p. The
length d of the longest shortest path to t is can be calculated by the depth of a BFS-tree
starting in t with all arcs reversed. It is defined as:

d := max
v∈V ;dist(v,t)<∞

(dist(v, t))

We later use this length restriction to create a time-expanded graph.

Lemma 2.11. For every finite yes-instance of Walk-Minimum Time-Shared Edges
there exists a finite solution where the longest walk is restricted by p · d.

Proof. We prove Lemma 2.11 by showing that, given a solution P of an instance of
Walk-MTSE (G, s, t, p, k) which contains at least one walk Pi with length longer than
d · p, we can construct a new solution P ′ where each walk has length of at most d · p.
More precisely, Algorithm 2 creates a solution where for each i ∈ [p] at least i walks have
length restricted by d · i. Before proving the correctness of Algorithm 2, we explain some
notation used, similar to array notation in programming. To get the vertex v after x
steps in walk P , we write P [x] := v. To access an interval of a walk P = (v0, v1, . . . , v`)
between step i and step j, i < j, we write P [i, j] := (vi, vi+1, . . . , vj−1, vj). If we replace
an interval of a walk Px[i, j] by another walk Py, in order to ensure that the result
is an s-t walk, (Px[i − 1], Py[0]), (Py[length(y)], Px[j + 1]) ∈ E for i 6= 0, i < j and
j 6= length(Px) must hold. If i = 0 or j = length(Px), that is, Px[i] = s or Px[j] = t,
then Py must start with the source s or end with the sink t respectively. Last, with

25

Algorithm 2 Reduce a solution to length d · p
1: procedure ReduceLength(G = (V,E),P = {P1, . . . , Pp})
2: Let P1 := {Pj ∈ P | |Pj | ≤ 1 · d} ;
3: Let P2 := {Pj ∈ P | |Pj | > 1 · d} ;
4: for i = 1 to i = p do
5: Let W1 := {Pj ∈ P1 ∪ P2 | |Pj | ≤ i · d} ;
6: Let W2 := {Pj ∈ P1 ∪ P2 | |Pj | > i · d} ;
7: if |W1| ≥ i then
8: P1 =W1

9: P2 =W2

10: else
11: Ptemp = Select arbitrary Pj ∈ W2

12: PS = shortestpath(Ptemp[(i− 1) · d], t)
13: Ptemp[(i− 1) · d, length(Ptemp)] = PS

14: S = new shared arcs
15: if S = ∅ then
16: P1 =W1 ∪ {Ptemp}
17: P2 =W2\{Pj}
18: else
19: (u, v) = (u, v) ∈ S | dist(v, t) = min(y,z)∈S(dist(z, t))
20: Select shared arc (u, v) ∈ S with least distance to t
21: c = steps when Ptemp uses and shares the arc (u, v).
22: Px = walk that shares arc (u, v) with Ptemp

23: P2 =W2\{Px}
24: Px[c+ 1, length(Px)] = Ptemp[c+ 1, length(Ptemp)]
25: P1 =W1 ∪ {Px}

return P1

26

shortestpath(a, b) we call an algorithm which returns the shortest path from vertex a to
vertex b.

Correctness: The algorithm iterates from one to p. For each i ∈ [p], it checks whether
there are already i s-t walks in our solution with length shorter than i · d. There are at
least (i− 1) walks with length upper-bounded by (i− 1) · d, created in the step before.
Therefore, if there are less than i walks shorter than i ·d, then we need to shorten exactly
one walk.

WithW2 we denote the walks with length longer than i ·d, withW1 the walks shorter
than or equal to i · n. Note that if we need to shorten a walk, there is no walk with
length between (i − 1) · d and i · d in W1. We first select an arbitrary walk Pj ∈ W2.
From its position after (i − 1) · d steps, Pj [(i − 1) · d], we calculate the shortest path
to t. This path PS is clearly shorter or equal d. We concatenate Pj [0, (i−1) ·d] with the
shortest path PS to obtain Ptemp. The length of Ptemp is less equal i · d. Therefore, if
this modified walk Ptemp has no additional shared arc with an other walk, then we add
Ptemp to our solution P1 and remove the unmodified walk Pj .

However, if there are new shared arcs S, we cannot add Ptemp to our solution. The
new shared arcs S are shared with walks in W2, since, if we shorten a walk, then all
walks in W1 have length less than (i − 1) · d and, therefore, already arrived at t. We
select the arc e = (u, v) ∈ S with the least distance to t. We can measure the distance
using the shortest path PS and check for the shared arc with the highest index c in
Ptemp. We then select the walk Px that shares the arc e = (u, v) with Ptemp, that is
Ptemp[c] = Px[c] = u and Ptemp[c + 1] = Px[c + 1] = v. Since e was the shared arc
with the least distance to t, there will be no further shared arcs between v and t, if Px

follows PS . Therefore, we discard Ptemp and concatenate Px[0, c] with the shortest path
from u to t Ptemp[c+ 1, length(Ptemp]. We add the modified Px to our solution, since Px

is an s-t walk with length bounded by i · d that does not share an additional arc with
any walk.

By this, we create in each iteration i one walk with length upper bounded by i · d.
Since we iterate till i = p, we end up with p s-t walks sharing no additional arc and
with length smaller equal p · d. Since our algorithm works on every solution for a yes-
instance of Walk-MTSE, there is a solution where the length of the longest walk is
upper bounded by p · d for every yes-instance of Walk-MTSE.

We showed that for every finite yes-instance (G, s, t, p, k) of Walk-MTSE, there exists
a solution upper-bounded by p · d. Therefore, we can use the concept of time-expansion
with time horizon T = p · d to solve Walk-MTSE in polynomial time.

Proof of Theorem 2.10. Given an instance (G = (V,E), s, t, p, k = 0) of Walk-MTSE,
we will construct a capacitated time-expanded graph G′ = (V ′, E′). In the time-
expanded graph G′ we will use a maximum-flow algorithm to obtain p edge-disjoint
paths, which we use to calculate p s-t walks sharing no edge in G.

Construction: The construction and proof of Theorem 2.10 is similar to the proof of
Theorem 2.2. Since in Lemma 2.11 we proved that for every yes-instance of Walk-
MTSE there is a solution with the length of the longest path upper-bounded by p · d,

27

s v

u

t

G G′

s0

s1

s6

s7

u0

u1

u6

u7

v0

v1

v6

v7

t0

t1

t6

t7

...

Figure 9: A sample graph G, of an instance (G, s, t, p = 2, k = 0) with its time-expanded
graph G′. The longest shortest path to t has length four and, therefore, T =
d · p = 8. The single arcs have capacity c = 1, the dashed arcs capacity c = p

we set the time horizon T of the time-expanded graph G′ to T = p · d. For every vertex
v ∈ V , there are T copies v0, . . . , vT−1 ∈ V ′. For each arc e = (u, v) ∈ E, there are T −1
arcs e0, . . . , eT−2 ∈ E′, where ei = (ui, vi+1) for every i ∈ [0, T − 2]. Those arcs have
capacity c = 1. Additionally, there are T −1 arcs (t0, t1), . . . , (tT−2, tT−1) connecting the
copies of t ascending with capacity c = p. The source of G′ is s0 and the sink is tT−1.

Correctness: Due to Lemma 2.3, we can obtain p s-t paths in a directed acyclic
graph G, given an s0-tT−1 flow of size p in the time-expanded graph G′ of G, and vice
versa. The proof is only valid if G, and hence G′, is a directed acyclic graph. For general
directed graphs, if we convert a flow of size p in G′ to p s-t paths in G, then it is not
guaranteed that these s-t paths visit each vertex and use each edge in G at most once.
This contradicts the definition of an s-t path or an s-t trail and, therefore, Lemma 2.3
holds only on DAGs for paths and trails. However, a walk can use each vertex and edge
any number of times. Therefore, we can use the method described in Lemma 2.3 to
obtain p s-t walks in G. The algorithm runs in O(|V ′||E′|) time. Our time-expanded
graph G′ has p · d more vertices and edges. Since d is in O(|V |), in the time-expanded
graph we have O(|V ′|) = O(p|V |2) vertices and O(|E′|) = O(p|E||V |) edges. This re-
sults in a running time of O(p2|V |3|E|) for Walk-Minimum Time-Shared Edges on
directed graphs.

We remark without proof that as in DAGs, we can include a shared arc e = (u, v) ∈ E,

28

in the time-expanded graph, by setting the capacity of each arc e′ ∈ {(ui, vi+1 | i ∈
[0, T − 2]}] ⊂ E′ to p. By brute-forcing every combination of shared arcs, this results
in an algorithm with running time of O((p2|V |3|E|) · |V |k) which is polynomial for fixed
values of k. Therefore, this is an XP algorithm and Walk-MTSE on DAGs problem is
in XP with respect to the number of shared edges k.

3 Complexity of Short Minimum Time-Shared Edges

For real-world applications, it is often required to restrict the length of an s-t connection
by a maximum length α. To include this into our problem defintion, we introduce
a length-restricted version of MTSE named Short Minimum Time-Shared Edges.
The problem is defined for s-t paths, trails, and walks, and we use s-t connection as a
placeholder for the formal definition, connection ∈ {path,trail,walk}.

Problem: Short Minimum Time-Shared Edges (S-MTSE)

Input: A graph G = (V,E), s, t ∈ V , p, α ∈ N, and k ∈ N0.
Question: Are there p s-t connections of length at most α in G that share at most

k edges?

In this section, we show that SPath-MTSE and STrail-MTSE are NP-complete
by proving that they are at least as hard as Path-MTSE and Trail-MTSE , respec-
tively. We also show that unlike Walk-MTSE, which can be solved in polynomial time,
SWalk-MTSE is NP-complete on both directed and undirected graphs for general k.

3.1 Paths and Trails

Theorem 3.1. Short Path-Minimum Time-Shared Edges and Short Trail-
Minimum Time-Shared Edges on planar directed and undirected graphs are NP-
complete.

Both for paths and trails the number of vertices they can contain is upper bounded.
Therefore, we can provide a length restriction α to reduce MTSE to S-MTSE.

Proof of Theorem 3.1. Since by definition a path contains every vertex at most once,
the maximal length of an s-t path in Path-MTSE is upper-bounded by the number of
vertices |V |. Therefore, each instance of Path-MTSE (G, s, t, p, k) is equivalent to the
instance (G, s, t, p, α = |V |, k) of SPath-MTSE. Since in Section 2.2 we showed that
Path-MTSE is NP-complete on planar directed and undirected graphs, even with the
number of shared edges k = 0, SPath-MTSE is NP-hard on these graphs. SPath-
MTSE is also contained in NP. We can adapt the verifier given in Lemma 1.1 to check
whether all s-t paths have length at most α. Hence, SPath-MTSE is also NP-complete.

For trails, we can use the same argumentation as above, with the modification that
instead of each vertex in a path, a trail contains each edge at most once. Therefore
the length is upper-bounded by the number of edges in the graph |E|. We showed in

29

Section 2.3 that Trail-MTSE is NP-hard, hence STrail-MTSE is NP-complete on
planar directed and undirected graphs, even with the number of shared edges k = 0.

3.2 Walks

As shown in Section 2.4, Walk-MTSE is polynomial-time solvable on undirected graphs.
However, in this section we show that SWalk-MTSE is NP-complete on undirected
graphs.

Theorem 3.2. Short Walk-Minimum Time-Shared Edges on undirected graphs is
NP-complete.

To prove Theorem 3.2, we will provide a similar reduction from Set Cover as in
Theorem 2.1. The basic idea is that the shortest walk has the length of α = ` + 3 and
so every walks has to follow one of these shortest walks.

Proof of Theorem 3.2. Construction: The construction is identical to the construction
in Theorem 2.1 except that the arcs are undirected edges and in SWalk-MTSE we
have the parameter α which we set to `+ 3. The construction is illustrated in Figure 10.
Given an instance (C, X, `) of Set Cover, the graph of our constructed instance of
SWalk-MTSE contains a source s, a sink t, for every set Ci ∈ C of an instance of
Set Cover a vertex ci and for every element xj ∈ X a vertex vj . The vertices ci are
connected with t via a single edge, with s via an (`+ 2)-chain and with every vj , where
xj ∈ Ci, via a single edge. Finally s is connected with every vj via an (`+ 1)-chain. The
number of shared edges k = ` and the number of desired paths p = |C|+ |X|.

Correctness: We show that, given p s-t walks of length at most α = ` + 3 in G that
share at most k edges, we can construct a set cover C′ ⊆ C for X with |C′| ≤ ` and vice
versa. An important observation about our constructed graph is that the shortest s-t
walk has length α = `+3 and, therefore, each s-t walk in our solution must have exactly
length ` + 3 and does not use any edge more than once. As a consequence the walks
follow the same paths as in the proof for Theorem 2.1.

Suppose that we have p s-t walks in G that share at most k edges. As mentioned,
each walk is a shortest path and, therefore, the walks reduce the distance to s with
every step. In addition, s has degree p and every outgoing edge is connected to a chain
of length at least `+ 1. Therefore, each s-t walk of our solution uses a different outgoing
edge of s and no edge except the edge between a node ci and t can be shared. Let
V ′ := {ci ∈ V | (ci, t) is a shared edge} be the vertices incident to a shared edge. We
claim that the set C′ := {Ci ∈ C | ci ∈ V ′} is a set cover of X. Since every vertex ci ∈ V
is adjacent to t and each walk has to follow a shortest path, each s-t walk arriving at
a vertex ci has to use the edge to t directly. Since every outgoing chain of s is used, in
each ci arrives at least one s-t walk after ` + 2 steps and blocks the edges to t. Each
vertex vj represents an element j ∈ X and is adjacent to all vertices {ci | j ∈ Ci}. Since
each vertex vj is in a distinct s-t walk, one of the edges to a node ci has to be used and
the walk arrives at the vertex ci after `+ 2 steps and has to use the edge to t. But since
each edge to t from a vertex ci is blocked by the s-t walk coming over the (`+ 2)-chain

30

1

2

3C1

C2

C3

s

v1

v2

v3

c1

c2

c3

t

Figure 10: Left an instance of Set Cover, on the right side a graph of SWalk-MTSE
according to our construction. Each red dashed line stands for an (`+2)-chain
and each blue dotted line stands for an (`+ 1)-chain.

from s, the edge must be shared. Consequently, all s-t walks which visit a vertex vj
contain also a vertex in V ′. Since all vertices vj are in an s-t walk the set C′ is a set
cover of X and because the maximal number of shared edges is `, the size |C′| ≤ `.

Conversely, assume that we have a set cover C′ ⊆ C with |C′| ≤ `. Let V ′ := {ci ∈ V |
Ci ∈ C′}. We construct a solution for our constructed instance of STrail-MTSE with
Es := {{ci, t} | ci ∈ V ′} as the shared edges. By definition |Es| = |C′| ≤ k = `, thus we
need to show that there are p = |C|+ |X| s-t walks of length at most α = `+ 3 in G that
share only edges in Es. First we construct |C| s-t walks. Each of these walks contains an
(`+ 2)-chain from s to a vertex ci and then the edge to t. Clearly, those s-t walks have
length `+ 3 and, since there are |C| outgoing (`+ 2)-chains in s, they all use a different
chain and a different vertex ci and so they are not sharing any edge.
The remaining |X| s-t walks are each using a different (`+1)-chain to a vertex vj . Since
C′ is a set cover of X, every vertex vj is adjacent to at least one vertex in V ′. The
s-t walks each uses one of those edges to a vertex ci ∈ V ′ and then the shared edge to t.
Clearly, each of these walks has also length `+ 3.

Completeness: So far, we proved that SWalk-MTSE is NP-hard on undirected
graphs. To show that SWalk-MTSE is also contained in NP, we can adapt the verifier

31

for Lemma 1.1 to check whether each walk has a length upper-bounded by α. Hence,
SWalk-MTSE is NP-complete.

4 Conclusion

In this work, we studied the computational complexity of Minimum Time-Shared
Edges and ascertained that this problem is NP-complete for most variations. While
most routing problems focus only on paths, we also analyzed the complexity of MTSE
on trails and walks. Both Trail-MTSE and Path-MTSE are NP-complete on directed
and undirected planar graphs. Even though we fixed the number of shared edges to zero,
we proved that Trail-MTSE and Path-MTSE on planar graphs remain NP-complete.

On directed acyclic graphs, every walk and every trail is also a path, therefore, the
complexity of Walk-MTSE, Trail-MTSE and Path-MTSE on DAGs is the same.
We proved that MTSE is NP-complete on DAGs. However, for k = 0, we provided
an algorithm running in O(|V |3|E|) time. We also provided an idea how this algorithm
can be extended for small values of k. This could have an usage in the maintenance of
wastewater systems, when we keep the number of drains to improve low.
Walk-MTSE on undirected graphs can be solved in polynomial time. However, our

algorithm abuses the fact that walks can use an edge an unlimited number of times and
each walk follows the same path consecutively. Therefore, the algorithm is not applicable
in real-world applications. We introduced Short Minimum Time-Shared Edges to
restrict the length of the longest s-t connection. However, SMTSE is at least as hard
as MTSE and for walks, SWalk-MTSE on undirected graphs is NP-complete.

Challenges for future research: We proved that Path-MTSE is NP-complete even for
k = 0. In our proof, we used a high number of paths p and a high maximum degree. It
remains an open question whether there is an FPT-algorithm with respect to the number
of paths or the maximum degree. Particularly for the security problems, we can assume
small values for p and k.

We only consider routing, where edges are shared, but there could be several paths
at one vertex at the same time. If we want to count shared vertices as well, on directed
graphs, we could replace each vertex v with two vertices v1, v2 connected by a single
arc directed from v1 to v2. Every incoming arc of v is directed to v1, every outgoing
arc starts from v2. Thus, if more than one path arrives at a vertex at the same time,
then the arc between v1 and v2 is shared. It remains an open question, how to consider
shared vertices on undirected graphs.

It is also interesting whether there is a polynomial-time algorithm on graphs with
bounded treewidth. Series-parallel graphs have treewidth of at most two. When we
consider Path-MTSE, if s and t are the two terminals on a series-parallel graph, then
we could direct each edge of the graph to transform it into a directed acyclic graph,
since a path can visit every vertex at most once. Therefore, for fixed k, Path-MTSE
on series-parallel graphs is polynomial-time solvable. If there is also an algorithm for
general k depending on the treewidth remains an open question for further research.

32

We could also extend and generalize MTSE by adding a capacity from where on an
edge is shared and assign a cost of sharing for each edge. This generalized MTSE could
be of special interest in the wastewater maintenance since drains have a different size
and, therefore, can hold a different amount of water before they need to be extended.

33

Literature

[AB09] S. Arora and B. Barak. Computational Complexity: a Modern Approach.
Cambridge University Press, 2009.

[Aok+14] Y. Aoki, B. V. Halldórsson, M. M. Halldórsson, T. Ito, C. Konrad, and X.
Zhou.

”
The Minimum Vulnerability Problem on Graphs“. In: Combinato-

rial Optimization and Applications - 8th International Conference, COCOA
2014, Wailea, Maui, HI, USA, December 19-21, 2014, Proceedings. Springer,
2014, pp. 299–313.

[Ass+14] S. Assadi, E. Emamjomeh-Zadeh, A. Norouzi-Fard, S. Yazdanbod, and H.
Zarrabi-Zadeh.

”
The minimum vulnerability problem“. In: Algorithmica 70.4

(2014), pp. 718–731.

[BLS99] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
1999.

[DF13] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complex-
ity. Vol. 4. Springer, 2013.

[Die00] R. Diestel. Graph Theory. Vol. 173. Graduate Texts in Mathematics. Springer,
2000.

[FF58] L. R. Ford Jr and D. R. Fulkerson.
”
Constructing maximal dynamic flows

from static flows“. In: Operations Research 6.3 (1958), pp. 419–433.

[FF62] L. R. Ford Jr and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

[Flu+15] T. Fluschnik, S. Kratsch, R. Niedermeier, and M. Sorge.
”
The Parameter-

ized Complexity of the Minimum Shared Edges Problem“. In: 35th IARCS
Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2015). Ed. by P. Harsha and G. Ramalingam.
Vol. 45. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015, pp. 448–
462.

[Flu15] T. Fluschnik.
”
The Parameterized Complexity of Finding Paths with Shared

Edges“. Master Thesis (Masterarbeit). Berlin, Germany: TU Berlin, Apr.
2015.

[GJT76] M. R. Garey, D. S. Johnson, and R. E. Tarjan.
”
The planar Hamiltonian cir-

cuit problem is NP-complete“. In: SIAM Journal on Computing 5.4 (1976),
pp. 704–714.

[Goo16] Google. Berlin Olympiastadium. Accessed: 2016-06-03. 2016. url: %5Curl%
7Bhttp://maps.googleapis.com/maps/api/staticmap?size=640x420&

style=element:labels%7Cvisibility:off&zoom=15¢er=52.5160499,

13.2443673%7D.

34

%5Curl%7Bhttp://maps.googleapis.com/maps/api/staticmap?size=640x420&style=element:labels%7Cvisibility:off&zoom=15¢er=52.5160499,13.2443673%7D
%5Curl%7Bhttp://maps.googleapis.com/maps/api/staticmap?size=640x420&style=element:labels%7Cvisibility:off&zoom=15¢er=52.5160499,13.2443673%7D
%5Curl%7Bhttp://maps.googleapis.com/maps/api/staticmap?size=640x420&style=element:labels%7Cvisibility:off&zoom=15¢er=52.5160499,13.2443673%7D
%5Curl%7Bhttp://maps.googleapis.com/maps/api/staticmap?size=640x420&style=element:labels%7Cvisibility:off&zoom=15¢er=52.5160499,13.2443673%7D

[KT05] J. Kleinberg and E. Tardos. Algorithm Design. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2005.

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006.

[Orl13] J. B. Orlin.
”
Max flows in O(nm) time, or better“. In: Proceedings of the

Forty-Fifth Annual ACM Symposium on Theory of Computing. ACM. 2013,
pp. 765–774.

[OSZ13] M. T. Omran, J.-R. Sack, and H. Zarrabi-Zadeh.
”
Finding paths with mini-

mum shared edges“. In: Journal of Combinatorial Optimization 26.4 (2013),
pp. 709–722.

[Ple79] J. Plesnik.
”
The NP-completeness of the Hamiltonian cycle problem in planar

diagraphs with degree bound two“. In: Information Processing Letters 8.4
(1979), pp. 199–201.

[Sku08] M. Skutella.
”
An Introduction to Network Flows over Time“. In: Research

Trends in Combinatorial Optimization, Bonn Workshop on Combinatorial
Optimization, November 3-7, 2008, Bonn, Germany. 2008, pp. 451–482.

[Tho80] C. Thomassen.
”
Planarity and duality of finite and infinite graphs“. In: Jour-

nal of Combinatorial Theory, Series B 29.2 (1980), pp. 244–271.

[Wes+01] D. B. West et al. Introduction to graph theory. Vol. 2. Prentice hall Upper
Saddle River, 2001.

[Ye+13] Z.-Q. Ye, Y.-M. Li, H.-Q. Lu, and X. Zhou.
”
Finding paths with minimum

shared edges in graphs with bounded treewidth“. In: Proceedings of FCS.
2013, pp. 40–46.

35

	Introduction
	Preliminaries
	Problem Definition
	Related Work
	Overview
	Basic Observations

	Complexity of Minimum Time-Shared Edges
	Directed acyclic graphs
	DAGs with shared arcs
	DAGs without shared arcs

	Paths
	Trails
	Directed Trails
	Undirected Trails

	Walks
	Undirected Walks
	Directed Walks

	Complexity of Short Minimum Time-Shared Edges
	Paths and Trails
	Walks

	Conclusion

