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Abstract. We show that a number of election-related problems with prices (such
as, for example, bribery) are fixed-parameter tractable (in FPT) when parame-
terized by the number of candidates. For bribery, this resolves a nearly 10-year
old family of open problems. Our results follow by a general technique that for-
mulates voting problems as covering problems and extends the classic approach
of using integer linear programming and the algorithm of Lenstra [19]. In this
context, our central result is that WEIGHTED SET MULTICOVER parameterized
by the universe size is fixed-parameter tractable. Our approach is also applica-
ble to weighted electoral control for Approval voting. We improve previously
known XP-memberships to FPT-memberships. Our preliminary experiments on
real-world-based data show the practical usefulness of our approach for instances
with few candidates.

1 Introduction

We resolve the computational complexity status of a number of election problems pa-
rameterized by the number of candidates, for the case where voters are unweighted but
have prices. These include, for example, various bribery problems [10, 12] and priced
control problems [21] that were known to be in XP since nearly 10 years ago, but were
neither known to be fixed-parameter tractable (in FPT), nor to be W[1]-hard. We de-
velop a general technique for showing their membership in FPT, which also applies to
weighted voter control for Approval voting, improving results of Faliszewski et al. [14].
We test the running times of our algorithms empirically.

Algorithmic problems that model the manipulation of elections include, among oth-
ers, strategic voting problems [1, 6] (where we are given an election with honest voters
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and we ask whether a group of manipulators can cast votes to ensure their preferred can-
didate’s victory), election control problems [2, 17] (where we are given an election and
ask if we can ensure a given candidate’s victory by adding/deleting candidates/voters),
or bribery [10, 12, 24] and campaign management problems [3, 5, 8, 23] (where we
want to ensure a given candidate’s victory by changing some of the votes, but where
each vote change comes at a price and we are bound by a budget). We focus on the case
where we have a few candidates but (possibly) many voters. As pointed out by Conitzer
et al. [6], this is a very natural setting and it models many real-life scenarios such as
political elections or elections among company stockholders.

The complexity of manipulating elections with few candidates is, by now, very well
understood. On the one hand, if the elections are weighted (as is the case for the elec-
tions held by company stockholders), then our problems are typically NP-hard even if
the number of candidates is a small fixed constant [6, 12, 14]; these results typically
follow by reductions from the well-known NP-hard problem PARTITION. One partic-
ular example where we do not have NP-hardness is control by adding/deleting voters
under the Approval and k-Approval voting rules. Faliszewski at al. [14] have shown
that these problems are in XP, that is, that they can be solved in polynomial time if the
number of candidates is assumed to be a constant. On the other hand, if the elections are
unweighted (as is the case for political elections) and no prices are involved, then we
typically get FPT results. These results are often obtained by expressing the respective
problems as integer linear programs (ILPs) and by applying the famous algorithm of
Lenstra [19] (Lenstra’s algorithm solves ILPs in FPT time with respect to the number
of integer variables). For example, for control by adding voters we can have a program
with a separate integer variable for each possible preference, counting how many voters
with each preference we add [13] (the constraints ensure that we do not add more vot-
ers with a given preference than are available and that the desired candidate becomes a
winner). Since the number of different preferences is a function depending only on the
number of candidates, we can solve such an ILP using Lenstra’s algorithm in FPT time.
Typically, this approach does not work for weighted elections as weights give voters a
form of “identity.” In the control example, it no longer suffices to specify how many
voters to add; we need to know exactly which ones to add (the trick in showing XP-
membership for weighted voter control under Approval is to see that for each possible
voter preference, we add only the heaviest voters with this preference [14]).

The main missing piece in our understanding of the complexity of manipulating
elections with few candidates regards those unweighted-election problems where each
voter has some sort of price (for example, as in the bribery problems). In this paper
we almost completely fill this gap by showing a general approach for proving FPT
membership for a class of bribery-like problems parameterized by the number of can-
didates, for unweighted elections1 (as a side effect, we also get FPT membership for
weighted control under the Approval and k-Approval rules). The main idea of our solu-
tion is to use mixed integer linear programming (MILP) formulations of our problems,

1 One problem for which our technique does not apply is SWAP BRIBERY [10]; even though
Dorn and Schlotter [8] claim that it is in FPT when parameterized by the number of can-
didates, their proof applies only to a restricted setting. The complexity of SWAP BRIBERY

parameterized by the number of candidates remains open.
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divided into two parts. The first part is the same as in the standard ILP solutions for
the non-priced variants of our problems, modeling how many voters with each possible
preferences are “affected” (“bought” or “convinced” for bribery and campaign manage-
ments, “added” or “deleted” for control problems). The second part, and a contribution
of this paper, uses non-integer variables to compute the cost of the solution from the first
part. The critical insight of our approach is to use the fact that we “affect” the voters
in the order of their increasing prices to force all our variables to be integer-valued in
the optimal solutions. This way we can compute the cost of each of our solutions using
rational-valued variables and solve our MILPs using Lenstra’s algorithm (it maintains
its FPT running time for MILPs parameterized by the number of integer variables).

Unfortunately, while Lenstra’s algorithm is a very powerful tool for proving FPT
membership, it might be too slow in practice. Further, as pointed out by Bredereck et
al. [4], each time an FPT result is achieved through an application of Lenstra’s result,
it is natural to ask whether one can derive the same result through a direct, combina-
torial algorithm. Coming up with such a direct algorithm seems very difficult. Thus,
instead, for our problems we show a combinatorial algorithm obtaining solutions arbi-
trarily close to the optimal ones in FPT time (formally, we show an FPT approximation
scheme). Nonetheless, in practice, one would probably not use Lenstra’s algorithm for
solving MILPs, but instead, one would use an off-the-shelf optimized heuristic. We
provide a preliminary empirical comparison of the running times of the MILP-based
algorithm (using an off-the-shelf MILP solver instead of Lenstra’s algorithm) and an
ILP-based algorithm that reduces our problems directly to integer linear programming
(basically without “exploiting” the parameter number of candidates). Our results sug-
gest that FPT algorithms based on solving MILPs can be very efficient in practice.

Our results can be applied to a large class of voting rules and to many election
problems. Thus, to better illustrate technical details, we focus on the simplest setting
possible. Specifically, we present most of our techniques through a family of classic
covering problems. The motivation is threefold: (a) this focus allows us to present our
results most clearly, (b) our variants of the covering problem apply directly to a number
of election problems for the Approval rule, and (c) various covering problems appear in
the analysis of various voting problems, thus our results should translate (more or less
directly) to those problems as well. Due to lack of space, we omit some proof details.

2 Preliminaries

We model an election as a pair E = (C, V ), where C = {c1, . . . , cm} is the set of can-
didates and V = (v1, . . . , vn) is a collection of voters. Each voter is represented through
his or her preferences. For the case of Approval voting, each voter’s preferences take
the form of a set of candidates approved by this voter. The candidate(s) receiving the
most approvals are the winner(s), that is, we assume the nonunique-winner model (if
several candidates have the same number of approvals then we view each of them as
winning). We write scoreE(ci) to denote the number of voters approving ci in elec-
tion E. We refer to elections that use Approval voting and represent voter preferences
in this way as approval elections. In a weighted election, in addition to their preferences,
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voters also have integer weights. A voter v with weight ω(v) counts as ω(v) copies of
an unweighted voter.

A parameterized problem is a problem with a certain feature of the input distin-
guished as the parameter. For example, for our election problems, the parameter will
always be the number m of candidates in the election. A problem is fixed-parameter
tractable (in FPT) if there exists an algorithm that, given an instance I with param-
eter k, can compute the answer to this problem in time f(k) · |I|O(1), where f is a
computable function and |I| is the length of the encoding of I . A parameterized prob-
lem is in XP if there exists an algorithm that, given an instance I with parameter k, can
compute the answer to this problem in time |I|f(k), where f is some computable func-
tion. In other words, XP is the class of those problems that can be solved in polynomial
time under the assumption that the parameter is a constant. In contrast, problems which
are NP-hard even for constant values of the parameter are said to be Para-NP-hard with
respect to the parameter. For further information, we point the readers to textbooks on
parameterized complexity theory [9, 15, 22].

3 Covering and Voting: Technique Showcase

In this section we present our main results and techniques. We start by showing a re-
lation between election problems for the Approval rule and several covering problems.
Then we present a technique for obtaining FPT results for these problems, and finally
we evaluate our algorithms empirically.

3.1 From Approval Voting to Covering Problems

We are interested in the following three problems.

Definition 1 (Bartholdi et al. [2], Faliszewski et al. [12, 21]). In each of the problems
Approval-$BRIBERY (priced bribery), Approval-$CCAV (priced control by adding
voters), and Approval-$CCDV (priced control by deleting voters), we are given an
approval election E = (C, V ) with C = {p, c1, . . . , cm} and V = (v1, . . . , vn), and
an integer budget B. In each of the problems the goal is to decide whether it is possible
to ensure that p is a winner, at a cost of at most B. The problems differ in the allowed
actions and possibly in some additional parts of the input:

1. In Approval-$BRIBERY, for each voter vi, 1 ≤ i ≤ n, we are given a nonnegative
integer price πi; for this price we can change the voter’s approval set in any way we
choose.

2. In Approval-$CCAV (CCAV stands for “Constructive Control by Adding Voters”)
we are given a collection W = (w1, . . . , wn′) of additional voters. For each addi-
tional voterwi, 1 ≤ i ≤ n′, we also have a nonnegative integer price πi for addingwi
to the original election.

3. In Approval-$CCDV (CCDV stands for “Constructive Control by Deleting Voters”),
we have a nonnegative integer price πi for removing each voter vi from the election.

In the weighted variants of these problems (which we denote by putting “WEIGHTED”
after “Approval”), the input elections (and all the voters) are weighted; in particular,
each voter v has an integer weight ω(v).
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The unpriced variants of these problems (denoted by omitting the dollar sign from
their names) are defined identically, except that all prices have the same unit value.

The above problems are, in essence, equivalent to certain covering problems, thus
in this paper we focus on the complexity of these covering problems. As many of these
covering problems consider multisets, the following notation will be useful. If A is a
multiset and x is some element, then we write A(x) to denote the number of times
x occurs in A (that is, A(x) is x’s multiplicity in A). If x is not a member of A,
then A(x) = 0.

Definition 2. In the WEIGHTED MULTISET MULTICOVER (WMM) problem we are
given a multiset S = {S1, . . . , Sn} of multisets over the universe U = {x1, . . . , xm},
integer weightsw1, . . . , wn for the multisets,2 integer covering requirements r1, . . . , rm
for the elements of the universe, and an integer budget B. We ask whether there is
a subfamily S ′ ⊆ S of multisets from S such that: (a) for each xi ∈ U it holds that∑
Sj∈S′ Sj(xi) ≥ ri (that is, each element xi is covered by at least the required number

of times), and (b)
∑
Sj∈S′ wj ≤ B (the budget is not exceeded).

Briefly put, the relation between WMM and various election problems (as those
defined above) is that the universe corresponds to the candidates in the election, the
multisets correspond to the voters, and the covering requirements depend on particular
actions that we are allowed to perform.

Example 1. Consider an instance of Approval-$CCDV with election E = (C, V ),
where C = {p, c1, . . . , cm} and V = (v1, . . . , vn), with prices π1, . . . , πn for vot-
ers not to participate in the election, and with budget B. We can express this instance as
an instance of WEIGHTED MULTISET MULTICOVER as follows. For each voter vi not
approving p, we form a multiset Si with weight πi that includes exactly the candidates
approved by vi, each with multiplicity exactly one. For each candidate ci, 1 ≤ i ≤ m,
we set its covering requirement to be max(scoreE(ci) − scoreE(p), 0). It is easy to
see that there is a way to ensure p’s victory by deleting voters of total cost at most B
if and only if it is possible to solve the presented instance of WEIGHTED MULTISET
MULTICOVER with budget B.

It is clear that we do not need the full flexibility of WMM in Example 1; it suf-
fices to use WEIGHTED SET MULTICOVER where each input multiset has multiplicities
from the set {0, 1} (in other words, the family S contains sets without multiplicities,
but the union operation takes multiplicities into account). This is quite important since
unrestricted WMM is NP-hard even for the case of a single-element universe, by a
polynomial-time reduction from PARTITION.

Proposition 1. WMM is NP-hard even for the case of a single element in the universe.

2 There is a name clash between the literature on covering problems and that on elections. In
the former, “weights” refer to what voting literature would call “prices.” Weights of the voters
are modeled as multiplicities of the elements in the multisets. We kept the naming conventions
from respective parts of the literature to make our results more accessible to researchers from
both communities.
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Another variant of WMM is MULTISET MULTICOVER, where we assume each set
to have unit weight. By generalizing the proof for Proposition 1, we show that this
problem is NP-hard already for two-element universes.

Proposition 2. MULTISET MULTICOVER is NP-hard even for universes of size two.

From the viewpoint of voting theory, it is more interesting to consider an even more
restricted variant of MULTISET MULTICOVER, where for each multiset Si in the input
instance there is a number ti such that for each element x we have Si(x) ∈ {0, ti}
(in other words, elements within a single multiset have the same multiplicity). We refer
to this variant of the problem as UNIFORM MULTISET MULTICOVER. Using an argu-
ment similar to that used in Example 1, it is easy to show that UNIFORM MULTISET
MULTICOVER is, in essence, equivalent to Approval-WEIGHTED-CCDV.

In Example 1 we have considered Approval-$CCDV because, among our prob-
lems, it is the most straightforward one to model via a covering problem. Nonetheless,
constructions with similar flavor are possible both for Approval-$CCAC (by, in effect,
counting how many times each candidate is not approved) and for Approval-$BRIBERY
(by slightly more complicated tricks). Formally, we have the following result.

Proposition 3. If, parameterized by the universe size, WEIGHTED SET MULTI-
COVER and UNIFORM MULTISET MULTICOVER are in FPT, then, parameterized by
the number of candidates, each of Approval-$CCAV, Approval-$CCDV, Approval-
$BRIBERY, APPROVAL-WEIGHTED-CCAV, and APPROVAL-WEIGHTED-CCDV is
in FPT.

3.2 The Main Theoretical Results

Our main theoretical results are FPT algorithms for WEIGHTED SET MULTICOVER
and UNIFORM MULTISET MULTICOVER parameterized by the universe size.3

The mixed integer linear program that we will construct has two main parts. Part 1
simply specifies what it means to solve the problem at hand, without worrying about the
budget. Part 2 uses the fact that we pick the sets that implement the solution expressed
in Part 1 in the increasing order of weights, to compute the total cost of the solution
through rational-valued variables. The key observation is that there is a solution with
the optimal budget B where all rational variables are integer.

Theorem 1. WEIGHTED SET MULTICOVER is in FPT when parameterized by the uni-
verse size.

Proof. Consider an instance of WEIGHTED SET MULTICOVER with universe U =
{x1, . . . , xm}, family S = {S1, . . . , Sn} of subsets, weights w1, . . . , wn for the sets,
covering requirements r1, . . . , rm for the elements, and budget B. Our algorithm pro-
ceeds by solving an appropriate mixed integer linear program.

3 Remarkably, under reasonable complexity-theoretic assumptions, Dom et al. [7] have shown
that no polynomial-size kernels exist for SET COVER (which is a special case of WEIGHTED

SET MULTICOVER and UNIFORM MULTISET MULTICOVER), parameterized by the universe
size and the solution size.
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First, we form a family U1, . . . , U2m of all subsets of U . For each i, 1 ≤ i ≤ 2m, let
S(Ui) := {Sj ∈ S | Sj = Ui}. For each i and j, 1 ≤ i ≤ 2m and 1 ≤ j ≤ |S(Ui)|, we
write S(Ui, j) to denote the set from S(Ui) with the jth lowest weight (breaking ties
in a fixed arbitrary way). Similarly, we write w(Ui, j) to mean the weight of S(Ui, j)
and we define w(Ui, 0) = 0 (in other words, we group the sets from S based on their
content and sort them with respect to their weights). Given this setup, we form our
mixed integer linear program.

We have 2m integer variables zi, 1 ≤ i ≤ 2m. Intuitively, these variables describe
how many sets we take from each type. We also have 2mn regular (rational) variables
yi,j , 1 ≤ i ≤ 2m, 0 ≤ j ≤ n − 1, which are used to model the total weight of the
selected sets. We introduce the following constraints:

Part 1 constraints. For each i, 1 ≤ i ≤ 2m, we have constraints zi ≥ 0 and zi ≤
|S(Ui)|. For each element x` of the universe, we also have constraint

∑
Ui : x`∈Ui

zi ≥
r`. These constraints ensure that the variables zi describe a possible solution for the
problem (disregarding the budget).

Part 2 constraints. For each i and j, 1 ≤ i ≤ 2m, 0 ≤ j ≤ n− 1, we have constraints:
yi,j ≥ 0 and yi,j ≥ zi − j. The intended meaning of variable yi,j is as follows. If
the solution described by variables z1, . . . , z2m includes fewer than j sets from S(Ui),
then yi,j = 0; otherwise, yi,j says that after we added the j lowest-weight sets from
family S(Ui), we still need to add yi,j more sets from this family (however, note that
these variables are not required to be integers, thus the following constraint is designed
in such a way that inaccurate—too large—values of these variables do not affect cor-
rectness).

Our final constraint uses variables yi,j to express the requirement that the solution
has cost at most B:∑2m

i=1

∑n−1
j=0 yi,j(w(Ui, j + 1)− w(Ui, j)) ≤ B.

To understand this constraint, let us first replace each yi,j with max(0, zi − j). Now,
note that for each fixed value of i, the “internal sum” over j gives the weight of the
cheapest zi sets from S(Ui) (specifically, we first take zi times w(Ui, 1) because we
know that each set costs at least this much, then to that we add zi − 1 times w(Ui, 2)−
w(Ui, 1), because short of the first set from U(Si), each set costs at least w(Ui, 2),
and so on). To see that the constraint is correct, note that, for each yi,j , we have that
yi,j ≥ max(0, zi − j) and the smaller the values yi,j , the smaller the sum computed in
this constraint.

Finally, to solve this mixed integer linear program we invoke Lenstra’s famous result
in its variant for mixed integer programming (see [19, Section 5]). ut

Using the same technique we can show that UNIFORM MULTISET MULTICOVER
is in FPT (Part 2 of our program is slightly different in this case to account for the fact
that now we pick sets with particular content in the order of decreasing multiplicities).

Theorem 2. UNIFORM MULTISET MULTICOVER is in FPT when parameterized by
the universe size.
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Unfortunately, it is impossible to apply our approach to the more general MUL-
TISET MULTICOVER problem; by Proposition 2, the problem is already NP-hard for
two-element universes. It is, however, possible to obtain a certain form of an FPT ap-
proximation scheme.4

Definition 3. Let ε be a real number, ε > 0. We say that algorithm A is an ε-almost-
cover algorithm for MULTISET MULTICOVER if, given an input instance I with uni-
verse U = {x1, . . . , xm} and covering requirements r1, . . . , rm, it outputs a solution
that covers each element xi with multiplicity r′i such that

∑
imax(0, ri−r′i) < ε

∑
i ri.

In other words, on the average an ε-almost-cover algorithm can miss each element
of the universe by an ε-fraction of its covering requirement. For the case where we
really need to cover all the elements perfectly, we might first run an ε-almost-cover
algorithm and then complement its solution, for example, in some greedy way. Indeed,
the remaining instance might be much easier to solve.

The key idea regarding computing an ε-almost-cover is that it suffices to replace
each input multiset by several submultisets, each with a particular “precision level,” so
that multiplicities of the elements in each submultiset are of a similar order of magni-
tude.

Theorem 3. For every rational ε > 0, there is an FPT ε-almost-cover algorithm for
MULTISET MULTICOVER parameterized by the universe size.

Proof. Throughout this proof we describe our ε-almost-cover algorithm for MULTISET
MULTICOVER. We consider an instance I of MULTISET MULTICOVER with a family
S = {S1, . . . , Sn} of multisets over the universe U = {x1, . . . , xm}, where the cov-
ering requirements for the elements of the universe are r1, . . . , rm. We associate each
set S from the family S with the vector vS = 〈S(x1), S(x2), . . . , S(xm)〉 of element
multiplicities.

Let ε > 0 be the desired approximation ratio. We fix Z = d 4mε e and Y =

Z + d 4Zm3

ε e. Notice that m
Z ≤ ε

4 and Zm3

Y−Z ≤ ε
4 . Let X =

(
2Ym

ε + 1
)m

and
let V1, . . . , VX be a sequence of all m-dimensional vectors whose entries come from
the

(
2Ym

ε + 1
)
-element set {0, ε2 , ε, 3ε2 , 2ε, . . . , Y m}. For each j, 1 ≤ j ≤ X , we

write Vj = 〈Vj(x1), Vj(x2), . . . , Vj(xm)〉. Intuitively, these vectors describe some
subset of “shapes” of all possible multisets—interpreted as vectors of multiplicities—
over our m-element universe. For each number β, we write βVi to mean the vector
〈bβVi,1c, bβVi,2c, . . . , bβVi,mc〉.

Intuitively, vectors of the form βVi are approximations of those multisets for which
the positive multiplicities of the elements do not differ too much (formally, for those
multisets for which the positive multiplicities differ by at most a factor of 2Ym

ε ). Indeed,
for each such set S, we can find a value β and a vector Vj such that for each element xi
it holds that S(xi) ≥ βVj(xi) ≥

(
1− ε

2

)
S(xi). However, this way we cannot easily

approximate those sets for which multiplicities differ by a large factor. For example,
consider a set S represented through the vector 〈0, . . . , 0, 1, Q〉, where Q� 2Ym

ε . For

4 While this result does not, as of yet, have direct application to voting, we believe it is quite
interesting in itself.
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each value β and each vector Vj , the vector βVj will be inaccurate with respect to the
multiplicity of element xm−1 or inaccurate with respect to the multiplicity of element
xm (or inaccurate with respect to both these multiplicities).

The main step of our algorithm is to modify the instance I so that we replace each set
S from the family S with a sequence of vectors of the form βVj that altogether add to at
most the set S (each such sequence can contain multiple vectors of different “shapes”
Vj and of different scaling factors β). The goal is to obtain an instance that on the
one hand consists of “nicely-structured” sets (vectors) only, and on the other hand has
the following property: If in the initial instance I there exist K sets that cover elements
x1, . . . xm with multiplicities r1, . . . , rm, then in the new instance there existK sets that
cover elements x1, . . . , xm with multiplicities r′1, . . . , r

′
m, such that

∑
imax(0, ri −

r′i) < ε
∑
i ri. We refer to this as the almost-cover approximation property.

The procedure for replacing a given set S is presented as Algorithm 1. This algo-
rithm calls the Emit function with arguments (β, V ) for each vector βV that it wants
to output (V is always one of the vectors V1, . . . , VX ). The emitted sets replace the set
S from the input. Below we show that if we apply Algorithm 1 to each set from S, then
the resulting instance I ′ has our almost-cover approximation property.

Let us consider how Algorithm 1 proceeds on a given set S. For the sake of
clarity, let us assume there is no rounding performed by Algorithm 1 in function
Round_And_Emit (the loop in line 29). We will go back to this issue later.

The algorithm considers the elements of the universe—indexed by variable i
throughout the algorithm—in the order given by the vector “sorted” (formed in line 3
of Algorithm 1). Let ≺ be the order in which Algorithm 1 considers the elements (so
xi′ ≺ xi′′ means that xi′ is considered before xi′′ ), and let x′1, . . . , x

′
m be the elements

from the universe renamed so that x′1 ≺ x′2 ≺ · · · ≺ x′m. Let r be the number of sets
that Algorithm 1 emits on our input set S and let these sets be S1, S2, . . . , Sr. (This is
depicted on Figure 1, where for the sake of the example we take m = 6 and r = 3.)

Consider the situation where the algorithm emits the k’th set, Sk, and let ik be the
value of variable i right before the call to Round_And_Emit that caused Sk to be
emitted. Note that each element x from the universe such that xik ≺ x has the same
multiplicity in Sk as element xik (line 19 of Algorithm 1). Let tk =

∑
j Sk(x

′
j) be the

sum of the multiplicities of the elements from Sk. We make the following observations:

Observation 1: Sk(x′ik) = Z · Sk(x′ik−1
).

Observation 2: It holds that Sk+1(x
′
ik
) ≥ Y · Sk(x′ik−1) − Z · Sk(x′ik−1) = (Y −

Z)Sk(x
′
ik−1) =

(Y−Z)
Z Sk(x

′
ik
).

Observation 3: We have that Sk+1(x
′
ik
) ≥ (Y−Z)

Z Sk(x
′
ik
) ≥ (Y−Z)

Zm tk. Further, we
have that Sk+1(x

′
ik+1

) ≥ Sk+1(x
′
ik
) ≥ (Y−Z)

Zm2

∑
j≤k tj .

Observation 4: For i < ik it holds that
∑
q≤k Sq(x

′
i) = S(x′i).

Now let us consider some solution for instance I that consists of K sets, Sopt =
{Sopt

1 , Sopt
2 , . . . , Sopt

K } ⊆ S. These sets, altogether, cover all the elements from
the universe with required multiplicities, that is, it holds that for each i we have∑
S∈Sopt S(xi) ≥ ri. For each set S ∈ Sopt and for each element xi from the universe,

we pick an arbitrary number yS,i so that altogether the following conditions hold:
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Algorithm 1: The transformation algorithm used in the proof of Theorem 3—the
algorithm replaces a given set S with a sequence of vectors of the form βVj .

1 Main(S):
2 multip← 〈(1, S(x1)), (2, S(x2)), . . . , (m,S(xm))〉;
3 sorted← sort(multip) ; // sort in ascending order of multiplicities
4 i← 0 ;

// sorted [i ].first refers to the i’th item’s number
// sorted [i ].second refers to its multiplicity

5 while sorted[i].second = 0 do
6 i← i+ 1 ;
7 Main_Rec(i, sorted) ;
8

9 Main_Rec(i, multip):
10 V ← 〈0, 0, . . . , 0〉 (vector of m zeros). ;
11 β ← multip[i].second ;
12 V [multip[i].first]← 1 ;
13 i← i+ 1 ;
14 while i ≤ m do
15 if multip[i].second < Y ·multip[i−1].second then
16 V [multip[i].first]← multip[i].second

β
;

17 i← i+ 1 ;
18 else
19 for j ← i to m do
20 V [multip[j].first]← Z·multip[i−1].second

β
;

21 Round_And_Emit(β, V ) ;
22 for j ← 1 to m do
23 multip[i].second← multip[i].second− βV [multip[i].first] ;
24 Main_Rec(i, multip) ;
25 return
26 Round_And_Emit(β, V );
27

28 Round_And_Emit(β, V ):
29 for `← 1 to m do
30 V [`]← b 2V [`]

ε
c/ ε

2
;

31 Emit(β, V );

1. For every set S ∈ Sopt and every xi, yS,i ≤ S(xi).
2. For every xi,

∑
S∈Sopt yS,i = ri.

Intuitively, for a given set S, the values yS,1, yS,2, . . . , yS,m describe the multiplicities
of the elements from S that are actually used to covers the elements. Based on these
numbers, we will show how to replace each set from Sopt with one of the sets emitted
for it, so that the resulting family of sets has the almost-cover approximation property.

Consider a set S ∈ Sopt for which Algorithm 1 emits r sets, S1, S2, . . . , Sr. As
in the discussion of Algorithm 1, let x′1, . . . , x

′
m be the elements from the universe in

which Algorithm 1 considers them (when emitting sets for S). We write y′S,i to mean

10



⇒
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Fig. 1: An example for Algorithm 1: The algorithm replaces S with sets S1, S2, and S3.

x′
1x

′
2 x′

3 x′
4 x′

5 x
′
6 x′

1x
′
2 x′

3 x′
4 x′

5 x
′
6

S1
Sk

x′
i1

↑

b b
b

bb

b

Sk−1

x′
1x

′
2 x′

3 x′
4 x′

5 x
′
6

x′
ik−1

↑
x′
ik−1

↑

b b
b

b
b

b

b

b

b

b

b

b

y′S,imax

y′S,imaxy′S,imax

Case (a) Case (b) Case (c)

SkSk−1

= x′
j

Fig. 2: The cases in the proof of Theorem 3. The bullets represent values y′S,1, . . . , y
′
S,m.

the value yS,j such that xj = x′i. Let R = {S1, S2, . . . , Sr}, let imax = argmaxi y
′
S,i,

and let Srepl be the set fromR defined in the following way:

1. If for every set Sk ∈ R we have Sk(x′imax
) < y′S,imax

, then Srepl is the set Sk ∈
R with the greatest value Sk(x′imax

) (the set that covers element x′imax
with the

greatest multiplicity). This is the case denoted as “Case (c)” in Figure 2.
2. Otherwise Srepl is the set Sk ∈ R that has the lowest value Sk(x′imax

), yet no-lower
than y′S,imax

. This is the case denoted as either “Case (a)” or “Case (b)” in Figure 2.

We now show that Srepl is a good candidate for replacing S, that is, that∑
imax(0, y′S,i − Srepl(x

′
i)) < ε

∑
i y
′
S,i. To this end, we consider the three cases

depicted in Figure 2:

Case (a) It holds that y′S,imax
< S1(x

′
imax

) (that is, S1 already covers the most demand-
ing element of the universe to the same extent as S does). This means that we have∑
`max(0, y′S,` − S1(x

′
`)) = 0. By the criterion for choosing set Srepl, we have

that Srepl = S1.
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Case (b) There exist sets Sk−1, Sk ∈ R such that Sk(x′imax
) ≥ y′S,imax

> Sk−1(x′imax
)

(and thus, Srepl = Sk). Let x′j = x′ik−1
(recall from the discussion of Algorithm 1

that ik−1 is the index of the universe element which caused emitting Sk−1). Let us
consider two subcases:
(i) y′S,imax

≤ Sk(x′j): We first note that for each i ≥ j it holds that y′S,i ≤ Sk(x′i).
Further, for each i < j, we have y′S,i ≤

∑
`≤k−1 S`(x

′
i) (this follows from

Observation 4 and the fact that y′S,i ≤ S(x′i)). Based on this inequality, we get:∑
i<j

y′S,i ≤
∑
i<j

∑
`≤k−1

S`(x
′
i) ≤

∑
`≤k−2

t` +
∑
i<j

Sk−1(x
′
i)

≤ Zm2

(Y − Z)Sk−1(x
′
j) +

m

Z
Sk−1(x

′
j) (Observations 3 and 1)

≤ ε

2
Sk−1(x

′
j) ≤

ε

2
yS,imax

.

In consequence, it holds that
∑
`max(0, y′S,` − Sk(x′`)) < ε

2

∑
` y
′
S,`.

(ii) y′S,imax
> Sk(x

′
j): We omit the proof that in this case it also holds that∑

`max(0, y′S,` − Sk(x′`)) ≤ ε
2

∑
` y
′
S,`.

Case (c) Every set Sk ∈ R has Sk(x′imax
) < y′S,imax

. We omit the proof that in this
case it holds that

∑
`max(0, yS,` − Sk(x′`)) ≤ ε

2

∑
` y
′
S,`.

The above case analysis almost shows that we indeed have the almost-cover approx-
imation property. It remains to consider the issue of rounding (Line 29 of Algorithm 1).
This rounding introduces inaccuracy that is bounded by factor ε

2 and thus, indeed, we
do have the almost-cover approximation property.

Now, given the new instance I ′, it suffices to find a solution for I ′ that satisfies the
desired approximation guarantee (that is, a collection S ′ of at most K sets that form
an ε-almost-cover). It is possible to do so through a mixed integer linear program (and
an application of the Lenstra’s algorithm [19]). We omit the details due to space (we
mention that since in I ′ all the sets are represented through vectors of the form βVj ,
we can bound the number of integer variables by a function of the size of the universe).
The final output of our algorithm is as follows: For each set S from the original family
S, we output S if S ′ contains at least one set emitted for S. ut

For the case of WEIGHTED SET MULTICOVER we show a more standard variant of
an FPT approximation scheme.

Definition 4. Let ε, 0 < ε < 1, be a real number. A (1+ε)-approximation algorithm for
WEIGHTED SET MULTICOVER is an algorithm that, given an instance of the problem,
outputs a solution satisfying all covering requirements, but whose weight is at most
1 + ε times the weight of the optimal one.

As opposed to all the previously presented algorithms (including the one from The-
orem 3), the next algorithm does not rely on solving (M)ILP instances. The main idea is
to use a refined variant of brute-force search which considers for each type of sets only
a set of promising numbers of occurrences in the solution instead of considering every
possible number of occurrences.
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Fig. 3: Running time depending on the number of candidates. Left: plain test series,
right: duplicated voters.

Theorem 4. For each ε, 0 < ε < 1, there is a (1 + ε)-approximation algorithm for
WEIGHTED SET MULTICOVER that runs in time O(d2m/ε+ 1e2mn2m).

We conclude this section by translating the results from the world of covering prob-
lems to the world of approval elections. We obtain the following corollary.

Corollary 1. APPROVAL-$CCAV, APPROVAL-$CCDV, APPROVAL-$BRIBERY, as
well as APPROVAL-WEIGHTED-CCAV and APPROVAL-WEIGHTED-CCDV, are in
FPT, when parameterized by the number of candidates.

Contrarily, it is either shown explicitly by Faliszewski et al. [12], or follows trivially,
that these problems with both prices and weights are NP-hard already for two candi-
dates (that is, Para-NP-hard with respect to the number of candidates).

3.3 Preliminary Empirical Evaluation

In this section we evaluate our algorithms empirically. Specifically, we focus on the
MILP-based algorithm from subsection 3.2, as applied to Approval-$CCDV, and on the
standard ILP algorithm for this problem (see below). In both cases, instead of using the
very slow algorithm of Lenstra (with running time being roughly (2m)

(2m) [19, 16, 18]),
we chose an off-the-shelf solver (CPLEX). The main purpose of the experiments is
to explore whether our (M)ILP-based FPT algorithms are practical to use. Thus, we
focus on evaluating the running time. (We point the reader, for example, to the work
of Erdélyi et al. [11] for an example of a much more detailed experimental analysis of
control problems in elections for several voting rules.)
Test Data. We use Preflib [20] as a well-known source for real-world elections. Since
Preflib contains only few elections with approval preferences (provided through linear
orderings with ties containing exactly two groups of tied candidates each), we used
elections with strict linear-order preferences and for each voter we uniformly at random
chose how many of the top candidates this voter approves of.
Test Series. We focus on Approval-$CCDV since, among our problems, it requires the
least amount of information to be added to the elections to obtain full instances. Specif-
ically, we only need to choose the preferred candidate p and the prices for deleting the
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voters. We performed two test series, duplicated voters and plain. In the duplicated vot-
ers test series we interpret the Preflib elections as random samples of larger elections
and, for each election from PrefLib, duplicate each voter between 1 and 500 times (the
multiplication factor was chosen uniformly at random for each voter separately). In the
plain test series, the set of voters remains unchanged. For each voter (after the duplica-
tion) we set the price for its deletion uniformly at random to be an integer between 1 and
500. Finally, we uniformly at random select one candidate to be the preferred one and
create for each Preflib election and each m ∈ {10, 12, . . . , 40}, ten instances with m
candidates (by first creating the full instance and removing all but m randomly chosen
candidates). All in all, we obtained more than 8000 test instances for each test series.

We stress that our focus is on the running times of our algorithms, and not—for
example—on modeling how frequent control might be in real-life settings. The purpose
of the experiments is to be a proof-of-concept of the algorithms suggested herein.

Algorithms. We tested two algorithms, both of which transfer the Approval-$CCDV
instance into a WEIGHTED SET MULTICOVER instance and apply CPLEX to solve a
(mixed) integer program. The first algorithm (referred to as ILP) uses a straightforward
integer linear programming formulation with one binary variable for each set (repre-
senting presence in the solution), constraints ensuring that each element is appropri-
ately covered by the selected sets, and an objective function minimizing the total costs.
The second algorithm (referred to as MILP) uses the mixed integer linear programming
formulation from Theorem 1. We did not consider brute-force or approximation ap-
proaches since both (M)ILP-based algorithms turned out to be extremely fast for the
Preflib data set (and always return optimal solutions).

Results. Surprisingly, both algorithms solved all instances very fast (using at most a
few seconds). For the plain test series the running time slightly increases as the number
of candidates increases, for both algorithms. A possible explanation is that the program
description as well as the number of variables5 also slightly increases. The ILP is faster
by roughly a constant factor which might be caused by its much simpler formulation
and the usage of binary variables instead of integer ones. For the duplicated voters test
series, the situation changes: the running time increases only slightly with the increase
of the number of candidates for the MILP, but it increases significantly for the ILP. A
possible explanation is that the ILP has one variable for each voter whereas the MILP
has one variable for each class of duplicated voters. See Figure 3 for an illustration.

4 Generalizations

We now consider the ordinal model of elections, where each voter’s preferences are
represented as an order, ranking the candidates from the most preferred one to the least
preferred one. For example, for C = {c1, c2, c3}, vote c1 � c3 � c2 means that the
voter likes c1 best, then c3, and then c2.

There are many different voting rules for the ordinal election model. Here we con-
centrate only on scoring rules. A scoring rule form candidates is a nondecreasing vector

5 By removing candidates during instance generation one also removes voters only approving
removed candidates.
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α = (α1, . . . , αm) of integers. Each voter gives α1 points to his or her most preferred
candidate, α2 points to the second most preferred candidate, and so on. Examples of
scoring rules include the Plurality rule, defined through vectors of the form (1, 0, . . . , 0),
k-Approval, defined through vectors with k ones followed by m− k zeroes, and Borda
count, defined through vectors of the form (m− 1,m− 2, . . . , 0).

For each voting rule R in the ordinal model, it is straightforward to define R-
$CCAV, R-$CCDV, and R-$BRIBERY. Using our MILP technique, we obtain the
following result.

Theorem 5. For every voting ruleR for which winner determination can be expressed
through a set of integer linear inequalities over variables that indicate how many voters
with each given preference order are in the election, R-$CCAV, R-$CCDV, and R-
$BRIBERY are in FPT when parameterized by the number of candidates.

For a description of what we mean by “expressing the winner determination problem
through integer linear inequalities,” we point to the discussions by Dorn and Schlot-
ter [8] or by Faliszewski et al. [14]. For example, the result applies to all scoring rules.

We also partially resolve an open problem posed by Bredereck et al. [5] regarding
SHIFT BRIBERY. In this problem we are given an election and a preferred candidate p,
and the goal is to ensure p’s victory by shifting p forward in some of the votes (the
cost of each shift depends on the number of positions by which we shift p). Under the
sortable prices assumption, voters with the same preference orders can be sorted so that
if voter v′ precedes voter v′′, then we know that shifting p by each given number of
positions i in the vote of v′ costs at most as much as doing the same in the vote of v′′.
Using this assumption, we obtain the following result (all-or-nothing prices are a special
case of sortable prices where we always shift p to the top of a given vote or we leave
the vote unchanged).

Theorem 6. For Borda (and for Maximin and Copeland voting rules), SHIFT BRIBERY
for sortable price functions and for all-or-nothing price functions is in FPT when pa-
rameterized by the number of candidates.

Bredereck et al. [5] gave an FPT approximation scheme for the the problems from
Theorem 6; we use part of their algorithm and apply our MILP technique.

5 Conclusions

We have studied election control and bribery for the case of few voters with prices.
We also considered weighted Approval elections with few voters. By developing a very
general proof technique, in these settings we have improved known XP-membership
results to FPT-membership results. We have also tested our algorithms empirically
and found them to be extremely fast. Our empirical results provide some evidence for
the correlation between running time and number of candidates, as given by the FPT-
classification, at least for Preflib-based Approval-$CCDV test instances.

Our paper leads to several possible directions for future work. First, the experiments
we have presented are only preliminary and they should be extended in a number of
ways. Second, it would be very interesting to further explore the relevance of FPT
approximation algorithms to other voting scenarios.
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