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The aim of directed Eulerian extension problems is to make a given directed, pos-
sibly arc-weighted, (multi-)graph Eulerian by adding a minimum-cost set of arcs.
These problems have natural applications in scheduling and arc routing and are
closely related to the Chinese Postman and Rural Postman problems. Our main re-
sult is to show that the NP-hard WeightedMultigraph Eulerian Extension problem
is fixed-parameter tractable with respect to the number k of extension arcs. For a di-
rected, n-vertex multigraph, the corresponding running time amounts to O(4k · n3).
This also implies a fixed-parameter tractability result for the “equivalent” Rural
Postman problem parameterized above guarantee. In addition, we present sev-
eral polynomial-time algorithms for natural Eulerian extension problems, including
undirected variants which can be defined analogously to the directed ones.

1 Introduction

Edge modification problems in graphs have many applications and are well-studied in algo-
rithmic graph theory [6, 34]. The corresponding minimization problems ask to modify as few
(potential) edges as possible such that an input graph is transformed into a graph with a desired
property. Most studies in this context relate to undirected graphs whereas we are aware of only
few studies of “arc modification” problems on directed graphs (digraphs). In this work, as part
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of a larger project on Eulerian graph modification problems, we study the problem of making a
digraph Eulerian by arc additions.1 We focus our introduction on directed graphs and point out
differences to undirected graphs whenever necessary.

A digraph is called Eulerian if it contains a tour visiting every arc exactly once. An Eulerian
extension is a set of arcs to add to a digraph so that it becomes Eulerian. The corresponding
decision problem reads as follows.

Eulerian Extension (EE)

Input: A digraph G and an integer k.

Question: Is there an Eulerian extension E for G with |E| ≤ k?
Variants of EE include Weighted Eulerian Extension (WEE), where an additional weight func-
tion ω : V × V → N0 is given2 that assigns weights to non-arcs and the solution is required to
have total weight at most ωmax. There are also unweighted and weighted multigraph variants
(where parallel arcs are allowed in the input and output) referred to as Multigraph Eulerian
Extension (MEE) and Weighted Multigraph Eulerian Extension (WMEE), respectively. The
main focus of this paper lies with the latter of these problems:

WeightedMultigraph Eulerian Extension (WMEE)

Input: A directed multigraph M = (V, A), a weight function ω : V × V → N0, and
an integer ωmax.

Question: Is there an Eulerian extension E for M with
∑

a∈E
ω(a) ≤ ωmax?

WMEE has applications in scheduling where it generalizes the three-machine flowshop prob-
lem with “no-wait” constraint that aims at minimizing the number of interruptions (denoted by
F3—nwt—G in standard scheduling notation [24]). This problem occurs in steel manufactur-
ing [26]. Here, a special case of WMEE with restricted weight function is used. Furthermore,
the numerous applications of Rural Postman carry over to WMEE since both problems are
equivalent. These applications range from vehicle routing problems like street sweeping, snow
plowing, garbage collection, road sanding, or bus routing to parking meter collection and elec-
trical meter reading [13, 17, 28, 29].

Related Problems and Previous Work The unweighted and undirected extension problems
for graphs and multigraphs were already discussed in 1977 by Boesch et al. [5], who developed a
linear-time algorithm for the multigraph case and a matching-based algorithm for the graph case.
Later, Lesniak and Oellermann [30] surveyed undirected Eulerian graphs, including characteri-
zations of Eulerian (multi-)graphs and graphs that can be extended to Eulerian graphs. Recently,
Höhn et al. [26] initiated a study of Eulerian extension problems applied to sequencing problems
in scheduling. They showed that special cases of WMEE with weight functionω : V×V → {0, 1}
are NP-complete. In particular, they considered vertex sets V ⊆ R+

0 ×R
+
0 and for each u = (ux, uy)

1Here, following previous work [26], we call this “extension” problem. In the graph modification context, this is
also known as “completion” or “addition” problem.

2We use N0 to denote N ∪ {0}.
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and v = (vx, vy) they set

ω((u, v)) :=

0, if ux ≤ vx and uy ≤ vy

1, otherwise.

To the best of our knowledge, general WMEE has not been considered in the literature so far.
Regarding other modification operations, Cai and Yang [8] considered Eulerian subgraphs of

undirected graphs. They presented a color-coding based randomized algorithm for computing
a k-edge Eulerian subgraph of a given graph and stated that the derandomized algorithm runs in
2O(k)nm log n time on an n-vertex, m-edge graph. They also showed that the problem of finding
k vertices to delete to make a given graph Eulerian is W[1]-hard with respect to k. In recent
work, Fomin and Golovach [20] continued their research, answering open questions about dual
parameterizations for parameterized problems introduced by Cai and Yang [8]. Furthermore,
they proved that both, the problem of computing a k-edge Eulerian subgraph and the problem
of computing a k-vertex Eulerian subgraph are unlikely to admit polynomial-size problem ker-
nels with respect to k. Cygan et al. [11] showed that the problem of deleting k arcs (edges) in
order to obtain an Eulerian graph is NP-hard and fixed-parameter tractable with respect to k and
is unlikely to admit a problem kernel whose size is polynomial in k. Cechlárová and Schlot-
ter [9] examined a similar graph modification problem. There, the task is to delete a minimum
number of arcs of a given digraph such that each strongly connected component of the result-
ing digraph is Eulerian. Apart from NP-hardness, they showed fixed-parameter tractability and
intractability for some application-related parameters. Under the name Min-DESC, this prob-
lem was recently considered by Crowston et al. [10] who showed that, on tournaments, it is
fixed-parameter tractable with respect to the number of arcs to delete.

Eulerian extension problems are closely related to the well-known Chinese Postman prob-
lem [16], where the goal is to find a shortest walk that visits all arcs of a given directed graph,
and the more general Rural Postman problem [17, 29] that asks for a shortest walk covering
at least a given set of arcs. These given arcs are called “required arcs”. Although Rural Post-
man can be defined for undirected graphs, we mostly consider its directed version in this work.
For Rural Postman, we allow requiring to visit some arcs multiple times, that is, we allow the
required arcs to form a multiset. Rural Postman and WMEE are “equivalent” (see Section 2
for details). With this equivalence, the NP-hardness of WMEE directly follows from the known
NP-hardness result for Rural Postman [29] (in fact, Rural Postman is one of the prominent NP-
complete problems featured by Garey and Johnson [23]). Moreover, the fact that Rural Postman
is solvable in polynomial time if the required arcs form a weakly connected component [22] di-
rectly implies that WMEE is solvable in polynomial time if the input is weakly connected.

Our Results Our main achievement is to show that WMEE is fixed-parameter tractable with
respect to the parameter “minimum number k of extension arcs”. In fact, given a multigraph M
on n vertices and a weight function ω, our algorithm finds an Eulerian extension E with mini-
mum total weight among all Eulerian extensions E′ for M in time O(4k · n3). Using the above-
mentioned equivalence, our algorithm implies a—to the best of our knowledge—first fixed-
parameter tractability result for Rural Postman.
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weighted, (weakly) connected unweighted

undir. graph O(n3) (Theorem 1) O(m
√

n) (Theorem 2)
undir. multigraph O(n3) (Corollary 1) O(n + m) (Proposition 5)
dir. graph O(m2 + nm log n) (Prop. 2) O(m(n + m)) (Proposition 4)
dir. multigraph O(n3 log n) (Proposition 3) O(n + m) (Proposition 5)

Table 1: Polynomial-time solvable Eulerian extension problems. Here, n denotes the number of
vertices in the input, m denotes the number of edges (arcs) in the input, and m denotes
the number of edges (arcs) in the complement of the input (di)graph. The running times
are under the assumption that the complement of the input is given in advance. If this
is not the case, then running times involving m receive an additional summand O(n2).
In general, weighted variants of Eulerian extension problems are NP-hard if the input
(multi-)graph is not (weakly) connected [26, 29].

As a warm-up, we present a number of polynomial-time solvable variants of Eulerian exten-
sion problems. In particular, we consider inputs that are connected or unweighted (see Table 1).
This stands in contrast to Rural Postman, whose unweighted variant is NP-hard [29]. The re-
sults translate to RP in the following way. Unweighted inputs correspond to instances of RP in
which all edges (arcs) are present. (Weakly) connected inputs correspond to instances of RP in
which the required edges (arcs) form a (weakly) connected component. Disallowing multisets
as inputs corresponds to disallowing using an edge (arc) more than once in a solution for RP.

Altogether, our work complements and extends known results for special cases of WMEE
where the weight function only assigns values zero and one [26] (for these variants, only NP-
hardness was shown so far; we provide a first algorithmic result for this case) and Rural Post-
man, for which mainly approximation, heuristic, and some polynomial-time algorithms for spe-
cial cases were known [17, 22].

Organization of the Paper In the next section, we fix the notation and present basic observa-
tions that will help us prove some of our results. Section 3 contains polynomial-time algorithms
for special cases of Eulerian extension problems. The main result, a dynamic programming al-
gorithm for WMEE, is presented and discussed in Section 4. Section 5 concludes with a review
on open questions and future work.

2 Preliminaries and Basic Observations

The main focus of this work is on directed (multi-)graphs and, therefore, preliminaries for undi-
rected (multi-)graphs are omitted if they follow trivially from the directed case. In the context
of directed (multi-)graphs, connectivity always means weak connectivity, that is, connectivity of
the underlying undirected graph. Let G = (V, A) be a directed graph or multigraph (that is, a
graph with parallel arcs allowed)—we also use the letter M to refer to multigraphs. The set of
connected components of G that are not isolated vertices is denoted by CG. Let a be an arc of G.
We denote the result of removing a from G with G−a. If G−a has more connected components
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than G, then we say that a is a bridge of G. For an arc set A′ ⊆ V × V , let G + A′ := (V, A ∪ A′)
and G − A′ := (V, A \ A′). In this work we sometimes apply definitions for graphs to connected
components or sets of connected components. For example, we use V(G) to refer to the vertices
of G and V(C) to refer to the vertices of the connected component C. For a vertex set V ′ ⊆ V ,
let G[V ′] := (V ′, A ∩ (V ′ × V ′)) denote the directed (multi-)graph that is induced by V ′. For
an arc set E and some arc a, we abbreviate E ∪ {a} to E + a. If G is not a multigraph, then the
complement G of G is the digraph on the vertex set V that contains exactly the arcs that are not
in A.

An Eulerian tour in a directed (multi-)graph G is a tour that visits all arcs of G exactly once
(possibly visiting each vertex more than once). If such a tour exists, then we call G Eulerian. We
call a (multi-)set E ⊆ V×V an Eulerian extension for G if (V, A∪E) is Eulerian. Furthermore, E is
called optimal if there is no Eulerian extension of less total weight for G, where the total weight
of E is

∑
a∈E ω(a) for a weight functionω : V×V → N0. Note that, in this context, the sum is over

all elements of the multiset E, including identical elements. Hence, if arc a occurs twice in E,
then the weight of a is counted twice in the sum. Likewise, the cardinality |E| :=

∑
a∈E 1 counts

identical elements individually. For sets or multisets A of arcs, we abbreviateω(A) :=
∑

a∈A ω(a).
A walk W in G is a sequence of arcs of A such that each arc starts in the end vertex of the previ-
ous arc. Since each arc can occur multiple times in a walk, we also consider walks as multisets
of arcs. If the sequence W starts in the same vertex as it ends, then we call W closed.

For a vertex v of a directed (multi-)graph G, the out-degree of v, denoted by d+ (v), is the
number of arcs in A that are outgoing of v. Likewise, the in-degree of v, denoted by d− (v), is the
number of arcs in A that are incoming to v. The imbalance of a vertex v is

imbal(v) := d− (v) − d+ (v) .

Specifically, letI−G (I+
G) denote the multiset of vertices v of G for which imbal(v) > 0 (imbal(v) <

0). Herein, each vertex v is contained |imbal(v)| times in the multiset. In an undirected graph,
we define the imbalance imbal(v) of a vertex v to be one if the number of its neighbors is
odd and zero otherwise. For both directed and undirected (multi-)graphs G, vertices v of G
with imbal(v) = 0 are called balanced, while all other vertices of G are called imbalanced,
with IG := I−G ] I

+
G denoting the multiset of imbalanced vertices of G. Connected compo-

nents in CG that do not contain imbalanced vertices are called balanced. We refer to the set
of all balanced components of G by Cbal

G ⊆ CG. With the concept of vertex balance, we can
state a well-known characterization of Eulerian graphs and multigraphs that helps us prove a
(multi-)graph to be Eulerian.

Lemma 1 (Folklore). A (directed) (multi-)graph is Eulerian if and only if all edges (arcs) are in
the same connected component and all vertices are balanced.

Eulerian Extension and Related Problems In the most general problem that we study,
we have weights and allow the input and output to be multigraphs. Since multigraphs allow
the presence of parallel arcs, we may also add arcs that are already present in the input. If
we restrict the problem to digraphs, that is, we prohibit parallel arcs in both the input and the
resulting digraph, then we arrive at the Weighted Eulerian Extension problem (WEE). Both
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WMEE and WEE are also considered in their unweighted versions, where all arcs have weight
one.

Eulerian extension problems are closely related to arc routing problems (for more details about
arc routing, refer to Eiselt et al. [16, 17], Dror [13], and van Bevern et al. [3]). An important role
in this relation plays the Rural Postman problem [17, 29]:

Rural Postman (RP)

Input: A digraph G = (V, A), a nonempty multiset R of “required” arcs of A, a
weight function ω : A→ N0, and an integer ωmax ≥ 0.

Question: Is there a closed walk W in G such that W visits all arcs in R and the
total weight of W is at most ωmax?

If R = A, then RP degenerates to the Chinese Postman problem [7, 14, 16, 33].

Parameterized Complexity Our results are in the context of parameterized complexity, which
is a two-dimensional framework for studying computational complexity [12, 19, 35]. One di-
mension is the input size n, and the other one is the parameter (usually a positive integer). A
problem is called fixed-parameter tractable (fpt) with respect to a parameter k if it can be solved
in f (k) · nO(1) time, where f is a computable function only depending on k. A parameterized
problem P1 is parameterized reducible to a parameterized problem P2 if P1 can be reduced
to P2 in “fpt-time” such that the new parameter exclusively depends on the old parameter. If P1
is parameterized reducible to P2 and vice versa, then P1 and P2 are parameterized equivalent.
When considered as parameterized problems, in this article, all variants of EE are parameter-
ized by the minimum cardinality k of all Eulerian extensions with weight at most ωmax. More
formally,

k := min{|E| : E is an Eulerian extension for G and ω(E) ≤ ωmax}. (1)

RP is parameterized by q, the minimum number of “additional” arcs over all solutions. More
formally,

q := min{|W | − |R| : W is a walk in G visiting all arcs in R}. (2)

Note that for RP, q is a “stronger” parameter than the number of arcs in W, because q ≤ |W |.
This implies that all positive (algorithmic) results for RP parameterized by q also hold for RP
parameterized by |W |. Since all solutions guarantee to contain R, choosing q can be considered
an above-guarantee parametrization [31, 32] of RP.

Helpful Observations We present observations that help us prove our results and give in-
sights into the structure of the considered problems. First, observe that, over all vertices of a
graph, the imbalance always adds up to zero, that is, for each “missing” incoming arc, there is
also a “missing” outgoing arc.

Observation 1. Let G be a directed (multi-)graph. Then
∑

v∈V(G) imbal(v) = 0 and, equivalently,
|I−G | = |I

+
G |.

In undirected graphs and multigraphs, the sum over all imbalances is even. Observation 1 also
applies to connected components. Next, observe that an undirected Eulerian graph cannot have
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Figure 1: An illustration of equivalent instances of Rural Postman and Weighted Multigraph
Eulerian Extension, respectively. Left: Instance of Rural Postman with required
arc drawn in bold. Right, a corresponding instance of Weighted Multigraph Eule-
rian Extension, where the dashed arcs are not present in the graph but have finite
weight. Arcs that are not drawn have infinite weight. An exemplary postman tour vis-
iting all required arcs would be (2, 3, 1, 0, 4, 2). The corresponding Eulerian extension
is {(1, 0), (4, 2)}. Note that the weight of the Eulerian extension equals the weight of
the postman tour minus the weight of the required arcs.

bridges since a walk visiting all edges would have to cross the bridge, effectively cutting off its
way back to the starting point.

Observation 2. Let G be a directed or undirected Eulerian (multi-)graph. Then there is no
bridge in G.

Next, consider an Eulerian extension E of some directed (multi-)graph G. Clearly, for each
occurrence of a vertex v in I−G, there is an arc outgoing of v in E. Moreover, for each balanced
connected component of G, there is at least one arc in E that leaves this component. Considering
that |IG | = 2|I−G |, we can make the following observation.

Observation 3. Let G be a directed or undirected (multi-)graph that is not Eulerian and let E
be an Eulerian extension of G. Then |IG |/2 + |Cbal

G | ≤ |E|.

In the remainder of this section, we show an important relation between RP and WMEE. An
example illustrating this relation is shown in Figure 1.

Proposition 1. Rural Postman and WeightedMultigraph Eulerian Extension are parameter-
ized equivalent.

Proof. The idea to show the claim is to identify the required arcs of the RP-instance with the
arcs of the input multigraph for WMEE. Furthermore, identify non-arcs in the RP-instance with
non-arcs of weight∞ in the WMEE-instance. Note that parallel arcs carried into the RP instance
from the WMEE-instance can be handled by subdividing them.

First, we show that RP is parameterized reducible to WMEE. To this end, we construct an
instance (M, ω′, ω′max) of WMEE with parameter k from an instance (G = (V, A),R, ω, ωmax) of
RP with parameter q by setting M := (V,R), ω′max = ωmax − ω(R), k := q, and

ω′(a) :=

ω(a) if a ∈ A,
∞ otherwise.
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Since the weight functions are basically equal, “the weight” of some arc set may refer to either
ω or ω′. Let E denote a solution for (M, ω′, ω′max). Then, by definition of Eulerian graphs,
W := E ∪ R is a walk of weight at most ω′max + ω′(R) that visits all arcs in R. Furthermore, if
we have a solution W for (G,R, ω, ωmax), then E := W \ R is an Eulerian extension of weight at
most ωmax − ω(R) = ω′max for M with |E| ≤ q = k.

Second, we show that WMEE is parameterized reducible to RP. Given an instance (M =

(V, A′), ω′, ω′max) of WMEE with parameter k, we construct an instance (G,R, ω, ωmax) of RP
with parameter q by setting G := (V,V ×V), R := A′, ω := ω′, ωmax := ω′max +ω′(R), and q := k.
Note that parallel arcs in M can be handled by subdivision, that is, if the arc (u, v) appears twice
in A′ then we introduce a new vertex w into M and replace one of the arcs (u, v) with the two
arcs (u,w) and (w, v) with ω((u,w)) = 0 and w((w, v)) = w((u, v)).

Analogously to the first part of the proof, a solution E for (M, ω′, ω′max) implies a solution W =

E ∪ R for (G,R, ω, ωmax) and vice versa. � �

3 Polynomial-Time Solvable Cases of Eulerian Extension

In this section, we present polynomial-time algorithms for various variants of Eulerian extension
problems and their weighted versions. All running times are given as functions in the number n
of vertices in the input, the number m of edges (arcs) in the input, and the number m of edges
(arcs) in the complement of the input graph. To allow focus on the algorithmic results, we
assume that the complement of the input is given in advance. If this is not the case, then running
times involving m receive an additional summand O(n2). We refer to Table 1 for an overview of
the results of this section.

In this section, we present results for all polynomially solvable combinations of the properties
connected and weighted. First, we consider weighted variants of Eulerian extension problems
if the input (multi-)graph is connected (Section 3.1). Then, we consider the unweighted variant
and allow disconnected (multi-)graphs (Section 3.2).

3.1 Algorithms for Connected Weighted Variants

Keeping in mind that the disconnected versions of WEE and WMEE are NP-hard [26, 29],
we provide polynomial-time algorithms for both problems in case of connected inputs. When
considering directed inputs, “connected” always means “weakly connected”.

The first result states that Weighted Eulerian Extension on connected, undirected graphs can
be solved in polynomial time. This can be derived from a result by Edmonds and Johnson [15],
who introduced the notion of “T -joins”. For a graph G and a vertex-set T , a T-join is a set J
of edges of G such that each vertex v of G is incident to an odd number of edges in J if and
only if v ∈ T . Edmonds and Johnson [15] showed that the following problem can be solved in
polynomial time.

Minimum-weight T -Join

Input: An undirected graph G = (V, E), a set T ⊆ V , a weight function ω : E → N,
and an integer k.

Question: Is there a T -join of weight at most k for G?
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Theorem 1 ([15, 27]). Weighted Eulerian Extension on connected undirected graphs can be
solved in O(n3) time.

In order to apply the result of Edmonds and Johnson [15] to multigraphs, we show that there
is a minimum-weight Eulerian extension in a connected undirected multigraph that does not use
any edge more than once.

Lemma 2. Let M = (V, E) be a connected undirected multigraph, let ω :
(
V
2

)
→ N0 be an edge-

weight function and let IM denote the imbalanced vertices of M. Let G be a clique on the vertex
set V. Then, a minimum-weight IM-join in G is also a minimum-weight Eulerian extension E
for M.

Proof. Clearly, each IM-join in G is an Eulerian extension for M. However, to show that there
is no Eulerian extension of less weight, we prove that, for each minimum-weight Eulerian ex-
tension that uses some edge twice, we can find a minimum-weight Eulerian extension in which
less edges occur twice. By iterating this argument, we can find a minimum-weight Eulerian
extension that does not use any edge more than once and, hence, this Eulerian extension also
constitutes a minimum-weight IM-join in G.

Let E be a minimum-weight Eulerian extension in M that contains an edge e at least twice and
let E′ denote the result of removing two occurrences of e from E. Clearly, M + E′ is connected
and, since M +E is balanced, M +E′ is balanced. Thus, by Lemma 1, E′ is an Eulerian extension
for M. � �

With Lemma 2, we can now state Theorem 1 for connected undirected multigraphs.

Corollary 1. Weighted Multigraph Eulerian Extension on connected undirected multigraphs
can be solved in O(n3) time.

It remains to show polynomial-time solvability for directed graphs and multigraphs. First, we
present an algorithm for digraphs, which is then modified to work for directed multigraphs. The
algorithm is based on computing network flows or matchings (refer to Ahuja et al. [2] for flow
notations).

Proposition 2. Weighted Eulerian Extension on connected digraphs can be solved in O(m2 +

nm log n) time.

Proof. Consider an instance (G, ω, k, ωmax) of WEE, where G is a connected digraph, and a
function imbal : V(G) → Z measuring the imbalance of each vertex (see Section 2). Consider
the flow network G (the complement graph of G) with supply determined by the function imbal
(negative supply indicates demand), arc capacity one for each arc, and arc-costs determined
by ω. Let f be an integral flow of value 1/2 ·

∑
v∈V | imbal(v)| in this network. Then, the set of

arcs carrying f corresponds to an Eulerian extension for G and, thus, the minimum cost of such
a flow is also the minimum cost of an Eulerian extension for G. Such a flow can be computed in
O(m2 + nm log n) time.3 � �

3See Exercise 10.17 of Ahuja et al. [2], a solution to which can be found on the web [1].
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Next, we allow parallel arcs in the input and modify the algorithm described in the proof
of Proposition 2. For a directed multigraph M let GM be the complete digraph (containing all
possible arcs) on the vertex set of M. Analogously to the proof of Proposition 2, we employ a
min-cost flow algorithm on GM with arc capacities ∞ and weights according to ω and supply
determined by the function imbal. The uncapacitated version of the min-cost flow algorithm
(running in O(n3 log n) time [2]) can be used in this case.

Proposition 3. Weighted Multigraph Eulerian Extension on connected directed multigraphs
can be solved in O(n3 log n) time.

3.2 Algorithms for General Unweighted Variants

In this section, we provide polynomial-time algorithms for EE on various input (multi-)graphs.
First, we state a previously known result for Eulerian Extension and show how algorithms of
Section 3.1 help to solve the problem on connected digraphs. We then present an algorithm for
disconnected digraphs and an algorithm solving EE on directed and undirected multigraphs.

Eulerian extensions were already considered by Boesch et al. [5], who showed that, on undi-
rected graphs, Eulerian Extension can be solved in polynomial time, even for disconnected
graphs.

Theorem 2 ([5, 30]). Eulerian Extension on undirected graphs can be solved in O(m
√

n) time.

Next, we extend this result to digraphs. Since EE is a special case of WEE, we can solve EE
for connected digraphs using the algorithm from the proof of Proposition 2 with a unit-weight
version of the min-cost flow algorithm running in O(m(n + m)) time.4

Corollary 2. Eulerian Extension on connected directed graphs can be solved in O(m(n +

m)) time.

This algorithm cannot handle multiple components. In the following, we present a more
general algorithm that also allows us to solve the problem on disconnected digraphs (at the cost
of increased running time). The algorithm starts with a min-cost max-flow in the complement
digraph and locally modifies the arcs that carry flow in order to connect all components of the
input digraph. For ease of presentation we split the following lemma concerning digraphs of
diameter two5 from the main correctness proof.

Lemma 3. Let f be a min-cost max-flow in a unit-weight unit-capacity digraph G. Let F denote
the arcs of G that carry flow and let G−F have diameter two. Then there are no three consecutive
arcs in F.

Proof. Assume that F contains three consecutive arcs (u, v), (v,w), and (w, x). Since G − F has
diameter two, there is a vertex v′ in G − F such that (u, v′) and (v′, x) are in G − F. Hence,
replacing (u, v), (v,w), and (w, x) with (u, v′) and (v′, x) in F yields a max-flow of less cost,
contradicting our choice of F. � �

4Combine the solution [1] for Exercise 10.17 of Ahuja et al. [2] with breadth-first search as shortest path algorithm.
5In a digraph, the distance of u to v is the number of arcs in a shortest path from u to v if such a path exists, and ∞

otherwise. The diameter of a digraph G is the maximum distance between any pair of vertices in G.
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The following algorithm receives a digraph G = (V, A) and a vertex imbalance function imbal :
V → Z and computes a minimum-cost Eulerian extension for G, if it exists. The algorithm
comprises three steps that modify the input digraph G. In Step i, we denote the current extension
set by Fi.

Step 1: Compute a min-cost max-flow f of value |IG |/2 (recall that IG denotes the multiset
of imbalanced vertices of G) in the complement graph G with supply determined by the
function imbal (negative supply indicates demand), arc capacities one and arc weights one
for each arc. If there is no such flow, then there is no Eulerian extension for G. Let F1
denote the set of arcs that carry flow. Note that G + F1 does not contain imbalanced
vertices.

Step 2: Let F2 denote the current extension set after Step 1. In this step, we modify F2 such that
all vertices that are imbalanced in G are in the same connected component of G + F2. If
this is already the case, then continue with Step 3. Otherwise, find two different connected
components C1 and C2 containing vertices that are imbalanced in G. By Observation 2,
there are arcs (u, v) ∈ (C1 ×C1) ∩ F2 and (x, y) ∈ (C2 ×C2) ∩ F2 whose removal does not
disconnect C1 or C2. Replace (u, v) and (x, y) with (u, y) and (x, v) in F2 and repeat Step 2.
If G + F2 is connected, then return F2 as an optimal Eulerian extension for G.

Step 3: Let F3 denote the current extension set after Step 1. Since G + F2 is disconnected,
G + F2 = G − F2 has diameter two and, by Lemma 3, F3 does not contain paths of
length three. Let F1

3 and F2
3 denote the sets of paths of arcs in F3 with length one and

two, respectively. Join connected components of G + F2 by first “rerouting” paths in F2
3

(which can be done by replacing their middle vertex with a vertex in another connected
component) if this operation decreases the number of connected components. When this is
no longer possible, “split open” an arbitrary path in G + F3 so that it additionally contains
a vertex in another connected component.

Proposition 4. Eulerian Extension on disconnected digraphs can be solved in O(m(n+m)) time.

Proof. First, we show that the presented algorithm produces an optimal Eulerian extension for G.
Let E denote the set of arcs that are returned by the algorithm above. After Step 1, G + F1 does
not contain imbalanced vertices and for each arc (u, v) removed from F1 in later steps, a path
from u to v is added. Hence, G + E does not contain imbalanced vertices. Since the algorithm
only returns connected digraphs, G + E is also connected and, thus, Eulerian.

If the digraph is connected before splitting paths in Step 3, then |E| = |F2|, which is optimal
because the existence of a smaller Eulerian extension would also imply a lower cost flow in G,
contradicting the fact that the cost of the flow corresponding to F1 is minimum. Otherwise, for
each path p of F2

3 , there is a different connected component C of the input digraph G such that
p contains a vertex of C. Hence, at most |Cbal

G | − |F
2
3 |/2 arcs are added in Step 3, implying |E| =

|F| + (|Cbal
G | − |F

2
3 |/2) = |F1

3 | + |F
2
3 |/2 + |Cbal

G |. By definition of F1
3 and F2

3 , 2|F1
3 | + |F

2
3 | = |IG |.

Hence, |E| = |IG |/2 + |Cbal
G |, which, by Observation 3, is optimal.

It is not hard to see that computing the min-cost max-flow in in Step 1 dominates the overall
running time. This flow can be computed in in O(m(n + m)) time [2]. � �
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Proposition 4 stands in contrast with RP being NP-hard for unweighted digraphs [29], which
seems to be due to the fact that the input for RP may prohibit arcs by excluding them from the
input digraph. It turns out that, if no arc is forbidden, that is, the input digraph is complete,
then RP is solvable in polynomial time. More precisely, we can solve MEE for directed multi-
graphs M by the following straightforward greedy strategy much like the algorithm known for
undirected multigraphs [5].

Step 1: For each connected component C of M, arbitrarily select a pair of vertices (xC , yC) ∈
I−C × I

+
C if C is imbalanced, and (xC , yC) ∈ {(v, v) : v ∈ V(C)} if C is balanced.

Step 2: Choose an arbitrary order (C1,C2, . . . ,C|CM |) of the connected components and add the
arcs (yC1 , xC2), (yC2 , xC3), . . . , (yC|CM |

, xC1), thus connecting all connected components in a
circular manner.

Step 3: Greedily insert arcs between the remaining imbalanced vertices until all vertices are
balanced.

Proposition 5. Multigraph Eulerian Extension on directed and undirected multigraphs can be
solved in O(n + m) time.

Proof. Boesch et al. [5] showed the claim for undirected multigraphs. We extend this to directed
multigraphs. If the input multigraph M is connected, then we can skip Step 1 and Step 2. Clearly,
after Step 2, the multigraph is connected, and after Step 3 all vertices are balanced. Hence, by
Lemma 1, the set E of all inserted arcs is an Eulerian extension of M.

Next, we show that E is also optimal. Let E2 and E3 denote the arcs that are added in Step 2 and
Step 3, respectively, and define X2 and X3 as the multisets that contain a vertex v as many times
as there are arcs in E2 and E3, respectively, that are incident to v. Clearly, |X2| = 2|E2| = 2|CM |

and there are 2|CM | − 2|Cbal
M | imbalanced vertices in X2. Since the result of Step 3 is balanced,

|X3| = |IM | − (2|CM | − 2|Cbal
M |). Hence,

2|E| = |X2| + |X3| = 2|CM | + |IM | − (2|CM | − 2|Cbal
M |) = |IM | + 2|Cbal

M |,

which, by Observation 3, is optimal.
For the running time note that, in Step 1, we just have to scan each connected component, and

in Step 2 and Step 3, each arc addition can be done in constant time. � �

4 Weighted Eulerian Extension on Directed Multigraphs

In this section, we prove that WMEE is fixed-parameter tractable with respect to the parameter k
denoting the cardinality of an Eulerian extension (more thoroughly defined in (1)). We describe
a dynamic programming algorithm to solve WMEE. More precisely, given a multigraph M,
a weight function ω, and some integer k, our algorithm finds an Eulerian extension E with
minimum total weight over all Eulerian extensions E′ for M with |E′| = k. Then, using a simple
self-reduction, we can find an Eulerian extension E for M with the following properties:

(i) the total weight of E is at most ωmax,
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(ii) of all Eulerian extensions satisfying (i), E has minimum cardinality, and

(iii) of all Eulerian extensions satisfying (i) and (ii), E has minimum total weight.

First, in Section 4.1, we preprocess the input to obtain an equivalent yet simpler instance.
Next, in Section 4.2, we transform the preprocessed instance into an instance of a modified prob-
lem called Black/GrayWeightedMultigraph Eulerian Extension (BGWMEE). This problem
has the advantage that a corresponding Eulerian extension has a particularly simple structure
to be exploited by a dynamic programming algorithm. Then, in Section 4.3, we present such
an algorithm for BGWMEE. Finally, in Section 4.4, we put everything together to obtain the
fixed-parameter algorithm for BGWMEE.

4.1 Preprocessing the Input

In order to simplify the presentation of our algorithm, we first preprocess the input instance (M, ω, ωmax)
such that it does not contain isolated vertices. To this end, we replace the weight of a vertex
pair (u, v) of M with the weight of the cheapest u-v-path of non-arcs that visits only isolated
vertices. This allows us to remove isolated vertices without increasing the weight of optimal
solutions. Having modified the weights between all vertices this way, we remove all isolated
vertices from the multigraph. A solution for the modified instance simply inserts an arc for each
path visiting isolated vertices. Hence, the minimum number k of arcs in a solution does not
increase. This operation can be performed by computing all-pairs shortest paths in O(n3) time
and comparing the weight of each pair of non-isolated vertices with the computed weights in
O(n2) time.

Observation 4. Let (M, ω, ωmax) be an instance of Weighted Multigraph Eulerian Exten-
sion and let VI denote the set of isolated vertices in M. Then an equivalent instance (M[V \
VI], ω′, ωmax) can be computed in O(n3) time without increasing the parameter k.

It is important to note that, for each path that causes an update of the weight function, we can
remember the vertices it visits. This helps us to reconstruct the actual solution from a solution
of the modified multigraph.

With Observation 4, we can use the following observation, which is a direct consequence of
Lemma 1, to characterize Eulerian extensions of multigraphs.

Observation 5. A directed multigraph that does not contain isolated vertices is Eulerian if and
only if it is connected and balanced.

4.2 Transformation to BGWMEE

We introduce the Black/GrayWeightedMultigraph Eulerian Extension (BGWMEE) problem
and show how it helps us solve WMEE. For this, we picture Eulerian extensions as collections
of paths between imbalanced vertices as stated in the forthcoming observation. This notion is
fundamental for the algorithm for BGWMEE that we present in this section. It is based on the
fact that for each balanced vertex u, each Eulerian extension contains as many arcs outgoing of u
as incoming to u.
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Observation 6. Let M be a directed multigraph and let E be an Eulerian extension of M. Then E
can be decomposed into paths that start at a vertex in I−M and end at a vertex in I+

M or start and
end at the same vertex (cycles).

Our idea to attack WMEE is to use dynamic programming to construct the paths of an optimal
Eulerian extension arc by arc. There are, however, a few obstacles to this approach. Assuming
that no path contains two vertices of the same component proved helpful in overcoming these
obstacles. Since this is not always the case, we modify the input multigraph in order to use it in
a slightly different (somewhat technical) problem, for which this assumption is valid.

Black/GrayWMEE (BGWMEE)

Input: Two directed multigraphs Mblack = (V, Ablack) and Mgray = (V, Agray) such
that each connected component of Mblack is either balanced or contains exactly
two imbalanced vertices (one with imbalance 1, one with imbalance −1), a
weight function ω : V × V → N0, and an integer ωmax.

Question: Is there an Eulerian extension E′ of total weight at most ωmax for M :=
(V, Ablack ∪ Agray) such that in each component Cblack of Mblack there is exactly
one tail of an arc in E′ and exactly one head of an arc in E′ (that is, |(V(Cblack)×
V) ∩ E′| = |(V × V(Cblack)) ∩ E′| = 1)?

Again, we can decompose a black/gray Eulerian extension E′ into paths analogously to Obser-
vation 6. The advantage of BGWMEE is that, in total, these paths visit each black component
exactly once. The gray arcs (arcs in Agray) are used to model the connectivity constraints given
by the original WMEE instance. We first describe how WMEE can be solved using an algorithm
for BGWMEE and then present such an algorithm for BGWMEE in Section 4.3.

To solve WMEE using BGWMEE, we transform an instance (M, ω, ωmax) of WMEE into
an instance (M′, ω′, ω′max) of BGWMEE. In this transformation algorithm, we compute a bijec-
tion6 µ ⊆ I+

M×I
−
M such that each two vertices related by µ are in the same connected component

of M. We call such a bijection component-respecting. Since Observation 1 holds for each con-
nected component, there is a component-respecting bijection µ for each instance (M, ω, ωmax)
of WMEE. The transformation receives, additionally to the instance (M, ω, ωmax), a function # :
CM → N0 indicating for each connected component C of M, the number of times it is visited by
the sought solution. We denote the transformed instance by tr#(M, ω, ωmax) := (M′, ω′, ωmax).
See Figure 2 for an example. The following describes the transformation algorithm.

Step 1: Compute a component-respecting bijection µ.

Step 2: Compute a new multigraph M′ by creating #(C) copies of each connected component C
of M. Construct ω′ such that ω′(x′, y′) = ω(x, y) for all vertices x, y of M and their
copies x′, y′ in M′.

Step 3: For each component C of M, assign a copy C′ of C to each pair (v,w) ∈ µ of imbal-
anced vertices of C and isolate (v,w) in C′, that is, add all arcs in (I+

C × I
−
C) \ {(v,w)}

6We say that µ is bijective if for all submultisets X ⊆ I+
M , it holds that |µ∩(X×I−M)| = |X| and for all submultisets X ⊆

I−M it holds that |µ ∩ (I+
M × X)| = |X|.
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Figure 2: The picture shows a directed multigraph with an Eulerian extension containing eleven
(dashed) arcs (a) being transformed to (b) by the transformation tr# described in Sec-
tion 4.2. White vertices are balanced, black vertices are imbalanced. In (c) and (d), we
take a closer look at the top connected component C of the graph depicted in (a) and
its transformation. Here, #(C) = 2, µ(v) = u and µ(y) = x. Note that the pair (y′′, x′′) is
isolated in the first copy and the pair (v′, u′) is isolated in the second copy. Finally, as
described in the last step of the transformation, u′ and u′′ are connected by gray arcs.

to C′. All copies that have not been assigned to an imbalanced pair are balanced com-
pletely in the above mentioned way. This assures that each copy of C contains at most one
pair (v′,w′) of vertices and their imbalance is 1 and −1, respectively. Furthermore, each
pair of imbalanced vertices in µ is represented in exactly one copy.

Step 4: For each component C of M, its copies are pairwisely connected by adding gray arcs.
To this end, select any vertex v of C and add all possible arcs between all copies of v. Note
that only copies of the same component of M are connected by gray arcs.

In the following, we show that the above transformation is correct. More specifically, it turns
out that one can obtain a solution for an instance of WeightedMultigraph Eulerian Extension
by transforming the input for all feasible # : CM → N0 and solving these transformed instances
of BGWMEE. Indeed, we can reduce the number of functions # for which (M, ω, ωmax) is to
be transformed by imposing the following restrictions on #. Since a solution E for BGWMEE
visits each copy exactly once (each copy forms a black component), summing up #(C) over
all connected components C of G must not exceed |E| (= k) and since each copy is assigned
to at most one pair of imbalanced vertices, each connected component C must have at least
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|IC |/2 copies. Thus, we need only consider functions of the form

# : CM → N0, with
∑

C∈CM

#(C) ≤ k and ∀C ∈ CM : #(C) ≥ |IC |/2 . (3)

To prove the correctness of the described transformation, we show that finding a solution for an
instance (M, ω, ωmax) of WMEE is equivalent to finding a solution for an instance tr#(M, ω, ωmax)
of BGWMEE for any fixed µ.

Lemma 4. The instance (M, ω, ωmax) is a yes-instance of Weighted Multigraph Eulerian Ex-
tension if and only if there is a function # : CM → N0 complying with (3) such that tr#(M, ω, ωmax)
is a yes-instance of Black/GrayWeightedMultigraph Eulerian Extension.

Proof. Throughout this proof, let (M′, ω′, ω′max) = tr#(M, ω, ωmax). Let E ⊆ V(M) × V(M)
and E′ ⊆ V(M′) × V(M′) such that (u, v) ∈ E if and only if there are copies u′, v′ of u, v in M′

with (u′, v′) ∈ E′. Under this condition, M + E is connected if and only if M′ + E′ is connected
since, by construction, vertices u, v of M are connected if and only if all copies of u and v in M′

are connected and the connectedness relation is transitive. We go on to prove the claim of the
lemma.

(⇐) Suppose that there is a function # such that we have a solution E′ for (M′, ω′, ω′max). Let E
be the arc set that results from replacing each arc (u′, v′) ∈ E′ by the corresponding arc (u, v)
between the original vertices in M. By construction, the imbalance of a vertex v of M equals the
sum of imbalances of its copies in M′, implying that M + E is balanced. Furthermore, since E
and E′ fulfill the conditions of the observation in the first paragraph of this proof, we also know
that M + E is connected. Finally, note that E has the same weight as E′, implying that E is a
solution for (M, ω, ωmax).

(⇒) Let (M, ω, ωmax) be a yes-instance of WMEE with solution E. For each connected com-
ponent C of M, let kC be the number of arcs in E that are outgoing of a vertex of C, that
is, kC := |E ∩ (V(C) × V(M))|. Since |E| ≤ k, we have

∑
C∈CM kC ≤ k. Moreover, since E is an

Eulerian extension of M, each kC satisfies kC ≥ |I
−
C | = |IC |/2. Thus, the function #(C) := kC

complies with (3). It remains to show that (M′, ω′, ω′max) is a yes-instance of BGWMEE. To this
end, we construct a solution E′ for (M′, ω′, ω′max) as follows. For each path p from u to v in E,
we construct a path p′ in E′ by starting from a copy of u that is imbalanced in M′. Each time p
reaches a vertex x , v, we select a copy of x whose black connected component is balanced
in M′ and has not yet been visited by E′. Finally, we select a copy of v that is imbalanced in M′

as terminal vertex of p′. Since there are kC copies of each connected component of M in M′,
this selection is always possible. Since, by construction, the balance of a vertex v in M equals
the sum of balances of its copies in M′, we know that M′ + E′ is balanced. Furthermore, by the
observation in the first paragraph of this proof, M′ + E′ is also connected. � �

4.3 An Algorithm for BGWMEE

Having transformed an instance of WMEE to an instance of BGWMEE using the algorithm
presented in Section 4.2, we can now exploit the simpler structure of BGWMEE in a dynamic
programming algorithm. The main idea in this algorithm is to construct an Eulerian extension
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arc by arc while maintaining a set of connected components of the input multigraph that have
already been visited.

Let (M, ω, ωmax) be an instance of BGWMEE and let Cblack
M be the set of black connected

components of M. For each subset S ⊆ Cblack
M and each pair of vertices u, v ∈ V(S ), our algorithm

computes an entry [S , u, v] of a three-dimensional dynamic programming table such that

[S , u, v] =
minimum weight ω(E) of an arc set E such that E + (v, u)
is a black/gray Eulerian extension for M[V(S )]. (4)

If no black/gray Eulerian extension is possible with S , u, and v, then the entry [S , u, v] is assigned
“∞”. The set S represents a submultigraph of M and the two vertices correspond to the endpoints
of a (possibly “unfinished”) path of an Eulerian extension (see Observation 6). The dynamic
programming starts with computing the entries for sets S that contain exactly one connected
component and augments each S step by step, finally computing the entries for S = Cblack

M ,
which are used to derive a minimum-weight black/gray Eulerian extension for M with respect
to ω. In the following, we describe the initialization process for the entries.

For each C ∈ Cblack
M not containing imbalanced vertices and for each u, v ∈ V(C), set

[{C}, u, v] :=

0, if u = v,
∞, otherwise.

This assignment is correct, that is, it satisfies (4) by setting E := ∅ (which has obviously mini-
mum weight) because adding an arc to a balanced component can only keep the component bal-
anced if the added arc is a loop. Thus E + (v, u) is a black/gray Eulerian extension for M[V(C)]
since the only connected component has exactly one incoming arc as well as one outgoing arc
in E (in this case, the incoming and outgoing arc is (v, u)).

For each C ∈ Cblack
M containing two imbalanced vertices x ∈ I+

M and y ∈ I−M, and each u, v ∈
V(C), set

[{C}, u, v] :=

0, if u = x and v = y,
∞, otherwise.

This assignment satisfies (4) since, by definition of black/gray Eulerian extension, x and y are
the only imbalanced vertices of C and both are balanced adding (y, x) (that is, by using E = ∅).
For the same reasons as above, E + (v, u) is a black/gray Eulerian extension for M[V(C)].

Next, we describe the computation of the entries for larger sets S . We assume that all entries
for sets S ′ with |S ′| < |S | have already been computed. For a given S ⊆ Cblack

M with |S | > 1
and vertices u, v ∈ V(S ), the entry [S , u, v] is computed as follows. Let C ∈ S denote the black
component of M that contains v and let S ′ := S \ {C}. If C is balanced, then distinguish the
following three subcases:

1. If u = v and there is a gray arc between C and S ′, then set

[S , u, v] := min
u′,v′∈V(S ′)

{[S ′, u′, v′] + ω(v′, u′)}.

2. If u ∈ V(S ′), then set

[S , u, v] := min
w∈V(S ′)

{[S ′, u,w] + ω(w, v)}.
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3. Otherwise, set [S , u, v] := ∞.
If C contains two imbalanced vertices x ∈ I+

M and y ∈ I−M, then we distinguish the following
three subcases:

1. If u = x, v = y, and there is a gray arc between C and S ′, then set

[S , u, v] := min
u′,v′∈V(S ′)

{[S ′, u′, v′] + ω(v′, u′)}.

2. If u ∈ V(S ′) and v = y, then set

[S , u, v] := min
w∈V(S ′)

{[S ′, u,w] + ω(w, x)}.

3. Otherwise, set [S , u, v] := ∞.
Then, the weight ωopt of an optimal black/gray Eulerian extension for (M′, ω) is computed by

ωopt := min
u,v∈V(Cblack

M )
{[Cblack

M , u, v] + ω(v, u)}.

This follows immediately from (4). A corresponding black/gray Eulerian extension can be com-
puted by storing each solution E in addition to its weight in each entry of the dynamic program-
ming table.

Lemma 5. Black/Gray Weighted Multigraph Eulerian Extension can be solved in O(2k ·

n3) time, where k denotes the size of the solution.

Proof. In the above description of the dynamic programming algorithm, we already established
correctness for |S | = 1, that is, the case that S contains a single black component. In the
following, consider |S | > 1. We prove that the semantics of [S , u, v] (see (4)) is met by the
computation. To this end, recall that C denotes the black component of v in M and S ′ := S \ {C}.

The correctness proofs for the case that C is balanced and the case that C is imbalanced
are very similar. Hence, we merge the correctness arguments for both cases in each of the
three subcases 1–3 of the algorithm above. For ease of presentation, let E(S , u, v) be an arc set
that corresponds to the entry [S , u, v] (that is, [S , u, v] contains the total weight of E(S , u, v)) as
defined in (4).

Subcase 1: In Subcase 1, we assume that u and v are in the same connected component C of S .
Being a black/gray Eulerian extension for S , E(S , u, v) + (v, u) contains only one arc incoming
to and one arc outgoing of C. Since both u and v are in C, no arc in E(S , u, v) starts or ends in C.
Hence, C is connected to S ′ by gray arcs. If C is balanced, then (4) is satisfied only if u = v, as
otherwise inserting (v, u) would make v imbalanced. If C contains two imbalanced vertices x ∈
I+

M and y ∈ I−M, then (4) is satisfied only if u = x and v = y, as otherwise inserting (v, u) does
not balance u and v. Thus, according to (4), we only have to ensure that E(S , u, v) is a black/gray
Eulerian extension for S ′. To this end, we try all possible E(S ′, u′, v′) and add the arc (v′, u′).
The resulting arc set of minimum weight is assigned to E(S , u, v). Note that entries [S ′, u′, v′]
with u′ = v′ do not have to be considered, since the arc set E(S ′, u′, v′) + (v′, u′) + (v, u) would
contain the loop (u′, v′).

Subcase 2: In Subcase 2, we assume that the connected component C is connected to S ′ by
an arc a ∈ E(S , u, v). By an argument of Subcase 1, u ∈ V(C) contradicts the existence of black
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arcs between C and S ′. Hence, u ∈ V(S ′). Furthermore, there cannot be an arc from C to S ′

in E(S , u, v), since together with the arc (v, u) there would be two arcs that are outgoing of C.
Hence, we just have to guess the arc from S ′ to C in E(S , u, v). If C is balanced, then we try all
possible E(S ′, u,w) and add the arc (w, v). The resulting arc set of minimum weight is assigned
to E(S , u, v). If C is imbalanced, that is, it contains two imbalanced vertices x ∈ I+

M and y ∈ I−M,
then we try all possible E(S ′, u,w) and add the arc (w, x). The resulting arc set of minimum
weight is assigned to E(S , u, v). Observe that this is the only way for E(S , u, v) to balance x
and y, which is necessary to satisfy (4).

Subcase 3: In Subcase 3, the entry [S , u, v] does not correspond to an arc set E(S , u, v) such
that E(S , u, v) + (v, u) is a black/gray Eulerian extension for S ; therefore, we set [S , u, v] := ∞.
This concludes the correctness proof of the updating process for [S , u, v].

To finish the proof of Lemma 5, we show the running time of the dynamic programming.
Clearly, if S contains exactly one connected component, then [S , u, v] can be computed in con-
stant time. Otherwise, since S ⊆ Cblack

M , u, v ∈ V(S ), and |Cblack
M | ≤ k, there are O(2k · n) entries

of the form [S , u, u], each of which can be computed in O(n2) time (Subcase 1). Furthermore,
there are O(2k · n2) entries of the form [S , u, v], each of which can be computed in O(n) time
(Subcase 2). We arrive at a total running time of O(2k · n3). � �

4.4 The Complete Algorithm

An important part of the algorithm presented in Section 4.3 is to try all feasible functions #
(denoting the number of visits for each connected component, see Section 4.2). We use the
following lemma to bound on the number of these functions. Recall that k is the cardinality of a
solution for WMEE.

Lemma 6. There are at most 2k possible functions # : CM → N0 as defined in (3), that is, there
are at most 2k possible ways to replace each connected component of M by several copies such
that there are at most k copies in total.

Proof. Let CM with c := |CM | denote the set of components of the input multigraph M. Note that
c ≤ k. Since each component in CM must contribute at least one copy, it remains to distribute at
most k − c copies to c components. This is equal to choosing at most k − c from c elements with
repetition. There are at most

∑
i≤k−c

(
c+i−1

i

)
≤ 2k possible ways to do so. � �

The complete algorithm to solve WMEE runs in three steps.

Step 1: Preprocess the input multigraph M in O(n3) time such that it does not contain isolated
vertices (see Observation 4).

Step 2: Compute an arbitrary component-respecting bijection µ : I+
M → I

−
M in O(m2) time.

Step 3: For all 2k possible functions # : CM → N \ {0} (see Lemma 6), transform the instance
and solve the transformed instance of BGWMEE in O(2k · n3) time (see Lemma 5).

The correctness of this algorithm follows directly from the correctness of the transformation
algorithm (see Lemma 4) and Lemma 5. The running time is O(4k · n3).
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The presented algorithm depends heavily on the knowledge of the parameter k. Since we do
not know k in advance, we run Step 2 and Step 3 (the preprocessing procedure of Step 1 does
not depend on k) for increasing values of k. Using geometric progression, we estimate

k∑
i=0

O(4i · n3) = O(n3 ·

k∑
i=0

4i) = O(4k · n3).

Theorem 3. WeightedMultigraph Eulerian Extension can be solved in O(4k · n3) time.

As a consequence of the characterization provided in Proposition 1, we can analogously solve
Rural Postman parameterized by q.

Corollary 3. Rural Postman can be solved in O(4q · n3) time.

In the preprocessing procedure described in Section 4.1, the parameter k may decrease since
a minimum-size Eulerian extension may use extension paths that visit isolated vertices. These
paths are arcs in the corresponding solution for the preprocessed instance, whose cardinality is
thus smaller. This implies that our results also hold for the stronger parameter k′ denoting the
minimum cardinality of an Eulerian extension of weight at most ωmax for the graph that results
from the input by applying the preprocessing procedure described in Section 4.1.

5 Conclusion

We focused on Eulerian extension problems (and, due to parameterized equivalence, the Rural
Postman problem), leaving the “editing version”, where adding and deleting arcs is allowed, yet
unstudied. However, even Eulerian extension problems still offer a rich field of challenges for
future research in terms of multivariate algorithmics [18, 36]. More specifically, we concentrated
on the parameterized complexity with respect to the parameter “number of extension arcs”,
but there are many natural structural parameters that make sense. For instance, it would be
interesting to determine the parameterized complexity with respect to the parameter “number of
weakly connected components” in a WeightedMultigraph Eulerian Extension instance. In this
context, Orloff [37] observed that “the determining factor in the complexity of the problem seems
to be the number [c] of connected components in the required edge set”; Frederickson [21, 22]
noted “the existence of an exact recursive algorithm that is exponential only in the number of
disconnected components.” However, this statement refers to an n f (c)-time algorithm, leaving
open whether the problem is fixed-parameter tractable with respect to the parameter c. Another
interesting open question is whether there is a polynomial-size problem kernel (see [4, 25]) for
any of the special cases of WMEE—for example, the special case studied by Höhn et al. [26].
Very recently, there was partial progress on both of these open questions [38, 39, 40]: On the
one hand, WMEE was shown fixed-parameter tractable with respect to the combined parameter
(|IM |, c); on the other hand, for the special case studied by Höhn et al., it was shown that there
is no polynomial-size kernel with respect to c (implying the same result for the weaker (that is,
larger) parameter k) unless some unexpected complexity-theoretic collapse occurs [38, 39].

Finally, we conjecture that our presented approach can be extended to undirected and non-
multigraph versions of Weighted Eulerian Extension.
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