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ABSTRACT

Finding an envy-free allocation of indivisible resources to agents

is a central task in many multiagent systems. Often, non-trivial

envy-free allocations do not exist, and finding them can be a com-

putationally hard task. Classic envy-freeness requires that every

agent likes the resources allocated to it at least as much as the

resources allocated to any other agent. In many situations this

assumption can be relaxed since agents often do not even know

each other. We enrich the envy-freeness concept by taking into

account (directed) social networks of the agents. Thus, we require

that every agent likes its own allocation at least as much as those of

all its (out)neighbors. This leads to a “more local” concept of envy-

freeness. We also consider a strong variant where every agent must

like its own allocation more than those of all its (out)neighbors.

We analyze the classic and the parameterized complexity of

finding allocations that are envy-free with respect to one of the

variants of our new concept, and that either are complete, are Pareto-

efficient, or optimize the utilitarian social welfare. To this end, we

study different restrictions of the agents’ preferences and of the

social network structure.We identify cases that become easier (from

ΣP

2
-hard or NP-hard to P) and cases that become harder (from P to

NP-hard) when comparing classic envy-freeness with our graph-

based envy-freeness. Furthermore, we spot cases where graph envy-

freeness is easier to decide than strong graph envy-freeness, and

vice versa.
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1 INTRODUCTION

Modern management strategies emphasize the role of teams and

team-work. To have an effective team one has to motivate the

team members in a proper way. One method of motivating team

members is to reward them for achieving a milestone. On the one

hand, it is crucial that every member of a team feels rewarded

fairly. On the other hand, in every team there are hierarchical or

personal relations, which one should attend to in the rewarding

process. Since, according to the recent labor statistics in the US [19],

the average cost of employee benefits (excluding legally required

ones) is around 25% of the whole cost of labor, it is important to

effectively use rewarding instruments. It is tempting to follow a

simplistic belief that tangible incentives motivate best and thus

reward employees with cash bonuses and pay raises. However,
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it has been shown that to keep the employee satisfaction high,

an employer should also honor the employees with non-financial

rewards [12].

We propose a model for the fair distibution of indivisible goods

which can be used to find an allocation of non-financial rewards
1

such that each team member is satisfied with its rewards and, at

the same time, is not worse off compared to any other peer whom

she is in relation with. Besides the rewarding scenario our model

has numerous further potential applications, just to mention tar-

geting marketing strategies (giving non-monetary bonuses to loyal

customers), allocating physical resources to virtual resources in vir-

tualization technologies (both network and machine virtualization),

and sharing charitable donations between cities or communities

which may envy each other.

Returning to our initial example of reward management, it is a

well-established fact that team members evaluate the fairness of

rewarding based on comparisons with their peers. This phenom-

enon, first described seventy years ago by the social psychologist

Leon Festinger [10], is probably one of the reasons of the popularity

of fair allocation (division) problems in computer science. Natu-

rally, when evaluating the subjective fairness of rewards, every

team member tends to compare itself to similar peers, neglecting

those who differ substantially in position, abilities, or other aspects.

This has already been reflected by one of Festinger’s hypotheses;

however, so far, most reserach in computer science has focused on

fairness notions based on “global” comparisons, that is, pairwise

comparisons between all members of society.

In this work we aim at incorporating “local” comparisons into

the fair allocation scenario. Having a collection of indivisible re-

sources we look for a way to distribute them fairly among a group

of agents which, prior to the distribution, shared their opinions

on how they appreciate the resources. For example, imagine that a

company is to reward a team of three employees responsible for

a successful project. The team consists of a key account manager

(KAM) being the chief of the group, an internet sales manager (ISM),

and a business-to-business (B2BSM) sales manager. The company

intends some non-financial rewards to recognize the employees’

performances. The rewards are ‘participating in a language course’,

‘being the company’s representative for an episode of a documen-

tary program’, ‘moving to a new high-end office’, and ‘receiving

an employee-of-the-month award’. The employees (agents) were

surveyed for their favorite rewards, yielding the results given in Ta-

ble 1.

Each agent considers a rewarding unfair if after exchanging all

its rewards with all rewards of some peer, the agent would get more

approved rewards. According to the company’s rewarding policy,

all rewards must be handed out. Considering the standard model

1
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KAM B2BSM ISM

language course □ 2� 2�
TV episode □ 2� 2�

high-end office 2� 2� 2�
employee-of-the-month award 2� 2� 2�

Table 1: The results of a survey concerning employees’ (0/1)

preferences over the possible rewards. Checked boxes indi-

cate the approved rewards of a particular person.

KAM

B2BSMISM

Figure 1: An illustration of who compares to whom for the

introductory example. Every node represents an employee

and arcs represent directions of comparisons, for instance,

if an arc points from the key account manager to the inter-

net sales manager, then the former compares herself to the

latter.

of resource allocation, where each agent can compare itself to each

other agent, the company cannot find a fair reward allocation. At

least one agent has to get two rewards. As a consequence, two

employees have at most one reward. However, a rewarding policy

in the company assumes that a team’s chief is always a basis of

team success and thus deserves a better reward. Hence, both sales

managers do not compare their rewards to the ones of their boss.

Naturally, the key account manager’s reward should be at least as

good as the ones of the others. To illustrate these relations, we use

the directed graph depicted in Figure 1. In this case, the company can

reward the key account manager with the office and the employee-

of-the-month award, and distribute the two remaining rewards

equally to the internet and business-to-businessmanagers. Doing so,

the company achieves a fair rewarding. The key account manager

has two favorite rewards and there is no incentive to exchange them.

The remaining team members do not compare themselves to their

boss, so they do not envy him or her. Finally, both the business-to-

business and internet managers have one favorite reward, so there

is no envy. Thus, by introducing the graph of relations between the

employees, we were able to represent social comparisons.

Related Work. In 1948, Steinhaus [23] asked how to fairly dis-

tribute a continuous resource, a “cake”, among a set of agents with

(possibly different) heterogeneous valuations of the resource. From

this first mathematical model of fair allocation twomain research di-

rections evolved. The difference lies in the nature of the resources—

divisible or indivisible. The former type yields the so-called cake

cutting problem. We refer to the books [7, 18, 22] and recent sur-

veys [5, 17, 20, 21] on fair division problems, and next discuss

literature related to our setting.

Abebe et al. [1] and Bei et al. [2] introduced social networks of

agents into the fair division problem. They defined (local) fairness

concepts based on social networks and then compared them to the

classic fairness notions and designed new protocols to find envy-

free allocations. Although their models defined local envy-freeness,

it differs from our concept since they considered divisible resources.

An allocation, instead of being executed by a central mechanism,

might emerge from a sequence of trades between the agents initially

endowed with random resources; this setting gives birth to the

problem of distributed allocation of indivisible resources. Gourvés

et al. [11] studied this problem of embedding agents in a social

network describing the possible agent interactions and restricting

allocations to give a single resource to every agent. They addressed

the computational hardness of several questions such as existence of

a Pareto-efficient allocation, reachability of a particular allocation,

or reachability of a resource for a candidate. For all these questions,

they proved that finding an answer is in general NP-hard but it is

polynomial-time solvable for some constrained cases. Additionally,

Chevaleyre et al. [8] enriched the distributed allocation problem

with monetary payments for the trades. They defined a version of

graph envy-freeness which takes into account both allocations of

resources and the payments of agents. They showed several results

describing convergence of trades converging to a fair allocation.

Additionally, they proved that the problem of finding a deal reducing

unfairness among the agents is NP-hard.

The somewhat orthogonal model where relations of resources,

instead of agents, are described by a graph was recently studied

by Bouveret et al. [4]. They proved that to decide whether there

is a fair allocation such that every assigned bundle contains only

resources forming a connected component is, in general, NP-hard.

Furthermore, Suksompong [24] studied the existence and properties

of approximate versions of various fairness concepts in the special

case of resources lying on a path.

Our Contributions. Our work follows the recent trend of com-

bining fair allocation with social networks. We introduce social

relations into the area of fair allocation of indivisible resources with-

out monetary payments. Making use of a greater model flexibility

resulting from embedding agents into a social network, we define

two new versions of the classic envy-freeness property; namely,

(weak) graph-envy-freeness and strong graph-envy-freeness. Even

though Chevaleyre et al. [8] also introduced a property called graph-

envy-freeness, their version differs from ours significantly because,

instead of being a property of an allocation, it describes a particular

state of the negotiations between the agents, including monetary

payments (which has the flavor of divisible resources) paid to the

agents so far.

We study problems of finding (weakly/strongly) graph-envy-

free and efficient allocations employing separately completeness,

Pareto-efficiency, and maximization of utilitarian social welfare as

efficiency criteria. We assume that the agents’ preferences over the

resources are cardinal, additive, and monotonic. We go beyond the

general case (with no further constraints on agents’ preferences

and an arbitrary social network), and we analyze our problems

with respect to social networks being directed acyclic graphs or

strongly connected components, and with respect to identical or 0/1

preferences over the resources. As a result, we explore a broad and

diverse landscape of the classic computational complexity of the in-

troduced problems. Our results reveal that in comparison to classic

envy-freeness, our model sometimes simplifies the task of finding

a proper allocation and sometimes makes it harder. Similarly, we

identify cases where finding a (weakly) graph-envy-free allocation

is easier than finding a strongly graph-envy-free allocation but also
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cases where the opposite is true. Additionally, our work assesses

the parameterized computational complexity of several cases with

respect to a few natural parameters such as the number of agents,

the number of resources, and the maximum number of neighbors

of an agent.

In the following sections, firstly, we present basic concepts and

introduce our new model and computational problems (Section 2).

Then, we analyze the problem of finding complete graph envy-free

allocations (Section 3). We show that the majority of results for the

case of complete graph envy-free allocations can be transferred to

the other efficiency concepts; we also provide results where this

transfer is impossible (Section 4). We end with conclusions and

suggestions for future work (Section 5). Due to the lack of space,

we defer several proof details to the full version of the paper.

2 MODEL AND BASIC DEFINITIONS

We start with basic concepts for describing graphs which we use to

model relations between agents. For a directed graph G = (V ,E),
consisting of a set V of vertices and a set E of arcs, by N (v ) we
denote the outneighborhood of vertex v ∈ V , i.e., the setW ⊂ V
of vertices such that for each vertex w ∈ W there exists an arc

e = (v,w ) ∈ E, i.e., arc e is directed from v tow . Where needed, we

complement our notation by using a subscript indicating the graph

we consider.

We continue with defining some standard concepts for allocation

problems needed to formally introduce our problems.

Definition 2.1. An allocation of a set of resources R to a set of

agents A is a mapping π : A → 2
R
such that π (a) and π (a′) are

disjoint whenever a , a′. For any agent a ∈ A, we call π (a) the
bundle of a under π .

There are different ways to model preferences of agents over

resources; we focus on preferences expressed numerically.

Definition 2.2. We call a preference relation ⪯ over all subsets of

resources R additive if there is a utility functionu : R → Z such that
for any X ,Y ⊆ R it holds that X ⪯ Y if and only if u (X ) ≤ u (Y ),
where u (X ), for X ⊆ R, is defined as

∑
r ∈X u (r ).

For additive preferences, ⪯ is caled monotonic if and only if the

values of the utility function are non-negative. In our work, we

restrict preferences to be additive and monotonic. We call them 0/1

if the utility function maps to {0, 1} for every agent, and identical if

every agent has the same utility function.

Next, we formally define our graph fairness concepts based on

comparisons between neighbors in a social network.

Definition 2.3. Fix a groupA of agents, a setR of resources, and a

directed graphG = (A,E) (i.e., the agents are the vertices ofG). We

call allocation π (weakly) graph-envy-free if for each pair of (distinct)

agents a1, a2 ∈ A such that a2 ∈ N (a1) it holds that u1 (π (a1)) ≥
u1 (π (a2)). By replacing the weak inequality in our criterion with a

strict inequality we obtain the definition of a strongly graph-envy-

free allocation.

An allocation which gives nothing to every agent is always

(weakly) graph-envy-free; to overcome this trivial case we com-

bine our fairness concepts with different measures of allocation

efficiency.

Definition 2.4. Consider an allocation π of a set R of resources

to a set A of agents and a family U = {u1,u2, . . . ,u |A | } of utility
functionswhere some functionui represents preferences of agentai .
We call π complete if

⋃
a∈A π (a) = R. We call π Pareto-efficient if

there exists no allocation π ′ that dominates π , where dominating

means that for all ai ∈ A it holds that ui (π (ai )) ≤ ui (π
′(ai ))

and for some aj ∈ A it holds that uj (π (aj )) < uj (π
′(aj )). We call∑

ai ∈A ui (π (ai )) the utilitarian social welfareWπ of allocation π .

A problem parameterized by ρ is fixed-parameter tractable if it is

solvable in f (ρ) · |I |O (1)
time for some computable function f and

the input size |I | according to the problem’s encoding;W [t]-hard,
t ≥ 1, problems are presumably not fixed-parameter tractable. We

call a problem para-NP-hard if it is NP-hard even for a constant

value of the parameter.

Throughout the paper we make heavy use of the graph problem

Cliqe to show our results regarding computational hardness.

Definition 2.5. In the Cliqe problem, given an undirected graph

and an integer k , we ask whether there is a clique of size k , i.e., a
size-k subset of the vertices such that they are pairwise adjacent.

Cliqe is a well-known NP-complete [14] problem which is

W[1]-complete [9] when parameterized by the size of the clique.

Problem Description. For fair allocation applications, it is impor-

tant not only to know that there exists an allocation with particular

features, but also to know how it looks like. This is why we define

our problems in the form of search problems, instead of decision

problems. Obviously, our problems also have natural decision vari-

ants.

Subsequently, X -(s)GEF-Allocation stands for X -(strongly)
graph-envy-free allocation where X ∈ {C,E,W}, ‘C’ referring to

complete, ‘E’ referring to Pareto-efficient, and ‘W’ referring to util-

itarian social welfare. We start with defining our problems with

respect to completeness and Pareto-efficiency.

C-GEF-Allocation (resp. C-sGEF-Allocation)

Input: A set A of n agents, a set R of m indivisi-

ble resources, a familyU = {u1,u2, . . . ,un } of agents’
utility functions, and a directed graph G = (A,E).
Task: Find a complete, graph-envy-free (resp. strongly

graph-envy-free) allocation of R to A.

Analogously, we define the E-GEF-Allocation and E-sGEF-Al-

location problems where we search for a Pareto-efficient and

(weakly/strongly) graph-envy-free allocation. In the case of utili-

tarian social welfare we slightly change the task when defining the

respectiveW-GEF-Allocation,W-sGEF-Allocation problems:

We search for a (weakly/strongly) graph-envy-free allocation which

maximizes the utilitarian social welfare.

Basic Observations. We start with two observations. Our first

observation basically says that graph-envy-freeness can be checked

in polynomial time. It is enough that for each agent one compares

its own bundle value to values it assigns to the neighbors’ bundles.

Observation 1 (graph-envy-freeness Test). Given a set R of

resources, a set A of agents with their preferences over bundles of R,

and some allocation π : A → 2
R
, one can decide in polynomial time

whether π is (weakly/strongly) graph-envy-free.
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C-GEF-Allocation

DAG SCC General

identical 0/1 P (Obs. 3) P (Cor. 1) NP-h (Thm. 1)

identical P (Obs. 3) NP-h (Pr. 1, ♣) NP-h (Pr. 1, ♣)

0/1 P (Obs. 3) NP-h (Th. 2) NP-h (Th. 2)

additive P (Obs. 3) NP-h (Pr. 1, ⋄) NP-h (Pr. 1, ⋄)

C-sGEF-Allocation

DAG SCC General

identical 0/1 P (Pr. 3) O (1) (Obs. 5) P (Pr. 3)

identical NP-h (Pr. 2) O (1) (Obs. 5) NP-h (Pr. 2)

0/1 NP-h (Th. 3) NP-h (Th. 3) NP-h (Th. 3)

additive NP-h (Th. 3) NP-h (Th. 3) NP-h (Th. 3)

Table 2: Computational complexity results forC-(s)GEF-Allocation for different graph and preference restrictions. DAG and

SCC stand for directed acyclic graphs and strongly connected graphs respectively. Entry “NP-h” refers to NP-hard cases, “P”

refers to polynomial-time solvable cases, and “O (1)” refers to trivial (constant-time solvable) cases. Results marked with ♣ can,

using Observation 6, also be derived from Bouveret and Lang [6]. Results marked with ⋄ also derive from Lipton et al. [16].

C-GEF-Allocation

parameter preferences restrictions complexity

outdegree identical 0/1 outdegree= 2 p-NP-h (Th. 1)

#agents identical outdegree= 1 W[1]-h (Pr. 1)

#resources 0/1 str. connected W[1]-h (Th. 2)

C-sGEF-Allocation

parameter preferences restrictions complexity

outdegree additive outdeg.= 1 p-NP-h (Th. 4)

#agents additive outdeg.= 1 W[1]-h (Th. 4)

Table 3: Parameterized complexity results forC-(s)GEF-Allocation. Entry “p-NP-h” denotes para-NP-hard cases, that is, cases

that remain hard even for constant parameter values. Entry “W[1]-h” denotesW[1]-hard cases, that is, cases which are presum-

ably not fixed-parameter tractable.

Due to Observation 1 every NP-hardness proof in Section 3

implies NP-completeness of the corresponding decision problem

discussed in the proof.

Intuitively, considering (weakly/strongly) graph-envy-free allo-

cations, we can rule out all resources which have no value for any

agent. We state this claim as the following observation.

Observation 2. Without loss of generality, there are only re-

sources to which at least one agent assigns positive utility.

Observation 2, albeit simple, results in a useful consequence for

the case of identical 0/1 preferences: All variants of X -(s)GEF-Al-
location boil down to distributing a certain number of indistin-

guishable resources.

3 FINDING COMPLETE ALLOCATIONS

We analyze the classic complexity (Table 2) and the parameterized

complexity (Table 3) for finding allocations that are complete and

(weakly/strongly) graph-envy-free. In Section 3.1, we discuss our

results for the weak version of envy-freeness and in Section 3.2

we discuss our results for the strong version of envy-freeness. We

identify cases where using our graph-based envy-freeness concept

leads to decreased complexity (from NP-hard to P) and cases where

it leads to increased complexity (from P to NP-hard), each time

comparing to classic envy-freeness.

3.1 Weakly Graph-envy-free Allocations

As a warm-up, we consider the case where the graph encoding

the envy-relation is acyclic and where the preferences are additive

monotonic (being the least-restrictive preference type considered

in this paper). This case is well-motivated because it describes

hierarchical situations where only higher ranked agents may envy

lower ranked agents.

For weak graph-envy-freeness there is a trivial solution that

allocates all resources to a single source agent. Indeed, nobody can

envy a source agent because it has no incoming arcs, the remaining

agents do not envy each other because none has a resource, and

the allocation is complete since all items are allocated.

Observation 3. C-GEF-Allocation for monotonic additive pref-

erences and an acyclic input graph is solvable in linear time.

Next, we consider the most restrictive preference type, identical

0/1 preferences, together with the fairly large class of strongly

connected graphs. Here, because of transitivity of the “greater or

equal” relation, we obtain a very simple tractable case where all

agents must obtain the same number of resources. To show this,

we start with the following observation, directly yielding a simple

algorithm.

Observation 4. Let π : A → 2
R
be a graph-envy-free alloca-

tion. Then, for every pair {a,a′} of agents that belong to the same

strongly connected component, it holds that (1) u (π (a)) = u (π (a′))
for identical preferences, and (2) |π (a) | = |π (a′) | for identical 0/1

preferences.

Corollary 1. C-GEF-Allocation for identical 0/1 preferences

and an input graph being strongly connected is solvable in linear time.

Proof. Using Observation 4, our algorithm checks whether the

number of resources is divisible by the number of agents and returns

true if and only if this is the case. □

Observation 4 (2) allows us to view agents from the same strongly

connected component as “uniform block of agents”. This view will

be very helpful to obtain the following theorem which basically

states that, even with identical 0/1 preferences, GEF-Allocation

becomes intractable as soon as the graph is not strongly connected.
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Theorem 1. C-GEF-Allocation for identical 0/1 preferences is

NP-hard even if each vertex has outdegree at most two.

Proof. For the sake of readability we extend the concept of envy

from agents to sets of agents. We say that a strongly connected

component A′ envies another strongly connected component A′′

if there exists an agent from A′ that envies an agent from A′′. For
identical 0/1 preferences, a solution to C-GEF-Allocation has to

allocate exactly the same number of resources to every agent being a

part of the same strongly connected component (Observation 4 (2)).

Thus, we say that we are allocating some number of resources to

a strongly connected component (instead of an agent) when we

uniformly distribute these resources to the agents that belong to

the component. As a consequence, we can allocate only multiples

of t resources to a strongly connected component consisting of

t agents.
To prove Theorem 1, consider a Cliqe instance formed by an

undirected graph Ḡ = (V̄ , Ē) with a set V̄ = {v̄1, v̄2, . . . , v̄n̄ } of
vertices and a set Ē = {ē1, ē2, . . . , ēm̄ } of edges, and a clique size k .

Without loss of generality, assume that 1 < k < n̄ and m̄ >
(k

2

)
.

We present a polynomial-time many-one reduction from Cliqe

to C-GEF-Allocation. We introduce n̄2m̄(n̄2 + 1) + m̄ agents and

n̄4m̄ + kn̄m̄ +
(k

2

)
resources which are assigned utility one by each

agent. We specify an input graph G over the agents in two steps.

First, we define strongly connected components of G separately

and then add arcs connecting them. By connecting two strongly

connected components we mean adding an arc between two arbi-

trarily chosen vertices, one from each connected component. In a

first step, we build the following strongly connected components:

(1) For each vertex v̄ ∈ V̄ , we introduce a vertex component Gv̄
which consists of n̄ · m̄ vertices;

(2) For each edge ē ∈ Ē, we introduce an edge component Gē
which consists of one vertex;

(3) We introduce a root component G∗ which consists of n̄4 · m̄
vertices.

Then, we connect the strongly connected components to form an

input graphG of the C-GEF-Allocation instance. Figure 2 depicts

graph G resulting from the following steps:

(1) For each edge ē = {v̄ ′, v̄ ′′} ∈ Ē, we connect Gv̄ ′ and Gv̄ ′′ to
edge component G ē (with an arc pointing to Gē );

(2) we connect the root component with every vertex compo-

nent (with an arc starting at the root component).

To prove the correctness of the reduction, we have to show

that there is a k-clique in Ḡ if and only if there is a complete and

graph-envy-free allocation for the constructed C-GEF-Allocation

instance. Assume that there is a k-clique C = (VC ,EC ) in graph Ḡ.
We create a complete and graph-envy-free allocation as follows:

• We give n̄4 · m̄ resources to G∗;
• we give n̄ ·m̄ resources to every vertex component associated

with a vertex from VC ; and
• we give one resource to every edge component associated

with an edge from EC .

The allocation is complete because we assign

n̄4m̄ + n̄m̄ |VC | + |EC | = n̄
4m̄ + kn̄m̄ +

(
k

2

)

G∗

n̄4m̄

Gv̄1

n̄m̄

Gv̄2

n̄m̄
· · ·

Gv̄n̄
n̄m̄

Gē1

1

Gē2

1

· · ·
Gēm̄

1

Figure 2: The input graph of a C-GEF-Allocation instance

constructed in the proof of Theorem 1. The circles represent

strongly connected components. Labels indicate a name (up-

per part) and the number of agents in the component (lower

part). The connections represent arcs between two arbitrar-

ily chosen agents from different components.

resources. Every edge component is a single vertex without out-

going arcs which means that, by definition, no edge component

envies. Every vertex component Gv̄ , v̄ ∈ Ḡ, might envy only edge

vertices it is connected to. If v̄ ∈ VC , then no vertex in Gv̄ envies

anybody, because every vertex in Gv̄ has one resource and every

vertex of every edge component has at most one resource. If v̄ < VC ,
then v̄ cannot envy because all edge components representing v̄’s
incident edges, which are not a part of clique C , have no resource

allocated. Finally, the root component does not envy because each

of its agents get one resource and no other agent gets more.

Conversely, assume that there exists a complete and graph-envy-

free allocation for the constructed instance of C-GEF-Allocation.

On the one hand, the root component has to get at least n̄4m̄ re-

sources because it consists of n̄4m̄ agents. On the other hand, be-

cause of a lack of resources, the root component cannot get 2n̄4m̄
resources. This derives from the following inequality holding for

n̄ > 1:

kn̄m̄ +

(
k

2

)
≤ n̄2m̄ + n̄2 ≤ 2n̄2m̄ < n̄4m̄.

Thus, every agent in the root component gets one resource. Since

every agent in the root component might envy all other agents

(even all agents in the edge components due to transitivity of the

“greater than or equal to” relation), every other agent can get at most

one resource. Besides the root component’s resources, there are

still kn̄m̄ +
(k

2

)
resources left. For every feasible solution there exist

exactly k vertex components whose agents have a one-resource

bundle. Because

(k + 1)n̄m̄ > kn̄m̄ +

(
k

2

)
,

we cannot allocate resources to more than k vertex components.

Contrarily, if one allocates n̄m̄ resources to k−1 vertex components,

then there are still n̄m̄+
(k

2

)
resources left. However, we have only m̄

edge components, each one capable of having at most one resource.

Thus, a feasible allocation chooses exactly k vertex components and(k
2

)
edge components. Moreover, every vertex component has to be

connected to chosen edge components. This exactly corresponds to

choosing k distinct vertices and

(k
2

)
distinct edges such that every

edge is incident to two of the chosen vertices.

5



To see that the described construction can be realized with max-

imum outdegree at most two, observe that strongly connected

components can be obtained through simple directed cycles (where

each vertex has one outgoing arc). Each component has fewer “out-

going arcs” than vertices so that we can use an individual agent

(creating a second outgoing arc) in each case.

The reduction is clearly executable in polynomial time. □

Another way to try to extend the tractability from Corollary 1

to a broader setting is to keep the graph being strongly connected

but to consider identical monotonic additive preferences (so, al-

lowing more than just values 1 or 0). However, Observation 4 (1)

allows for a (quite straight-forward) reduction from the NP-hard

andW[1]-hard EEF Existence [6]. As a result, C-GEF-Allocation

for identical monotonic additive prefences inherits intractability

even for the case with few agents and the graphG being a directed

cycle (implying that the outdegree of each vertex is at most one,

meaning that each agent envies at most one other agent).

Proposition 1. C-GEF-Allocation for identical monotonic ad-

ditive preferences is NP-hard and W[1]-hard when parameterized by

the number of agents even if the input graph is a cycle.

We finally consider C-GEF-Allocation for the case of few re-

sources. With the classic envy-freeness notion (orG being complete

for C-GEF-Allocation), the problem of finding a complete, envy-

free allocation can easily be seen to be fixed-parameter tractable

(using an analogous technique as used by Bliem et al. [3, Propo-

sition 1]). For graph-envy-freeness, however, it turns out that the

problem becomes W[1]-hard even for 0/1 preferences and G being

strongly connected. This provides an example where the complex-

ity for C-GEF-Allocation differs between the cases of complete

directed graphs and general strongly connected graphs.

Theorem 2. C-GEF-Allocation for 0/1 preferences is NP-hard

and W[1]-hard when parameterized by the number of resources even

if the input graph is strongly connected.

Proof. Consider an instance of Cliqe with graph Ḡ = (V̄ , Ē)

and clique size k . Let m := k +
(k

2

)
+ 1 be the number of re-

sources in the new instance of C-GEF-Allocation. Specifically, we

have a special resource r∗, k vertex resources Rv = {r1, r2, . . . , rk },

and

(k
2

)
edge resources Re = {r

′
1, r
′
2, . . . , r

′

(k
2
) }. We have a spe-

cial agent a∗, dummy agents Ac = {a1,a2, . . . ,am+1}, a starting

agent s , and an ending agent t . Additionally, we add vertex agents

Av = {v1,v2, . . . ,vn̄ } and edge agents Ae = {e1, e2, . . . , em̄ } that
correspond to vertices and edges of graph Ḡ. The construction

of the input graph for the new instance of C-GEF-Allocation,

illustrated in Figure 3, is as follows:

(1) Create a cycle over all agents fromAc∪{s, t }∪{a∗} such that
every two adjacent agents are connected with bidirectional

arcs. The order of the agents is arbitrary except that a∗ is
adjacent to agents s and t .

(2) For every vertex or edge agent a create two arcs (a,a∗) and
(a∗,a).

(3) Connect agent s with every vertex agent by an arc pointing

to a vertex agent.

(4) Connect agent t with every edge agent by an arc pointing

to an edge agent.

res.

agents

s Ac t a∗ Av Ae

r∗ 0 1 0 1 0 0

Rv 0 1 1 1 1 0

Re 1 1 0 1 1 1

Table 4: Utilities of the resources reported by the agents in

the reduction in the proof of Theorem 2.

s a1 a2 · · · am am+1 t

a∗

v1 v2 · · · vn̄ e1 e2 · · · em̄

Figure 3: The general graph constructed in the reduction in

the proof of Theorem 2. Every node is labeled with its name.

(5) Encode the structure of the input graph Ḡ by connecting a

vertex agent to an edge agent by an arc starting at the vertex

agent whenever a corresponding vertex (in Ḡ) is incident to
the corresponding edge (in Ḡ).

Finally, Table 4 depicts the utility values given by the agents to the

resources.

If there exists a solution to the Cliqe instance, then we can

obtain a complete, graph-envy-free allocation for the C-GEF-Al-

location instance by assigning the vertex and edge resources to

agents representing, respectively, the vertices and the edges of the

clique. We give the special resource to the special agent. Indeed,

one can check using Table 4 that such an allocation is always graph-

envy-free. The special resource, r∗, given to agent a∗ makes neither

s nor t envious. Even though s can envy vertex agents, they get only
vertex resources to which s assigns the value of zero. As a result,
s is unenvious. By symmetry, the same holds for t . Since both s and
t get no resource, none of the dummy agents envies. Because every

clique’s edge connects only the clique’s vertices, every edge agent

that gets a resource may be envied only by the vertex agent that

also got a resource. Consequently, there is no envying vertex agent.

With observing that the edge agents do not envy special agent a∗
because they give zero utility to the special item, we conclude that

our allocation is complete and graph-envy-free.

Proving that a solution toC-GEF-Allocation yields a solution to

Cliqe is more involved. Observe that every dummy agent reports

utility of one for every resource and all edges between agentsAc ∪

{s, t } are bidirectional. Thus, if at least one agent from Ac ∪ {s, t }
was assigned a resource, then all dummy agents would have to get

one, too. This is impossible because there arem + 1 dummy agents

and only m resources. Hence, no complete and graph-envy-free

allocation assigns a resource to any agent from the set Ac ∪ {s, t }.
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Now, consider resource r∗. Assigning r∗ to one of the either

vertex or edge agents makes a∗ envious. Consequently, a∗ has to be
assigned one of the remaining resources. However, every possible

choice from the remaining resources makes either s or t envious.
Since we have proven that we are not allowed to give a resource

to any of s and t , one has no choice but to assign r∗ to a∗. Indeed,
since no agent is envious after such an allocation, if there exists a

complete and graph-envy-free allocation, then r∗ is assigned to a∗.
Next, we show that every vertex resource can be given only to a

vertex candidate and that every vertex agent gets at most one vertex

resource. To justify the first part of the claim, let us assume that

some vertex resourcev is given to eithera∗ or some edge agent. This

immediately implies that t has to get one of the resources which,

according to our very first observation, make finding a solution

impossible if given to t . Conversely, one can safely assign v to one

of the vertex agents. Towards showing that every vertex agent

gets at most one vertex resource, let us assume that some vertex

candidate is assigned two vertex resources. By Table 4, we see that

a∗ is envious now (even when a∗ has been assigned r∗). However,
giving a∗ any resource except for r∗ ends up in the situation where

either s or t has to be assigned a resource which is forbidden. By

symmetry arguments, we can use a similar deduction to observe

that every edge resource can be given only to an edge agent and

that every edge agent gets at most one edge resource.

Altogether, the observations stated above show that a solution

for the C-GEF-Allocation instance needs to allocate exactly k

vertex resources to exactly k vertex agents and exactly

(k
2

)
edge

resources to exactly

(k
2

)
edge agents. By our construction, every

time an edge resource is assigned to some edge agent e , a vertex
resource has to be assigned to every vertex agent connected with e .
Since a vertex resource is connected to an edge resource if and only

if the vertex is incident to the edge, the vertex and edge agents with

allocated resources represent a k-clique.
The reduction works in polynomial time which implies that C-

GEF-Allocation is NP-hard. Additionally, the reduction uses a

number of resources upper-bounded by a (polynomial) function

of k , which impliesW[1]-hardness. □

3.2 Strongly Graph-envy-free Allocations

We move on to the strong variant of our envy-freeness concept and

analyze how this stronger notion effects computational complexity.

Again, we start with directed acyclic graphs to model hierarchical

structures. Here, strong graph-envy-freeness seems to be a very

reasonable assumption. In contrast to C-GEF-Allocation, which

is trivial to solve in this setting, it turns out that C-sGEF-Alloca-

tion is intractable even for identical preferences. Reducing from

the NP-hard Unary Bin Packing [13], we mainly use the fact that

in a (directed) length-k path of agents, the first agent has to get a

bundle with utility at least k − 1.

Proposition 2. C-sGEF-Allocation with identical monotonic

additive preferences is NP-hard even if the input graph is acyclic.

Using a reduction from Cliqe, we can show that for acyclic

graphs C-sGEF-Allocation remains hard in case of 0/1 prefer-

ences. The proof is based on the observation that if we have a

group B of agents connected to some agent a < B which has to get

some resource r , then, depending on whether the agents in B like

resource r or not, we can distinguish two cases. The first case is

that every agent in B gets at least two resources. The second case

is that for every agent in B it is enough to get one resource.

Theorem 3. C-sGEF-Allocationwith 0/1 preferences is NP-hard

for the input graph being either a directed acyclic graph or a strongly

connected component.

By Proposition 2 and Theorem 3, identical 0/1 preferences are

the last hope to identify a tractable case for acyclic graphs. Indeed,

for this preference type we develop a polynomial-time algorithm

which even works for all directed graphs. As a first step, we observe

that, in contrast to C-GEF-Allocation, which was NP-hard, C-

sGEF-Allocation is trivial for monotonic additive preferences

and strongly connected graphs (including cliques and, hence, the

“standard but strong” envy-freeness concept). The intuitive idea is

that any directed cycle implies a cycle for the transitive “greater

than” relation when comparing the utility values of the agents’

resources along this cycle.

Observation 5. Let G be a graph that contains a strongly con-

nected component withmore than one vertex. Then, there is no strongly

graph-envy-free allocation if the agents have identical preferences.

Next, we present Algorithm 1 which, applying Observation 5,

finds a complete, graph-envy-free allocation for the case of identical

0/1 preferences and arbitrary input graphs.

Algorithm 1: Let R be a set of resources, let A be a set of

agents such that every agent assigns the preference value of

one to every resource, and let G = (A,E) be a directed graph.

if |A| = 1 then

Allocate all resources to the single vertex; return;

if There exists a cycle in G then

No allocation is possible; return;

Build a graph G ′ = (A ∪ {vs },E
′) where

E ′ = {(u,v ) : (v,u) ∈ E} ∪ {(vs ,u) : u ∈ A ∧ |NG (u) | = 0};

Assign every vertexw ∈ V a label ℓ(w ) being the length of the

longest path from vs decreased by one;

if |R | ≥
∑
w ∈W ℓ(w ) then

Assign ℓ(w ) arbitrary resources from R to every agent

w ∈ V ;

Assign the remaining resources to arbitrary agents with

zero in-degree in graph G; return;

No allocation is possible; return;

Proposition 3. C-sGEF-Allocation for identical 0/1 preferences

can be solved in linear time.

Proof. Algorithm 1 solves the problem. Because of space con-

straints we omit the proof of correctness and give the running time

analysis only. Using breadth-first search, we can assign the labels

to the agents and check in linear time whether a graph has a cy-

cle. Since the same holds for our procedure of building auxiliary

graph G ′, Algorithm 1 works in linear time. □
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Proposition 3 complements our analysis of the classic computa-

tional complexity landscape of sGEF-Allocation for the consid-

ered restrictions on graphs and preferences. However, we strengthen

our intractability result for the case of general monotonic additive

preferences stated in Theorem 3. In Theorem 4 we show that C-

sGEF-Allocation remains intractable even in case of few agents,

the input graph being acyclic, and every agent having outdegree at

most one.

Theorem 4. C-sGEF-Allocation for monotonic additive prefer-

ences is NP-hard and W[1]-hard when parameterized by the number

of agents even if the input graph G is a directed path.

4 EFFICIENCY AND SOCIAL WELFARE

In this section, we briefly discuss to which extent our results from

Section 3 transfer to settings where one searches for graph-envy-

free allocations that are not necessarily complete, but that are

Pareto-efficient or that optimize the utilitarian social welfare. The

following observation, the proof of which is based on proving re-

lations between its parts sequentially, shows that many hardness

results provided in Section 3 directly transfer.

Observation 6. LetR be a set of resources andA be a set of agents

with identical additive monotonic preferences. Then, the following

three statements are equivalent:

(1) there is a complete and (weakly/strongly) graph-envy-free al-

location,

(2) there is a Pareto-efficient and (weakly/strongly) graph-envy-

free allocation, and

(3) there is a (weakly/strongly) graph-envy-free allocationπ : A →

2
R
withWπ = w ,

wherew =
∑
r ∈R maxa∈A ua (r ).

For 0/1 preferences, it holds that (3)↔ (2)→ (1).

Theorem 2, Theorem 3, and Theorem 4 are not fully covered by

the above observation. However, since in the respective reductions

every resource must be allocated to one of the agents that “values

it the most” in every graph-envy-free and complete allocation, the

proofs indeed can be extended to also work for Pareto-efficiency

and utilitarian social welfare.

As for tractability, to adapt our results from Section 3 is a bit

more complicated than adapting them for NP-hardness. Of course,

for Pareto-efficiency and identical additive monotonic preferences

one can use the algorithm fromObservation 3 as direct consequence

of Observation 6 ((1)↔ (2)).

Surprisingly, it turns our that, while for E-GEF-Allocation all

polynomial-time cases still hold but require a slightly more involved

algorithm,W-GEF-Allocation becomes intractable for directed

acyclic graphs and additive monotonic preferences. To prove this,

we reduce from Cliqe and only need the utility values 0, 1, and 2.

Proposition 4. W-GEF-Allocation is NP-hard for the input

graph being a directed acyclic graph even for three-valued utility

functions.

Finally, we describe an algorithm that shows that polynomial-

time solvability of the remaining cases of C-GEF-Allocation holds

also for the same special cases of theW-GEF-Allocation and E-

GEF-Allocation problems.

Algorithm 2: Let R be a set of resources, let A be a set of

agents with preferences encoded by the utility functions ua :

R → N,a ∈ A, and let G be a DAG. The sets R and A are

ordered (arbitrarily).

while R , ∅ do
Remove all agents a with ua (r ) = 0,∀r ∈ R;
Allocate the first resource r∗ to the first agent a∗ with zero

in-degree which values r∗ the most among the agents

with zero in-degree;

Remove r∗ from R;

Proposition 5. Algorithm 2 runs in polynomial time and solves

• E-GEF-Allocation for acyclic input graphs and monotonic

additive preferences, and

• W-GEF-Allocation for acyclic input graphs and 0/1 prefer-

ences.

Note that de Keijzer et al. [15] have shown that finding a Pareto-

efficient and envy-free allocation is not only NP-hard but ΣP

2
-hard

even formonotonic additive preferences. So, Proposition 5 decreases

the complexity of E-GEF-Allocation from ΣP

2
for general directed

graphs to polynomial-time solvability for DAGs.

5 CONCLUSION

Combining social networks with fairness in the context of resource

allocations is a promising line of (future) research. Our work signif-

icantly differs from the one of Chevaleyre et al. [8] which, among

many other things, has a more distributed and (because of consid-

ering monetary payments) more divisible-resources flavor. The ma-

jority of our results are computational hardness results. In a sense,

they lay the foundations for a more refined search for islands of

tractability concerning practically motivated use cases of our basic

models. To this end, there are plenty of opportunities. First, one

may study further natural parameters, including the number of

resources, maximum utility values, or structural graph parameters

such as treewidth. Note, however, that these parameters may need

to be combined in order to achieve fixed-parameter tractability

results (e.g., a small maximum utility value does not guarantee

fixed-parameter tractability). Second, it appears natural to deepen

our studies by considering various special graph classes for the un-

derlying social network. In addition, one may move from directed

to undirected graphs or one may consider graphs that only consist

of small connected components. Again note, however, that the class

of bounded-degree graphs (reflected by a parameterization using

maximum degree as the parameter) alone, as shown in this work,

may not be enough to achieve (fixed-parameter) tractability. Finally,

including further fairness concepts beyond the ones we studied

appears to be promising as well.
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