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Abstract

A graph is said to be k-anonymous for an integer k, if for every vertex in
the graph there are at least k − 1 other vertices with the same degree. We
examine the computational complexity of making a given undirected graph
k-anonymous either through at most s vertex deletions or through at most s
edge deletions; the corresponding problem variants are denoted by Anonym
V-Del and Anonym E-Del.

We present a variety of hardness results, most of them hold for both problems.
The two variants are intractable from the parameterized as well as from the
approximation point of view. In particular, we show that both variants remain
NP-hard on very restricted graph classes like trees even if k = 2. We further
prove that both variants are W[1]-hard with respect to the combined parameter
solutions size s and anonymity level k. With respect to approximability, we
obtain hardness results showing that neither variant can be approximated in
polynomial time within a factor better than n1/2 (unless P=NP). Furthermore,
for the optimization variants where the solution size s is given and the task is
to maximize the anonymity level k, this inapproximability result even holds if
we allow a running time of f(s) · nO(1) for any computable function f . On the
positive side, we classify both problem variants as fixed-parameter tractable with
respect to the combined parameter solution size s and maximum degree ∆.
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1. Introduction

With the enormously growing relevance of social networks, the protection of
privacy when releasing underlying data sets has become an important and active
field of research [3]. If a graph contains only few vertices with some distinguished
feature, then this might allow the identification (and violation of privacy) of the
underlying real-world entities with that particular feature. Hence, in order to
ensure pretty good privacy and anonymity, every vertex should share its feature
with many other vertices. In a landmark paper, Liu and Terzi [4] considered
the vertex degrees as feature; see Wu et al. [3] for other features considered
in the literature. Correspondingly, a graph is called k-anonymous if for each
vertex there are at least k − 1 other vertices of same degree. Therein, different
values of k reflect different privacy demands and the natural computational task
arises, given some fixed k, to perform few changes to a graph in order to make
it k-anonymous. Liu and Terzi [4] proposed a heuristic algorithm for the task
of making a graph k-anonymous by adding edges. We refer to Wu et al. [3] for
a survey of anonymization models and a discussion about the pros and cons of
the k-anonymity concept. Here, we study the vertex and edge deletion variants
of Degree Anonymity. We start our investigations with the vertex deletion
variant which is defined as follows.

Degree Anonymity by Vertex Deletion (Anonym V-Del)
Input: An undirected graph G = (V,E) and two integers k, s ∈ N.
Question: Is there a vertex subset S ⊆ V of size at most s such that G− S

is k-anonymous?

Input: k = 4
s = 2

Solution:

Considering vertex deletions seems to be a promising approach on practical
instances, especially on social networks. In these networks, the degree distribution
of the underlying graphs often follows a so-called power law distribution [5],
implying that there are only few high-degree vertices and most vertices are of
moderate degree; this suggests that only few vertices have to be removed in order
to obtain a k-anonymous graph. For instance, consider the DBLP co-author
graph4 (generated in Feb. 2012) with ≈ 715 thousand vertices corresponding to
authors and ≈ 2.5 million edges indicating whenever two authors have a common

4The current dataset and a corresponding documentation are available online (http://dblp.
uni-trier.de/xml/).
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Figure 1: Left: A graph where a constant fraction of the vertices has to be removed in order
to obtain a 3-anonymous graph. Right: A minimum size solution to make the graph on the
left side 3-anonymous. See Example 2 for a detailed explanation.

scientific paper: This graph has maximum degree 804 but only 208 vertices are of
degree larger than 208, whereas the average degree is 7. Interestingly, a heuristic
that simply removes vertices violating the k-anonymous property shows that one
has to remove at most 338 vertices to make it 5-anonymous and even to make it
10-anonymous requires at most 635 vertex deletions.

In Section 3, we will show that already the simple and highly specialized pri-
vacy model of Anonym V-Del is computationally hard from the parameterized
as well as from the approximation point of view. A variety of hardness results
holds even for very restricted graph classes, as for instance trees, cographs, and
split graphs.

One reason of this hardness is that being k-anonymous is not a hereditary
property: Simply deleting one vertex in a three-regular graph, that is, an
n-anonymous graph, results in an only 3-anonymous graph. Another reason is
shown in the following two examples illustrating that the number s of allowed
removals and the anonymity level k are independent of each other, and that a
small change in one of these parameter values might lead to a large jump of the
other parameter value.

Example 1. Let G be a graph on n ≥ 5 vertices that consists of two connected
components: a clique of size n − 2 and an isolated edge. This 2-anonymous
graph cannot be transformed into a 3-anonymous graph by deleting only one
vertex, however, deleting the two degree-one vertices makes it (n−2)-anonymous.
Hence, by slightly increasing s from 1 to 2 the reachable anonymity level jumps
from k = 2 to k = n− 2.

Example 2. Let G = (V,E) be a bipartite graph with the vertex sets X :=
{x1, x2, . . . , x`} and Y := {y1, y2, . . . , y`}, V = X ∪ Y , and there is an edge
between xi and yj if i + j > `, see Figure 1 for a visualization. Clearly,
xi and yi are of degree i implying that G is 2-anonymous. Since N(xi) ⊆
N(xi+1) for all i, deleting any subset of Y preserves the invariant deg(x1) ≤
deg(x2) ≤ . . . ≤ deg(x`). As the previous argument is symmetric, one can
observe that to make G 3-anonymous one has to remove 2/3 of the “jumps”
in the initial sequences deg(x1) < deg(x2) < . . . < deg(x`) and deg(y1) <
deg(y2) < . . . < deg(y`). Since removing one vertex in X (Y ) removes only
one jump in the sequence of X (Y ) and only one in Y (X), it follows that at
least 2(`− 1) · 2/3 · 1/2 ≈ (2`)/3 = |V |/3 vertices have to be deleted in order to get

3



a 3-anonymous graph. Summarizing, by requiring anonymity level k = 3 instead
of anonymity level k = 2, the number of vertices that need to be removed jumps
from zero to a constant fraction of the vertices.

The second part of this work deals with the edge deletion variant which is
defined as follows:

Degree Anonymity by Edge Deletion (Anonym E-Del)
Input: An undirected graph G = (V,E) and two integers k, s ∈ N.
Question: Is there an edge subset S ⊆ E of size at most s such that G− S

is k-anonymous?

Input: k = 4
s = 4

Solution:

Considering social networks, their power law degree distribution suggests that
the solution size in the edge deletion variant is significantly larger than in the
vertex deletion variant. However, in the edge deletion variant the resulting graph
contains, by definition, all vertices of the input graph, which might be important
in some applications. Furthermore, deleting a vertex with high degree reduces
the degree of many other vertices whereas deleting an edge reduces the degree of
only two vertices. Hence, although requiring more edge deletions than vertex
deletions, deleting edges might result in a graph that is actually “closer” to the
original graph.

In Section 4, we transfer most hardness results from Anonym V-Del to
Anonym E-Del, showing strong intractability results concerning parameterized
complexity and approximability. Similarly to the vertex deletion variant, a small
change in one of the two parameters k and s might lead to a large jump of the
other parameter as demonstrated in the following two examples.

Example 3. Let G be an n-vertex cycle with two chords, that is, two additional
edges within the cycle. As G contains four degree-three vertices and n − 4
degree-two vertices, G is 4-anonymous. Deleting one edge does not increase the
anonymity level k; however, deleting the two chords results in an n-anonymous
graph—a cycle. Hence, by slightly increasing s from one to two the reachable
anonymity level jumps from k = 4 to k = n.

Example 4. Let G = (V,E) be a disjoint union of a clique and an independent
set, each containing n/2 vertices. Thus, G is n/2-anonymous. However, in order
to obtain an (n/2 + 1)-anonymous graph, all edges have to be removed. Hence,
by slightly increasing k from n/2 to n/2 + 1 the number of edges that have to be
removed jumps from zero to |E| =

(n/2
2

)
.
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Related work. Hartung et al. [6] studied the Anonym E-Ins problem as proposed
by Liu and Terzi [4]. Given a graph and two positive integers k and s, Anonym
E-Ins asks whether there exists a set of at most s edges whose addition makes
the graph k-anonymous. The main result of Hartung et al. [6] is a polynomial
problem kernel with respect to the parameter maximum degree ∆ of the input
graph. Furthermore, they showed that an heuristic algorithm proposed by Liu
and Terzi [4] is optimal for Anonym E-Ins solutions larger than ∆4. Building
on Liu and Terzi’s work, Hartung et al. [7] enhanced their heuristic approach
with the focus on improving lower and upper bounds on the solution size.
Chester et al. [8] investigated the computational complexity of Anonym E-Ins
and variants with edge labels. They showed NP-hardness for the considered
variants and a polynomial time algorithm for bipartite graphs. Chester et al. [9]
investigated the variant of adding vertices instead of edges; Bredereck et al. [10]
provided first parameterized complexity results in this direction. Hartung and
Talmon [11] studied the computational complexity of the edge contraction variant.

Concerning the vertex deletion variant, the work which is probably closest to
ours is by Moser and Thilikos [12]. They studied the parameterized complexity of
the Regular-Degree-dVertex Deletion problem, where given an undirected
graph G and an integer s ∈ N, the task is to decide whether G can be made
d-regular by at most s vertex deletions. Moser and Thilikos [12] showed that
Regular-Degree-d Vertex Deletion can be solved in O(n(s+d) + (d+ 2)s)
time and presented a polynomial problem kernel of size O(sd(d+ s)2). Observe
that for k > n/2 the problem of Anonym V-Del asks whether at most s vertices
can be deleted to obtain a regular graph.

Our contributions. While every graph is trivially 1-anonymous, we will show
that the combinatorial structure of 2-anonymous graphs is already rich and com-
plicated: Anonym V-Del for k = 2 is NP-complete, even for strongly restricted
graph classes like trees, interval graphs, split graphs, trivially perfect graphs,
and bipartite permutation graphs. All these hardness results are established by
means of a general framework. Furthermore, we show that Anonym V-Del is
NP-complete even on graphs with maximum degree three.

On the positive side, we present (polynomial-time) dynamic programming
approaches for Anonym V-Del on three graph classes: graphs of maximum
degree two, cluster graphs, and threshold graphs. We frankly admit that these
three graph classes carry an extremely constraining combinatorial structure:
Anonym V-Del is such a vicious problem that without these heavily constraining
structures there is basically no hope for polynomial-time algorithms. Figure 2
summarizes the considered graph classes and their containment relations.

For Anonym E-Del, we show NP-completeness on caterpillars and on
graphs with maximum degree seven; this later result is in stark contrast with the
fixed-parameter tractability of Anonym E-Ins with respect to the maximum
degree ∆ [6].

We analyze the parameterized complexity of Anonym V-Del and Anonym
E-Del, see Table 1 for an overview. Once again, both problems show a difficult
and challenging behavior: They are intractable with respect to each of the three
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Figure 2: The complexity landscape of Anonym V-Del for various graph classes. The results
for classes with thick frames are discussed in this work and they imply the results for classes
with thin frames. The complexity of Anonym V-Del on unit interval graphs and on bipartite
chain graphs remains open.

Table 1: Overview on the computational complexity classification of Anonym V-Del and
Anonym E-Del.

Parameter Anonym V-Del Anonym E-Del

k NP-complete for k = 2 NP-complete for k = 2
(Theorem 3) (Theorem 18)

(s, k) W[2]-hard W[1]-hard
(Corollary 7) (Corollary 23)

∆ NP-complete for ∆ = 3 NP-complete for ∆ = 7
(Theorem 2) (Theorem 20)

(s,∆) FPT (Theorem 24)
(k,∆) FPT (Corollary 27)

(single) parameters s, k, and ∆. Even worse, they are intractable with respect
to the combined parameter (s, k). The only positive parameterized results come
with the combined parameters (∆, s) and (∆, k). The latter result is based on
bounding the number s of deleted vertices in terms of ∆ and k.

Finally, studying the approximability of the optimization problems naturally
associated with Anonym E-Del or Anonym V-Del, we obtain hardness results
showing that none of the considered problems can be approximated in polynomial
time better than within a factor of n1/2. Furthermore, for the optimization
variants where the solution size s is given and the task is to maximize the
anonymity level k, this inapproximability even holds if we allow a running time
of f(s)nO(1) for any computable f . Again, this result holds for the edge deletion
and the vertex deletion variant, see Table 2 for an overview.
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Table 2: Overview on the inapproximability of the optimization variants associated with
Anonym V-Del and Anonym E-Del.

vertex deletion Anonym Min-V-Del Max-Anonym V-Del
running time (fixed k, minimize s) (fixed s, maximize k)

polynomial time no n1−ε-approximation no n1/2−ε-approximation
(Theorem 11) (Theorem 13)

f(s) · nO(1) open no n1/2−ε-approximation
(Theorem 12)

edge deletion Anonym Min-E-Del Max-Anonym E-Del
running time (fixed k, minimize s) (fixed s, maximize k)

polynomial time no n1−ε-approximation no n1−ε-approximation
(Theorem 21) (Theorem 20)

f(s) · nO(1) open no n1−ε-approximation
(Theorem 22)

Organization. We first introduce the necessary notation and concepts in Section 2.
We then provide our results for Anonym V-Del in Section 3, starting with the
NP-completeness results. To this end, we present in Subsection 3.1 a reduction
showing NP-hardness on trees. This reduction serves in Subsection 3.2 as
blueprint for a generic reduction yielding NP-hardness on several restricted
graph classes. In Subsection 3.3, we then adjust this reduction in order to prove
the inapproximability results for Anonym V-Del. We present the polynomial-
time solvable cases of Anonym V-Del in Subsection 3.4. In Section 4, we
transfer the central intractability results for Anonym V-Del to Anonym E-Del.
In particular, we show in Subsection 4.1 that Anonym E-Del is NP-complete
on caterpillars. In Subsection 4.2, we then give the inapproximability results.
Finally, we show in Section 5 the fixed-parameter tractability of Anonym V-Del
and Anonym E-Del with respect to the combined parameters (s,∆) and (s, k).

2. Preliminaries

All graphs in this paper are undirected, loopless, and simple (that is, without
multiple edges). Throughout we use n to denote the number of vertices in
the considered graph. The maximum vertex degree of a graph G = (V,E) is
denoted by ∆G. A vertex subset S ⊆ V is called k-deletion set if G[V \ S] is
k-anonymous. For each vertex v ∈ V we denote by NG(v) the set of neighbors
of v and by NG[v] = NG(v) ∪ {v} the closed neighborhood. Correspondingly,
for a vertex subset V ′ we set NG[V ′] =

⋃
v∈V ′ NG[v] and NG(V ′) = NG[V ′] \ V ′.

For 0 ≤ α ≤ ∆, the block of degree α is the set DG(α) ⊆ V of all vertices with
degree α in G. Clearly, a graph is k-anonymous if and only if each block is either
of size zero or at least k. We omit subscripts if the corresponding graph is clear
from the context.
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Parameterized Complexity. The concept of parameterized complexity was pio-
neered by Downey and Fellows [13] (see Flum and Grohe [14] and Niedermeier [15]
for further monographs on parameterized complexity). Herein, a parameterized
problem is called fixed-parameter tractable if there is an algorithm that decides
any instance (I, p), consisting of the “classical” instance I and a parameter p ∈ N,
in f(p) · |I|O(1) time, for some computable function f solely depending on p.

A core tool in the development of fixed-parameter algorithms is polynomial-
time preprocessing by data reduction, called kernelization5 [16, 17]. Here, the
goal is to transform a given problem instance (I, k) in polynomial time into an
equivalent instance (I ′, k′) whose size is upper-bounded by a function of k. That
is, (I, k) is a yes-instance if and only if (I ′, k′), k′ ≤ g(k), and |I ′| ≤ g(k) for some
function g. Thus, such a transformation is a polynomial-time self-reduction with
the constraint that the reduced instance is “small” (measured by g(k)). In case
that such a transformation exists, I ′ is called kernel of size g(k). Furthermore,
if g is a polynomial, then it I ′ is called a polynomial kernel.

The parameterized complexity hierarchy is composed of the classes FPT ⊆
W[1] ⊆ W[2] ⊆ . . . ⊆ W[P]. A W[1]-hard problem is not fixed-parameter
tractable (unless FPT = W[1]) and one can prove the W[1]-hardness by means of
a parameterized reduction from a W[1]-hard problem. Such a reduction between
two parameterized problems P and P ′ is a mapping of any instance (I, p) of P
in g(p) · |I|O(1) time (for some computable function g) into an instance (I ′, p′)
for P ′ such that (I, p) ∈ P ⇔ (I ′, p′) ∈ P and p′ ≤ h(p) for some computable
function h.

Approximation. Let Σ be a finite alphabet. Given an optimization prob-
lem Q ⊆ Σ∗ and an instance I of Q, we denote by opt(I) the value of an optimum
solution for I and by val(I, S) the value of a feasible solution S of I. The perfor-
mance ratio of S (or approximation factor) is r(I, S) = max

{
val(I,S)
opt(I) ,

opt(I)
val(I,S)

}
.

For a function ρ, an algorithm is a ρ(n)-approximation, if for every instance I
of Q, it returns a solution S such that r(I, S) ≤ ρ(|I|). An optimization problem
is ρ(n)-approximable in polynomial time if there exists a ρ(n)-approximation
algorithm running in time |I|O(1) for any instance I. A parameterized optimiza-
tion problem Q ⊆ Σ∗×N is ρ(n)-approximable in fpt-time w.r.t. the parameter p
if there exists a ρ(n)-approximation algorithm running in time f(p) · |I|O(1) for
any instance (I, p) and f is a computable function [18]. It is worth pointing that
in this case, p is not related to the optimization value.

In this paper we use a gap-reduction between a decision problem and a
minimization or maximization problem. A decision problem P is called gap-
reducible to a maximization problemQ with gap ρ ≥ 1 if there exists a polynomial-
time computable function that maps any instance I of A to an instance I ′ of Q,
while satisfying the following properties:

5It is well-known that a parameterized problem is fixed-parameter tractable if and only if it
has a kernelization.
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• if I is a yes-instance, then opt(I ′) ≥ ξ(|I ′|) · ρ(|I ′|), and

• if I is a no-instance, then opt(I ′) < ξ(|I ′|),

where ξ and ρ are two computable functions. If A is NP-hard, then Q is not
ρ-approximable in polynomial time, unless P = NP [19]. In this paper we also
use a variant of this notion, called fpt gap-reduction.

Definition 1 (fpt gap-reduction). A parameterized problem P is called fpt
gap-reducible to a parameterized maximization problem Q with gap ρ ≥ 1 if any
instance (I, p) of P can be mapped to an instance (I ′, p′) of Q in f(p) · |I|O(1)

time while satisfying the following properties:

(i) p′ ≤ g(p) for some computable function g,

(ii) if I is a yes-instance, then opt(I ′) ≥ ξ(|I ′|) · ρ(|I ′|), and

(iii) if I is a no-instance, then opt(I ′) < ξ(|I ′|),

where ξ and ρ are two computable functions.

The interest of the fpt gap-reduction is the next result that follows from the
previous definition:

Lemma 1. If a parameterized problem P is C-hard, fpt gap-reducible to a
parameterized optimization problem Q with gap ρ, and Q is ρ-approximable in
fpt-time, then FPT = C, where C is any class of the W-hierarchy.

Proof. We give a fixed-parameter algorithm for the parameterized problem P as
follows: Since P is fpt gap-reducible to Q = (I, sol, cost,max) with gap ρ, there
exists an algorithm mapping the input (I, p) of P to an instance (I ′, p′) ∈ I
of Q in f(p) · |I|O(1) time such that the properties (i) to (iii) of Definition 1 are
satisfied. We then apply the fixed-parameter ρ-approximation algorithm for Q
on the instance (I ′, p′). Due to property (i), this algorithm runs in g(p) · |I|O(1)

time for some computable function g. Let x ∈ sol(I ′) be the solution produced
by the fixed-parameter ρ-approximation algorithm for Q. Assume that (I, p) was
a no-instance. Hence, we have cost(x) ≤ opt(I ′) and by property (iii) it follows
that cost(x) < ξ(I ′). Now assume that (I, p) was a yes-instance. Hence, we
have opt(I ′)/ cost(x) ≤ ρ(I ′) and thus cost(x) ≥ opt(I ′)/ρ(I ′). By property (ii)
it follows that cost(x) ≥ opt(I ′)/ρ(I ′) ≥ (ξ(I ′) · ρ(I ′))/ρ(I ′) = ξ(I ′). Hence, by
distinguishing the two cases cost(x) < ξ(I ′) and cost(x) ≥ ξ(I ′) we can decide
the instance (I, p) of P in (g(p) + f(p)) · |I|O(1) time. Thus P is fixed-parameter
tractable and since P is C-hard, it follows that FPT = C.

3. Vertex Deletion

In this section, we provide various hardness results for Anonym V-Del on
several restricted graph classes such as trees, split graphs, and trivially perfect
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graphs. In a first subsection (see Subsection 3.1), we show that Anonym V-
Del remains NP-hard even on trees. Extracting the basic ideas of this result,
subsequently we provide a generic reduction to show NP-hardness on trivially
perfect graphs, bipartite permutation graphs, and split graphs (see Subsection 3.2)
and strong inapproximability results for the two natural optimization problems
associated with Anonym V-Del (see Subsection 3.3). We also identify several
classes of graphs for which Anonym V-Del is polynomial-time solvable (see
Subsection 3.4).

As a warm up, we first prove that Anonym V-Del is NP-complete on graphs
with maximum degree three.

Theorem 2. Anonym V-Del is NP-complete on graphs with maximum degree
three.

Proof. Since containment in NP is easy to see, we focus on showing NP-hardness.
To this end, we give a reduction from the Vertex Cover problem which is
known to be NP-complete even in three-regular graphs [20, GT1] and is formally
defined as follows.
Vertex Cover [20, GT1]
Input: An undirected graph G = (V,E) and h ∈ N.
Question: Is there a vertex subset V ′ ⊆ V , |V ′| ≤ h, such that every edge

has an endpoint in V ′?

Input: h = 3 Solution:

Given a Vertex Cover instance (G = (V,E), h) with G being three-regular,
start by copying G into a new graph G′. Finally, add h+ 1 degree-zero vertices
to G′, set s := h, and k := |V |+ 1.

If G contains a vertex cover V ′ of size h, then deleting V ′ in G′ clearly results
in an edgeless graph with |V | + 1 = k vertices, implying that (G′, s, k) is a
yes-instance of Anonym V-Del. In the reverse direction, for any k-deletion
set S, since 2k > n+h+ 1 and G′ contains s+ 1 degree-zero vertices, all vertices
in G′ − S have degree zero. Thus, S ∩ V is a vertex cover in G.

3.1. NP-Hardness on Trees
In this subsection, we show that Anonym V-Del remains NP-hard even

on trees. This result and many further hardness results will be obtained using
reductions from the NP-complete Set Cover problem, which is defined as
follows:
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Set Cover [20, SP5]
Input: A universe A = {a1, a2, . . . , aα}, a collection B =

{B1, B2, . . . , Bβ} of subsets of A, and h ∈ N.
Question: Is there an index set J ⊆ {1, 2, . . . , β} with |J | ≤ h, such

that
⋃
j∈J Bj = A?

Input: A = {a1, a2, . . . , a7}
B = {B1, B2, B3, B4}, h = 2

B1 = {a1, a2, a4, a5} B2 = {a2, a4, a6}
B3 = {a3, a5, a6, a7} B4 = {a4, a5, a7}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6 a7

Solution:

J = {1, 3}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6 a7

If a Set Cover instance I = (A,B, h) contains such an index set J , then we
refer to the set {Bj | j ∈ J} as a set cover for I.

Reduction 1. The reduction showing NP-hardness of Anonym V-Del on trees is
as follows: Let (A,B, h) be an instance of Set Cover. We assume without loss
of generality that for each element a ∈ A there exists a set B ∈ B with a ∈ B.
Furthermore, we assume without loss of generality that each set B ∈ B occurs
at least three times in B. To decrease the amount of indices in the construction
given below we introduce the function f : N→ N with f(i) = α+ (h+ 1)i.

The reduction for trees is as follows, see Figure 3 for an example. Set k :=
2 and s := h. To obtain an equivalent Anonym V-Del-instance (G, k, s),
construct G = (V,E) as follows: For each element ai ∈ A add an element gadget
consisting of a star K1,f(i) with the center vertex v(ai). Denote with VA :=
{v(a1), v(a2), . . . , v(aα)} the set of all these center vertices.

For each set Bj ∈ B add a set gadget which is a tree rooted in a vertex v(Bj).
The root has |Bj | child vertices where each element ai ∈ Bj corresponds to
exactly one of the children of v(Bj), denoted by v(ai, Bj). Additionally, we add
to v(ai, Bj) exactly f(i) degree-one neighbors. Hence, the set gadget is a tree
of depth two rooted in v(Bj). We denote with VB := {v(B1), v(B2), . . . , v(Bβ)}
the set of all root vertices. Observe that, as each set Bj ∈ B occurs at least three
times, the set gadgets are 2-anonymous. Finally, to end up with one tree instead
of a forest, repeatedly add edges between any degree-one-vertices of different
connected components.

Correctness of Reduction 1. Observe that for each element ai ∈ A the only
vertex of degree f(i) is v(ai) and there are no other vertices violating the
2-anonymous property. The key point in the construction is that, in order to
get a 2-anonymous graph, one has to delete vertices of VB: Let ai ∈ A be an
element and v(Bj) a root vertex such that ai ∈ Bj . By construction the child
vertex v(ai, Bj) of v(Bj) corresponds to ai and therefore has f(i) child vertices.

11



B1 B2 B3 B4

a1 a2 a3 a4 a5 a6 a7

h: set cover size
s: number of deleted vertices

k: anonymity level

f : N→ N with
∀1 ≤ i < j ≤ n :
f(j)− f(i) > s

k = 2s = h

v(B1)

v(B3)

v(a1, B1)

· · ·

v(a2, B1)

· · ·

v(a4, B1)

· · ·

v(a5, B1)

· · ·

v(a3, B3)

· · ·

v(a5, B3)

· · ·

v(a6, B3)

· · ·

v(a7, B3)

· · ·

set-gadget v(B2)

v(B4)

v(a2, B2)

· · ·

v(a4, B2)

· · ·

v(a6, B2)

· · ·

v(a4, B4)

· · ·

v(a5, B4)

· · ·

v(a7, B4)

· · ·

v(a1)

· · ·

v(a2)

· · ·

v(a3)

· · ·

v(a4)

· · ·

v(a5)

· · ·

v(a6)

· · ·

v(a7)

· · ·

deg(v(ai, Bj)) = f(i) + 1

deg(v(ai)) = f(i)

Figure 3: Example of the reduction for trees. Above the Set Cover instance with twelve sets
(each set Bi , i = 1, . . . , 4 appears three times) and seven elements is graphically displayed (for
example, the set B1 contains the elements a1, a2, a4, and a5, and {B1, B3} forms a set cover).
In our reduction, we assume without loss of generality that each set occurs at least times.
However, to keep the figure clearly arranged, we omit these copies in the figure. Below are the
four different set gadgets and the element gadgets are at the bottom of the picture. Observe
that by the choice of f , the degrees of the vertices in the set-gadgets and vertex-gadgets
are ensured to not interfere, even if s vertices are removed. The effect of these copies to
the construction is that each of the four set-gadgets appears three times. Thus, deleting the
vertices v(B1) and v(B3) makes the displayed graph 2-anonymous.

Thus, deleting v(Bj) lowers the degree of v(ai, Bj) to f(i) and, hence, v(ai) no
longer violates the 2-anonymous property. Furthermore, as each set Bj ∈ B
occurs at least three times, the vertices VB are 2-anonymous. Hence, given a
set cover one can construct a corresponding k-deletion set of the same size and,
thus, if (A,B, h) is a yes-instance, then (G, k, s) is a yes-instance. The basic
idea in the converse direction is that if there is a k-deletion set S, then, due to
the choice of f , there is also a k-deletion set S′ ⊆ VB that is not larger than S.
The formal proof which implies the following theorem will be given later (see
Lemma 5), after introducing the generic reduction.
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Theorem 3. Anonym V-Del is NP-complete on trees even if k = 2.

3.2. Generic Reduction
In this section, we generalize Reduction 1 given in the previous subsection.

More specifically, we will define properties such that a graph G fulfilling them
together with s := h and k := 2 forms a yes-instance of Anonym V-Del if
and only if the given Set Cover instance (A,B, h) is a yes-instance. Based on
that, we then describe the construction of several graphs contained in different
graph classes and fulfilling the properties. Formally, we require the constructed
graph G = (V,E) to fulfill the following:

1. Element-gadgets:

(a) For each element ai ∈ A there is a corresponding vertex, denoted
by v(ai), in G and the vertex set VA := {v(a1), v(a2), . . . , v(aα)} is
exactly the set of vertices not being 2-anonymous in G.

(b) For each vertex v ∈ V it holds that |N [v] ∩ VA| ≤ 1.

2. Set-gadgets:

(a) For each set Bj ∈ B there is a corresponding vertex v(Bj) in G and
for each element ai ∈ Bj the vertex v(Bj) has a neighbor v(ai, Bj)
with deg(v(ai, Bj)) = deg(v(ai)) + 1.
Set VB := {v(B1), v(B2), . . . , v(Bβ)} and ABj := {v(ai, Bj) | ai ∈ Bj}.
Set AB :=

⋃
Bj∈B ABj .

(b) For all Bj ∈ B it holds that N(ABj ) ∩ VB = {v(Bj)}
(c) For each vertex v ∈ V there is a vertex u ∈ VB such that N(v)∩AB ⊆

N(u).

3. Interaction between these gadgets:

(a) The vertex subsets VA, VB, and AB1 , AB2 , . . . , ABβ are pairwise disjoint.

(b) It holds that N(VA) ∩ (VB ∪AB) = ∅.
(c) For eachD ⊆ VB, |D| ≤ h, the set of vertices violating the 2-anonymous

property in G−D is a subset of VA.

(d) Any two vertices u ∈ VA and v /∈ AB satisfy |deg(u)− deg(v)| > s.

It is not hard to verify that the graph constructed in the reduction in the previous
paragraph has the above properties. Before proving the correctness of the generic
reduction we make the following observation.

Observation 4. For each D ⊆ VB, |D| ≤ h, the set VA \ {v(ai) | ∃v(Bj) ∈
D : ai ∈ Bj} is exactly the set of vertices not being 2-anonymous in G−D.
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Proof. By Property 1a only the vertices in VA are not 2-anonymous in G.
Property 3c ensures that the set of vertices X violating the 2-anonymous property
in G−D is a subset of VA.

Because of Property 3b (N(VA)∩VB = ∅) it holds that degG(v) = degG−D(v)
for all v ∈ X. Moreover, because N(ABj ) ∩ VB = {v(Bj)} (Property 2b)
it holds for all Bj ∈ B and all v(ai, Bj) ∈ ABj that degG−D(v(ai, Bj)) =
degG(v(ai, Bj))−x where x is one if v(Bj) ∈ D and otherwise zero. This implies
with Property 2a that X ⊆ VA \ {v(ai) | ∃v(Bj) ∈ D : ai ∈ Bj}.

By Property 3a it follows that VA ⊆ V \D. To show that VA\{v(ai) | ∃v(Bj) ∈
D : ai ∈ Bj} ⊆ X, assume by contradiction that there is a vertex v(ai) ∈
VA \X but for all v(Bj) ∈ D it holds that ai /∈ Bj . By Property 3b it holds
that degG(v(ai)) = degG−D(v(ai)) and hence by Property 3d it follows that there
is some vertex v ∈ AB with degG−D(v) = degG−D(v(ai)). Thus, since D ⊆ VB
and N(ABj ) ∩ VB = {v(Bj)} (Property 2b), by Property 2a it follows that there
is some v(Bj) ∈ D with ai ∈ Bj , a contradiction.

Lemma 5. Let G be a graph satisfying Properties 1a to 3d for a given in-
stance (A,B, h) of Set Cover. Then (G, 2, h) is a yes-instance of Anonym
V-Del if and only if (A,B, h) is a yes-instance of Set Cover.

Proof. If there is a set cover B′ ⊆ B, |B′| ≤ h, such that
⋃
Bj∈B′ Bj = A, then

by Observation 4 the set S = {v(Bj) | Bj ∈ B′} ⊆ VB, |S| = |B′|, is a 2-deletion
set for G. It remains to prove the reverse direction.

Let S be a 2-deletion set of size at most s = h for G = (V,E). We construct
a set cover B′, |B′| ≤ |S|, for the Set Cover instance. First, initialize B′ := ∅.
Then, consider each vertex v ∈ S: If v = v(Bj) ∈ VB, then add Bj to B′ (Case
1). If v ∈ N [VA], then by Property 1b there is only one ai such that v ∈ N [v(ai)]
and we add any Bj with ai ∈ Bj to B′ (Case 2). Finally, if v ∈ N [AB], then by
Property 2c there is a vertex v(Bj) ∈ VB with N(v) ∩ AB ⊆ N(v(Bj)) and we
add Bj to B′ (Case 3).

We next prove that B′ is indeed a set cover for the Set Cover instance (A,B, h).
Assume towards a contradiction that B′ is not a set cover, that is, there is an
element ai ∈ A such that for each B ∈ B′ we have ai /∈ B. Observe that in G, the
vertex v(ai) violates the 2-anonymous property, that is, there is no other vertex
with the degree of v(ai). Furthermore, from the construction of B′ (see Case 2),
it follows that v(ai) /∈ S and that degG(v(ai)) = degG−S(v(ai)). Hence, there is
a vertex v ∈ V such that degG(v(ai)) = degG−S(v) and thus, by Property 3d,
it follows that v ∈ N [AB], that is, v = v(ai, Bj) for some Bj with ai ∈ Bj . By
Case 1 and Case 3 of the construction of B′, this implies that B′ contains a set Bj ,
a contradiction to the fact that there is an ai ∈ A such that for each B ∈ B′ we
have ai /∈ B.

Using this generic reduction we now show NP-hardness on several graph
classes which are defined as follows (see Brandstädt et al. [21]): Trivially perfect
graphs are the {P4, C4}-free graphs, that is, they do not contain an induced path
or cycle on four vertices. A graph G is a bipartite permutation graph if G is
bipartite and does not contain an asteroidal triple (is AT-free). Three vertices of
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v(B1)

v(a1, B1) v(a2, B1) v(a4, B1) v(a5, B1)

· · · U(B1)

AB1

C(B1)

Figure 4: The set-gadget C(B1) for the constructed bipartite permutation graph. The given
Set Cover instance is the same as in Figure 3 where B1 = {a, a2, a4, a5}.

a graph form an asteroidal triple if every two of them are connected by a path
avoiding the neighborhood of the third. A graph is a split graph if it can be
partitioned into a clique and an independent set.

Theorem 6. Anonym V-Del is NP-complete on trivially perfect graphs, bi-
partite permutation graphs, and split graphs, even if k = 2.

Proof. Since containment in NP is easy to see, we focus on showing NP-hardness.
Let B = {B1, B2, . . . , Bβ} be a collection of subsets of some universe A =
{a1, a2, . . . , aα} which form together with some h ∈ N an instance of Set
Cover. As in Reduction 1, we assume without loss of generality that for each
element a ∈ A there exists a set B ∈ B with a ∈ B. Furthermore, we assume
without loss of generality that each set B ∈ B occurs at least three times in B.

We first describe the reductions for each the three graph classes and then, due
to the similarities in the constructed graphs, we show for all three graphs together
that the above properties are satisfied. Let f : N→ N be f(i) = i(h+ 1) + α.
Bipartite permutation graphs: Analogously to the reduction for trees add for
each set ai ∈ A an element-gadget consisting of star K1,f(i) with a center vertex
denoted by v(ai). Clearly, a star is a bipartite permutation graph.

For each set Bj ∈ B we add a set-gadget as follows: First, add a vertex v(Bj)
to G. For each element ai ∈ Bj add a child vertex, denoted by v(ai, Bj), to v(Bj).
Let imax := maxai∈Bj{i}, ` := |Bj |, and ABj := {v(ai, Bj) | ai ∈ Bj}. Next, add
the vertex set U(Bj) := {u1(Bj), u2(Bj), . . . , uf(imax)(Bj)} and for each ai ∈ Bj
the edge set {(ur(Bj), v(ai, Bj)) | 1 ≤ r ≤ f(i)}.

Note that deg(v(ai, Bj)) = deg(v(ai)) + 1. Denote with C(Bj) the set-
gadget, that is, the connected component containing v(Bj) which consists of the
vertices {v(Bj)} ∪ABj ∪ U(Bj); see Figure 4 for an example.

Furthermore, observe that N(u1(Bj)) ⊇ N(u2(Bj)) ⊇ . . . ⊇ N(ui`(Bj)) and
thus, in contrast to the previous reduction for trees, C(Bj) is AT-free.

Overall, the constructed graph is AT-free and clearly bipartite.
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v(B1)

v(a1, B1) v(a2, B1) v(a4, B1) v(a5, B1)

· · · U(B1)

AB1

C(B1)

Figure 5: The set-gadget C(B1) for the constructed trivially perfect graphs. The given Set
Cover instance is the same as in Figure 3 where B1 = {a, a2, a4, a5}.

Trivially perfect graphs: First, construct the graph as described above for the
case of bipartite permutation graphs. Next for each Bj ∈ B apply the following
changes to C(Bj), see Figure 5 for an illustration: Add edges so that the vertices
in ABj form a clique. To ensure that the degree of the vertices in ABj does
not change by the previous “clique operation”, remove the first |Bj | − 1 vertices
from U(Bj) which are all adjacent to each vertex in ABj due to the definition
of f and |Bj | ≤ α.

Clearly, the star components containing the vertices from VA are trivially
perfect. Furthermore, note that each C(Bj) is trivially perfect: since {v(Bj)} ∪
ABj is a clique, the remaining vertices in U(Bj) form an independent set, and
since N(u|Bj |(Bj)) ⊇ N(u|Bj |+1(Bj)) ⊇ . . . ⊇ N(ui`(Bj)) it is easy to verify
that C(Bj) is indeed a threshold graph which is a special form of a trivially
perfect graph [21].

Note that since the connected components containing the vertices in VA are
also threshold graphs, by the reduction above we have proven that Anonym
V-Del is indeed NP-hard on graphs whose connected components are threshold
graphs. However, in Theorem 17 we prove that Anonym V-Del is polynomial-
time solvable on threshold graphs.
Split graphs: First, construct the graph G as described above for the case of
bipartite permutation graphs. For each set Bj ∈ B set W (Bj) := {v(Bj)} ∪
U(Bj). Then, set WB :=

⋃
B∈BW (B). Finally, add edges to make the vertex

subset N(VA) ∪WB to a clique. Observe that the remaining vertices form an
independent set and, hence, the graph is a split graph.
Correctness: We now show that the constructed graphs satisfy Properties 1a
to 3d. To this end, observe that, due to assumption that each set occurs three
times in B, each vertex in C(Bj) is 2-anonymous. Hence, the vertices in VA
are exactly the ones that are not 2-anonymous. Thus, Property 1a is satisfied.
Properties 2a and 3a are clearly satisfied. Since for each vertex v(ai) ∈ VA
the vertex set N [v(ai)] induces a star (a clique in the split graph case) and for
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each j 6= i we have N [v(ai)] ∩ N [v(aj)] = ∅, Property 1b is fulfilled. Observe
that ABj ⊆ N(v(Bj)) for each Bj ∈ B. Furthermore, the vertices in VA and VB
are pairwise in different connected components in the case for trivially perfect
graphs and bipartite permutation graphs. Thus, Properties 2b and 3b are fulfilled
for these cases. For the case of split graphs, observe that we started with the
construction for the bipartite permutation graphs and the vertices of VA and AB
remained unchanged. Hence, Properties 2b and 3b are also fulfilled for the case
of split graphs. In the constructed graphs for each Bj , Bj′ ∈ B, j 6= j′, we
have N(ABj ) ∩N(ABj′ ) = ∅. From this and ABj ⊆ N(v(Bj)), it follows that
Property 2c is satisfied. Since AB ⊆ N(VB) this implies that Property 3c is
fulfilled. Finally, since each vertex in V \ (VA ∪ AB) has degree at most α (at
least |N(VA) ∪WB| in the split graph case), it follows from the definition of f
that Property 3d is satisfied.

Since Set Cover is W[2]-complete with respect to the solution size h [13]
and the solution size s in the constructed instance was s := h, we have the
following.

Corollary 7. Anonym V-Del is W[2]-hard with respect to parameter s, even
if k = 2 and if the input graph is a tree, a bipartite permutation graph, a split
graph, or a trivially perfect graph.

Set Cover is fixed-parameter tractable with respect to the combined param-
eter (α, h) [22] but does not admit a polynomial kernel with respect to (α, h) [23],
unless NP ⊆ coNP/poly. Observe that in all constructions for Theorem 6 except
the one for split graphs we can bound s and ∆ in a polynomial in α and h.

Corollary 8. Anonym V-Del on trees, bipartite permutation graphs or trivially
perfect graphs does not admit a polynomial kernel with respect to the combined
parameter (k, s,∆), unless NP ⊆ coNP/poly.

There are two natural optimization versions associated with Anonym V-
Del: in one version (called Max-Anonym V-Del) the goal is to maximize the
anonymity k subject to the constraint that the number s of deleted vertices does
not exceed a given bound; in the other version (called Anonym Min-V-Del)
the goal is to minimize the number s of deleted vertices subject to the constraint
that the anonymity does not go below a certain given bound. As Set Cover
is NP-hard to approximate within a ratio o(log n) [24, 25], the above reduction
yields the following inapproximability result.

Corollary 9. Anonym Min-V-Del cannot be approximated within a factor
of o(log n) in polynomial-time, even if k = 2 and if the input graph is a tree, a
bipartite permutation graph, a split graph, or a trivially perfect graph, unless P =
NP.

Since the above reduction gives NP-hardness for k = 2 and the input graph
is 1-anonymous, we immediately get inapproximability within a factor of two for
Max-Anonym V-Del.

17



Corollary 10. For every 0 < ε < 1, Max-Anonym V-Del cannot be approxi-
mated within a factor of 2− ε in polynomial time, unless P = NP. Furthermore,
if Max-Anonym V-Del admits for any 0 < ε ≤ 1 a fixed-parameter (2− ε)-
approximation algorithm with respect to parameter s, then FPT = W[2].

In the next section, we show that we can strengthen these inapproximability
results.

3.3. Inapproximability Results
Corollaries 9 and 10 give first lower bounds on the polynomial-time ap-

proximability of the two optimization problems associated to Anonym V-Del,
namely Anonym Min-V-Del and Max-Anonym V-Del. For general graphs,
these results, however, can be strengthened considerably in terms of the achiev-
able approximation factor and, in case of Max-Anonym V-Del, also in terms
of the allowed running time. Specifically, we prove that Anonym Min-V-Del
is not n1−ε-approximable in polynomial time, while Max-Anonym V-Del is
not n1/2−ε-approximable in fpt-time with respect to the parameter s, even on
trees.

To this end, for the polynomial-time inapproximability of Anonym Min-V-
Del, we slightly adjust the reduction given in the proof of Theorem 2.

Theorem 11. For every 0 < ε ≤ 1/2, Anonym Min-V-Del is not n1−ε-
approximable in polynomial time, even on graphs with maximum degree three,
unless P = NP.

Proof. Let 0 < ε ≤ 1 be a constant. We establish a gap-reduction with gap n1−ε

from the Vertex Cover problem which is known to be NP-complete even in
three-regular graphs [20, GT1].

Given a Vertex Cover instance (G = (V,E), h) we construct an in-
stance I ′ = (G′ = (V ′, E′), k) of Anonym Min-V-Del. Start by copying G
into a new graph G′. Next, set x :=

⌈
n1/ε

⌉
− n+ h. Finally, add x degree-zero

vertices to G′ and set k := n− h+ x. Denote by n′ the number of vertices of G′,
thus n′ = n+ x.

We now show that if I is a yes-instance, then opt(I ′) ≥ h and if I is a
no-instance, then opt(I ′) = n+ x.

Suppose that G contains a vertex cover S of size h. Then, deleting S in G′
clearly results in an edgeless graph with n− h+ x = k vertices, implying that
opt(I ′) ≤ h.

Suppose that G′ contains a k-deletion set S of size at most |V ′|−1. Since 2k >
n − h + x and G′ contains x > h degree-zero vertices, all vertices in G′ − S
have degree zero. Furthermore, at least k = n− h+ x degree-zero vertices are
contained in G′ − S and hence, |S| ≤ h and S ∩ V is a vertex cover in G. Thus,
if G does not contain a vertex cover of size h, then opt(I ′) = |V ′| = n+ x.

We obtain a gap-reduction with the gap at least

n+ x

h
=
dn 1

ε e+ h

h
=

(dn 1
ε e+ h)(ε+1−ε)

h
≥ n · (dn 1

ε e+ h)(1−ε)

h

≥ (dn 1
ε e+ h)(1−ε) = (n+ x)(1−ε) = (n′)1−ε.
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Next we show strong parameterized inapproximability results for Max-
Anonym V-Del. To this end, we adjust Reduction 1 in order to obtain an fpt
gap-reduction.

Theorem 12. For every 0 < ε ≤ 1/2, Max-Anonym V-Del is not fixed-
parameter n1/2−ε-approximable with respect to parameter s, even on trees, un-
less FPT = W[2].

Proof. Let 0 < ε ≤ 1/2 be a constant. We provide an fpt gap-reduction with
gap n1/2−ε from the W[2]-hard Set Cover problem [13] parameterized by the
solution size h. Let I = (A,B, h) be an instance of Set Cover. We assume
without loss of generality that for each element ai ∈ A there exists a set Bj ∈ B
with ai ∈ Bj . Let f : N→ N be f(i) = (h+ 4)i. Set t :=

⌈
(αβ)(1−2ε)/(2ε)

⌉
. We

will aim for making the constructed graph t-anonymous.
The instance I ′ of Max-Anonym V-Del is defined by s = h and a graph G =

(V,E) constructed as follows: For each element ai ∈ A add a star K1,f(i) with
the center vertex v(ai). Denote with VA = {v(a1), v(a2), . . . , v(aα)} the set of all
these center vertices. Furthermore, for each element ai ∈ A add t stars K1,f(i)+1.

For each set Bj ∈ B add a set-gadget which will consist of a tree rooted in a
vertex v(Bj), see Figure 6 for an illustration. The root has |Bj | · t child vertices
where each element ai ∈ Bj corresponds to exactly t of these children, denoted
by v1(ai, Bj), v2(ai, Bj), . . ., vt(ai, Bj). Additionally, for each ` ∈ {1, 2, . . . , t}
we add to v`(ai, Bj) exactly f(i) degree-one neighbors. Hence, the set gadget
is a tree of depth two rooted in v(Bj). To ensure that the root v(Bj) does
not violate the t-anonymous property we add t stars K1,deg(v(Bj)). We denote
with VB = {v(B1), v(B2), . . . , v(Bβ)} the set of all root vertices. Finally, to end
up with one tree instead of a forest, repeatedly add edges between any degree-
one-vertices of different connected components. Denoting by n the number of
vertices in G it holds that

n ≤ tβα2︸ ︷︷ ︸
vertices for elements

+ t(βα)2 + tβα︸ ︷︷ ︸
vertices for sets

< (tβα)2.

We now show that if I is a yes-instance, then opt(I ′) ≥ t and if I is a
no-instance, then opt(I ′) = 1.

Suppose that I has a set cover of size h. Observe that for each element ai ∈ A
the only vertex of degree f(i) is v(ai), and there are no other vertices violating
the t-anonymous property. The key point in the construction is that, in order to
get a t-anonymous graph, one has to delete vertices of VB. Indeed, let ai ∈ A
be an element and v(ai) a root vertex such that ai ∈ Bj . By construction, for
each 1 ≤ ` ≤ t the child vertex v`(ai, Bj) of v(Bj) has f(i) child vertices and
hence a degree of f(i)+1. Thus, deleting v(Bj) lowers the degree of each v`(ai, Bj)
to f(i) and, hence, v(ai) no longer violates the t-anonymous property. Hence,
given a set cover of size h one can construct a corresponding t-deletion set for G.

Conversely, we show that if there exists a 2-deletion set of size at most h
in G, then (A,B, h) is a yes-instance of Set Cover. Let S ⊆ V be a 2-deletion
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v2(a5, B1)

· · ·

vt(a5, B1)
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v1(a4, B1)

· · ·

v2(a4, B1)

· · ·

vt(a4, B1)

· · ·
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v1(a2, B1)

· · ·
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Figure 6: The set-gadget for the set B1 in the fpt gap-reduction of Theorem 12. The given Set
Cover instance is the same as in Figure 3 where B1 = {a, a2, a4, a5}. The fpt gap-reduction
is an extension of Reduction 1 (depicted in Figure 3). The main difference is that the fpt
gap-reduction introduces a lot of copies of certain vertices to increase the anonymity level.
This can be seen in the set-gadget above: While in Reduction 1 only one vertex corresponds to
the combination (a1, B1) with a1 ∈ B1, namely v(a1, B1), in the fpt gap-reduction t vertices
correspond to the combination, namely v1(a1, B1), v2(a1, B1), . . . , vt(a1, B1).

set of size at most h. We construct a set cover B′ of size at most |S| as follows.
First, initialize B′ := ∅. Then, add for each vertex v(Bj) ∈ S ∩ VB the set Bj
to B′ (Step 1). Next, as long as there is an element ai with ai /∈

⋃
B∈B′ B,

add a set Bj with ai ∈ Bj to B′ (Step 2). It is clear that B′ is a set cover
for (A,B, h). It remains to prove that |B′| ≤ |S|. To this end, partition the set S
into S1 ∩ S2 where S1 contains exactly the vertices in VB, that is S1 := S ∩ VB
and S2 := S \ S1. Observe that the number of sets added to B′ in Step 1 is
exactly |S1|. Furthermore, observe that all vertices in VA violate the 2-anonymous
property and each of these vertices is a center of an isolated star with more
than two leaves. Since the only vertices in G that are adjacent to more than
one vertex of degree at least three are the vertices in VB, it follows, each vertex
in S2 “fixes” for at most one vertex in VA the 2-anonymous property. Hence, the
number of sets added in Step 2 is at most |S2|. Thus |B′| ≤ |S| and (A,B, h) is
a yes-instance of Set Cover.

We obtain an fpt gap-reduction with the gap

t = (t2)
1/2+ε−ε = t2ε(t2)

1/2−ε = (αβ)1−2ε(t2)
1/2−ε

= (α2β2)
1/2−ε(t2)

1/2−ε = (α2β2t2)
1/2−ε > n

1/2−ε
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since n < t2α2β2. Thus, the statement of the theorem follows from Lemma 1.

Since the fpt gap-reduction provided in the proof of Theorem 12 can be
constructed in polynomial time and since Set Cover is NP-complete, we
also obtain polynomial-time inapproximability under the stronger assumption
P = NP.

Theorem 13. For every 0 < ε ≤ 1/2, Max-Anonym V-Del is not n1/2−ε-
approximable in polynomial time, even on trees, unless P = NP.

3.4. Polynomially-Time Solvable Cases
We complement our intractability results for Anonym V-Del from the

previous sections by showing that Anonym V-Del is polynomial-time solvable
on graphs with maximum degree two, on graphs that are disjoint unions of
cliques, and on threshold graphs.

3.4.1. Graphs with Maximum Degree Two
In contrast to graphs of maximum degree three (see Theorem 2), we observe

that Anonym V-Del is polynomial-time solvable on graphs of maximum degree
two. Note that a graph of maximum degree two is just a collection of paths
and cycles. Given five integers d0, d1, d2, x, y, it is easy to decide whether it
is possible to remove x vertices from a path of length y (respectively, from a
cycle of length y) such that there survive precisely d0 vertices of degree zero, d1

vertices of degree one, and d2 vertices of degree two. A straight-forward dynamic
programming approach based on this observation leads to the following.

Theorem 14. On graphs of maximum degree two, Anonym V-Del is polynomial-
time solvable.

3.4.2. Disjoint Union of Cliques
Note that Anonym V-Del is trivial on cliques: either the clique size is at

least k, or otherwise one has to delete all the vertices. The following theorem
shows that polynomial-time solvability also carries over to the case where the
graph is the disjoint union of several cliques, that is, a cluster graph. A graph
is a cluster graph if and only if it does not contain the 3-vertex path P3 as an
induced subgraph.

Theorem 15. On a cluster graph G with maximum degree ∆, Anonym V-Del
can be solved in O(n2∆) time.

Proof. Note that removing any number of vertices from a cluster graph yields
another cluster graph. For an integer c ≥ 1, we denote by #comp(G, c) the
number of components of size c in G. For integers x, y ≥ 1, we denote by G(x, y)
the graph that consists of all components of G of size up to x, together with y
new components (cliques) of size exactly x.

We design a dynamic program that solves Anonym V-Del for all such
graphs G(x, y). We denote by f(x, y) the smallest possible number of vertices
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whose removal from G(x, y) yields a k-anonymous graph, and we store all these
values in the dynamic programming table. In the initialization phase of the
dynamic program we handle the cases with x = 1. Note that the graph G(1, y)
consists of t := #comp(G, 1)+y isolated vertices. Then f(1, y) = 0 whenever t ≥ k,
and f(1, y) = t whenever t < k.

The cases with x ≥ 2 are handled as follows. Consider a graph G(x, y) that
contains t := #comp(G, x) + y components of size x. A k-anonymous subgraph
of G(x, y) will contain a certain number z of these components, while from each
of the remaining t− z components (at least) one vertex is to be removed; note
that this requires x · z ≥ k whenever z 6= 0. This yields the formula

f(x, y) = min {f(x− 1, t− z) + t− z | z = 0 or k/x ≤ z ≤ t} .

As the largest clique in G contains ∆+1 vertices, the dynamic programming table
has O(n∆) entries. We precompute all the values #comp, and then determine
every value f(x, y) in O(n) time per entry. All in all, this yields the claimed
running time of O(n2∆). The final answer for the graph G is given by f(∆ +
1, 0).

3.4.3. Threshold Graphs
We recall that a graph G = (V,E) is a threshold graph if there are positive real

vertex weights w(v) for v ∈ V such that {v1, v2} ∈ E if and only if w(v1)+w(v2) ≥
1; see Brandstädt et al. [21] for more information. Without loss of generality we
will assume that the vertex weights satisfy the following conditions:

• The vertex weights are pairwise distinct, and satisfy 0 < w(v) < 1.

• Any v1, v2 ∈ V satisfy w(v1) + w(v2) 6= 1; in particular w(v1) 6= 1/2.

Note that the closed neighborhoods in a threshold graph are totally ordered
by inclusion: whenever w(v1) < w(v2), then NG[v1] ⊆ NG[v2] and conse-
quently deg(v1) ≤ deg(v2).

Lemma 16. Let U ⊆ V be a subset of vertices with |U | ≥ 2, let wmin =
minu∈U w(u) and wmax = maxu∈U w(u), and let u0, u1 ∈ U be the vertices
with w(u0) = wmin and w(u1) = wmax. All vertices in U have identical degree if
and only if there is no vertex v ∈ V \ {u0, u1} with 1−wmax < w(v) < 1−wmin.

Proof. Note that all vertices in U have identical degree if and only if NG[u0] =
NG[u1]. The latter condition in turn holds if and only if there is no vertex v in
the graph (with v 6= u0 and v 6= u1) that is adjacent to u1 but not to u0, and
this is equivalent to the stated condition 1− wmax < w(v) < 1− wmin.

Theorem 17. Anonym V-Del on threshold graphs is solvable in O(n2) time.

Proof. We provide a dynamic program to solve the problem in the claimed
running time. To this end, we first need some further notation: Recall that
a block BG(d) of degree d contains all degree-d vertices of G. Now consider
some block BG(d) of constant degree d in an optimal subgraph for Anonym
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V-Del, and let u0, u1 ∈ BG(d) and wmin and wmax be defined as in the lemma.
The territory of this block is defined as the union of the two closed inter-
vals [wmin, wmax] and [1 − wmax, 1 − wmin]; note that these two intervals will
overlap if wmin < 1/2 < wmax. The canonical superset U∗ ⊆ V consists of u0

and u1, together with all vertices v ∈ V that satisfy wmin ≤ w(v) ≤ wmax but
not 1 − wmax < w(v) < 1 − wmin. One message of Lemma 16 is that distinct
blocks in an optimal subgraph must have disjoint territories. Another message of
the Lemma 16 is that we may as well replace every block BG(d) by its canonical
superset U∗: By adding these vertices, the degree in every block either remains
the same or is uniformly increased by |U∗| − |BG(d)|. And if the territories
of distinct blocks were disjoint before the replacement, then they will also be
disjoint after the replacement. In other words, such a replacement does not
violate k-anonymity but simplifies the combinatorial structure of the considered
subgraph.

This suggests the following dynamic programming approach. For every real
number r with 0 ≤ r ≤ 1/2, we consider the threshold graph Gr that is induced by
the vertices v ∈ V with r ≤ w(v) ≤ 1− r; note that the only crucial values for r
are the O(n) values w(v) and 1− w(v) that fall between the bounds 0 and 1/2.
The goal is to compute for every graph Gr a largest k-anonymous subgraph. We
start our computations with r = 1/2 and work downwards towards r = 0.

The initialization step of the dynamic program handles subgraphs that consist
of a single block whose territory contains the number 1/2. Such a block will either
be empty, or it is a canonical superset specified by two values wmin and wmax.
All in all, this only yields a polynomial number of cases to handle. In the main
computation phase of the dynamic program, we consider a general graph Gr and
check all possibilities for the outermost block, which is the block whose territory
is farthest away from the center point 1/2. Since this territory is the union of
two intervals [r, q] and [1 − q, 1 − r], we may simply check all possibilities for
the interval boundary q, and then combine the corresponding block with the
(previously computed) largest k-anonymous subgraph for graph Gq. Since there
is only a linear number O(n) of candidate values for q, the largest k-anonymous
subgraph of Gr can be found in linear time.

4. Edge Deletion

In this section, we transfer the central intractability results from Section 3
to the setting where instead of vertices edges are removed; see Section 1 for a
discussion about vertex deletions versus edge deletions. To this end, we first
show in Subsection 4.1 that Anonym E-Del is NP-complete on caterpillars,
a subclass of trees. Compared to the NP-completeness of Anonym V-Del
on trees (see Subsection 3.1) this gives a slightly stronger intractability result
for Anonym E-Del. The employed reduction is, however, more complicated
than the one given in Subsection 3.1 and we could not come up with a general
reduction scheme as provided in the vertex deletion case in Subsection 3.2. We
then provide in Subsection 4.2 polynomial-time inapproximability results for
Anonym Min-E-Del and Max-Anonym E-Del for bounded-degree graphs and
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parameterized inapproximability results for Max-Anonym E-Del on general
graphs.

4.1. NP-Hardness on Caterpillars
In this section, we establish a polynomial-time reduction from the NP-

complete Exact Cover by 3-Sets problem, which is defined as follows:

Exact Cover by 3-Sets [20, SP2]
Input: A universe A = {a1, a2, . . . , a3h}, a collection B =

{B1, B2, . . . , Bβ} of 3-element sets over A, and h ∈ N.
Question: Is there an index set J ⊆ {1, 2, . . . , β} with |J | = h, such

that
⋃
j∈J Bj = A?

Input: A = {a1, a2, . . . , a6}
B = {B1, B2, B3, B4}, h = 2

B1 = {a1, a2, a4} B2 = {a2, a4, a6}
B3 = {a3, a5, a6} B4 = {a2, a4, a5}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6

Solution:

J = {1, 3}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6

If an Exact Cover by 3-Sets instance I = (A,B, h) contains such an index
set J , then we refer to the set {Bj | j ∈ J} as an exact cover for I.

The reduction in the following proof, showing that Anonym E-Del is
NP-complete on caterpillars, is an adaption of the reduction provided in Sub-
section 3.1. A caterpillar is a tree that has a dominating path [21], that is, a
caterpillar is a tree such that deleting all leaves results in a path.

Theorem 18. Anonym E-Del is NP-complete on caterpillars, even if k = 2.

Proof. Since containment in NP is easy to see, we focus on showing NP-hardness.
To this end, we provide a polynomial-time reduction from Exact Cover by
3-Sets. Let I = (A,B, h) be an instance of Exact Cover by 3-Sets. We
assume without loss of generality that for each element ai ∈ A there exists a
set Bj ∈ B with ai ∈ Bj . Let f : N→ N be f(i) = (2h+ 3)i.

The instance I ′ of Anonym E-Del is defined on a graph G = (V,E)
constructed as follows. For each element ai ∈ A add a star K1,f(i) with the center
vertex v(ai). Denote with VA = {v(a1), v(a2), . . . , v(a3h)} the set of all these
center vertices. Furthermore, for each element ai ∈ A add two stars K1,f(i)+1

and two stars K1,f(i)+2.
For each set Bj ∈ B with Bj = {aj1 , aj2 , aj3} add a set-gadget containing

the stars K1,f(j1), K1,f(j2), and K1,f(j3). See Figure 7 for the difference of
the set-gadget in this reduction and the reduction in Subsection 3.1. Denote
with v(aj1 , Bj), v(aj2 , Bj), and v(aj3 , Bj) the center vertices of these stars and
denote with VB the set of all these center vertices, formally VB = {v(ai, Bj) |

24



v(B2)

v(a2, B2)

· · ·

v(a4, B2)

· · ·

v(a6, B2)

· · ·
set-gadget used in Reduction 1

v(a2, B2)

· · ·

v(a4, B2)

· · ·

v(a6, B2)

· · ·

set-gadget used in the
reduction for caterpillars

Figure 7: The difference between the set-gadgets used in Reduction 1 and the reduction
showing NP-hardness of Anonym E-Del on caterpillars. Deleting the vertex v(B2) corresponds
to deleting the two edges {v(a2, B2), v(a4, B2)} and {v(a4, B2), v(a6, B2)}.

1 ≤ i ≤ 3h ∧ 1 ≤ j ≤ β ∧ ai ∈ Bj}. Next, add the edges {v(aj1 , Bj), v(aj2 , Bj)}
and {v(aj2 , Bj), v(aj3 , Bj)} to E. Observe that deg(v(aj1 , Bj)) = f(j1) + 1,
deg(v(aj2 , Bj)) = f(j2) + 2, and deg(v(aj3 , Bj)) = f(j3) + 1. To end up with
one caterpillar instead of a forest of caterpillars, do the following:

1. Take two different connected components (caterpillars) C1 and C2, let v1

be an endpoint of a dominating path in C1, and let v2 be an endpoint of a
dominating path in C2, such that degG(v1) = degG(v2) = 1.

2. Then, add the edge {v1, v2} to reduce the number of connected components
by one.

3. If there exists more than one connected component, goto Step 1.

The resulting graph is clearly a caterpillar. We complete the construction of I ′
by setting s = 2h and k = 2.

We now prove that I is a yes-instance of Exact Cover by 3-Sets if and
only if I ′ = (G, k, s) is a yes-instance of Anonym E-Del.

“⇒:” Let B′ ⊆ B be an exact cover of size h. Then we construct a 2-deletion
set S ⊆ E of size 2h as follows: For each set Bj ∈ B′ with Bj = {aj1 , aj2 , aj3}
insert the edges {v(aj1 , Bj), v(aj2 , Bj)} and {v(aj2 , Bj), v(aj3 , Bj)} into S. First,
observe that |S| = 2h. Next, we show that S is indeed a 2-deletion set. Suppose
towards a contradiction that there exists a vertex v ∈ V such that there is no
further vertex of the same degree in G−S. Then, by construction of G, it follows
that v = v(ai) ∈ VA for some i ∈ {1, 2, . . . , 3h} and, by construction of S, it
follows that ai /∈

⋃
Bj∈B′ Bj , a contradiction.

“⇐:” Let S be a 2-deletion set of edges of size at most 2h. Observe that the
only vertices in G that violate the 2-anonymous property are the vertices in VA.
Furthermore, for each ai ∈ A there is exactly one vertex in G with a degree d
between f(i)−2h ≤ d ≤ f(i), namely v(ai). Since S is a 2-deletion set, it follows
that for each v(ai) ∈ VA there is a vertex v ∈ V (S) having the same degree
as v(ai) inG−S. Since |VA| = 3h and |deg(v(ai))−deg(v(ai′))| > 2h for all i, i′ ∈
{1, 2, . . . , 3h}, it follows that |V (S)| ≥ 3h. For the further argumentation we
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need some notation. A vertex v ∈ V is a type-` vertex, ` ∈ N, if there exists
a vertex v(ai) ∈ VA such that degG(v) = degG(v(ai)) + `. Now, observe that
in G the type-1 vertices are all pairwise non-adjacent and have pairwise disjoint
neighborhood sets. Thus, V (S) contains at most 2h type-1 vertices. Furthermore,
since |V (S)| ≥ 3h, this implies that V (S) contains exactly 2h type-1 vertices
and exactly h type-2 vertices and that |V (S)| = 3h. Thus, for each edge in S
it follows that one endpoint is a type-1 vertex and the other endpoint is a
type-2 vertex. Note that the only edges fulfilling this requirement are the ones
making two vertices in VB adjacent and, thus, V (S) ⊆ VB. Thus, each type-2
vertex of V (S) is contained in some set-gadget. Denote with B′ the set of h
sets corresponding to the set-gadgets that contain the h type-2 vertices in V (S).
We now prove that B′ is an exact cover. Suppose towards a contradiction that
there is an element ai /∈

⋃
Bj∈B′ Bj . This implies, that no vertex v(ai, Bj) such

that j ∈ {1, 2, . . . , n} and ai ∈ Bj is contained in V (S). However, as V (S) ⊆ VB,
this means that v(ai) has a unique degree in G− S, a contradiction to the fact
that S is a 2-deletion set. Finally, since |B′| = h,

⋃
Bj∈B′ Bj = A, each set

contains exactly three elements, and |A| = 3h, it follows that no element is
covered twice. Hence, B′ is an exact cover and, thus, I is a yes-instance.

Note that Exact Cover by 3-Sets is fixed-parameter tractable with respect
to the solution size h: There is a simple polynomial kernel which can be obtained
by removing for each set all copies from the collection B. After this deletion of
the copies, the number of sets in the collection is bounded by |B| ≤ |A|3 = (3h)3.

Hence, we cannot state an equivalent of Corollary 9. However, since we
established NP-completeness for k = 2, we obtain the following equivalent of the
polynomial-time inapproximability result in Corollary 10.

Corollary 19. For every 0 < ε < 1, Max-Anonym V-Del on caterpillars
cannot be approximated within a factor of 2−ε in polynomial time, unless P = NP.

4.2. Inapproximability Results
As in Subsection 3.3, we can state strong inapproximability results for

Anonym Min-E-Del and Max-Anonym E-Del. We remark that these
inapproximability results transfer modulo the bounded-degree restriction to
Anonym Min-E-Ins and Max-Anonym E-Ins, since the edge insertion variant
is equivalent to the edge deletion variant in the complement graph.

Two very similar gap-reductions from Exact Cover by 3-Sets yield
that Max-Anonym E-Del as well as Anonym Min-E-Del are not n1−ε-
approximable in polynomial-time on bounded degree graphs.

Theorem 20. For every 0 < ε ≤ 1, Max-Anonym E-Del is not n1−ε-
approximable in polynomial time, even on bounded degree graphs, unless P = NP.

Proof. Let 0 < ε ≤ 1 be a constant. We provide a gap-reduction with gap n1−ε

from Exact Cover by 3-Sets which remains NP-complete even when no
element occurs in more than three subsets [20, SP2]. For these instances we
have h ≤ β ≤ 3h.
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Let I = (A,B, h) be an instance of Exact Cover by 3-Sets where no
element occurs in more than three subsets. Construct an instance I ′ = (G, s) of
Max-Anonym E-Del as follows. The graph G = (V,E) contains an element-
vertex v(ai) for each element ai from A and a set-vertex v(Bj) for each subset Bj
from B. There is an edge in G between v(ai) and v(Bj) if Bj contains ai. For
each vertex v(Bj) add four degree-one vertices that are adjacent to v(Bj), thus
the degree of each vertex v(Bj) is seven. For each vertex v(ai) add up to three
degree-one vertices that are adjacent to v(ai) such that the degree of v(ai) is three
(observe that each element occurs in at most three sets). Set x :=

⌈
(6h171−ε)1/ε

⌉
.

Next, add x starsK1,7 and x starsK1,4 to G. If the number of degree-one vertices
is odd, then add one further star K1,7 to G to ensure that the number of degree-
one vertices is even. Now, add a perfect matching on the degree-one vertices to
increase their degrees to two. Finally set s := 3h. Thus the graph G has β + x
or β+x+1 degree-seven vertices, x degree-four vertices, 3h degree-three vertices,
and between 4β + 11x and 4β + 9h + 11x + 7 degree-two vertices. Hence,
G is 3h-anonymous. Overall, G is a graph with maximum degree seven and at
most 12x+ 12h+ 5β+ 7 vertices. Observe, that x ≥ 6h ≥ 2β and thus |V | ≤ 17x.

We now show that if I is a yes-instance, then opt(I ′) ≥ x and if I is a
no-instance, then opt(I ′) ≤ 6h.

Suppose that I contains an exact cover B′ ⊆ B of size h. Then removing
from G the 3h edges between v(Bj) ∈ B′ and v(ai) ∈ A, we obtain an x-anony-
mous graph G′, since all vertices from the block of degree three from G are in G′
in the block of degree two.

Suppose that S ⊆ E is a (6h + 1)-deletion set of size |S| ≤ s = 3h, that
is, G− S is (6h+ 1)-anonymous. First, observe that V (S) does not contain a
vertex having degree two in G: Since |S| ≤ 3h, at most 6h degree-two vertices
can be contained in V (S). Since G− S is (6h+ 1)-anonymous and G does not
contain any degree-zero or degree-one vertices, this implies that V (S) does not
contain any degree-two vertex. Next, observe that the only edges in G that
have no degree-two vertex as endpoint are edges with one set-vertex and one
element-vertex as endpoints. Since each set-vertex is, by construction, adjacent
to at most three element-vertices, this implies that all set-vertices in G− S have
degree at least four. Furthermore, since the 3h element-vertices are the only
vertices in G having degree three and S is a (6h+ 1)-deletion set, this implies
that V (S) contains all element-vertices. Hence, |S| = 3h and each element-vertex
is incident to exactly one edge in S. Observe that G contains no vertex of degree
five or six. Since S is a (6h+ 1)-deletion set, this implies that each set-vertex
in V (S) has degree four in G − S and is incident to exactly three edges in S.
Hence, V (S) contains exactly h set-vertices and the corresponding sets form an
exact cover of size h for I. Thus, if I does not contain any exact cover of size h,
then there exists no (6h+ 1)-deletion set of size h for G and, hence, opt(I ′) ≤ 6h.

Thus we obtain a gap-reduction with the gap

x

6h
=
xεx1−ε

6h
=

6h · 171−ε · x1−ε

3h
≥ (17x)1−ε ≥ |V |1−ε.
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Adjusting the gap-reduction above a little bit yields the following result.

Theorem 21. For every 0 < ε ≤ 1, Anonym Min-E-Del is not n1−ε-
approximable in polynomial time, even on bounded degree graphs, unless P = NP.

Proof. Let 0 < ε ≤ 1 be a constant. We provide a gap-reduction with gap n1−ε

from Exact Cover by 3-Sets to Anonym Min-E-Del. This reduction is
very similar to the gap-reduction provided in the proof of Theorem 20. Let I =
(A,B, h) be an instance of Exact Cover by 3-Sets where no element occurs
in more than three subsets. We provide an instance I ′ = (G, k) of Anonym
Min-E-Del where the graph is constructed as in the proof of Theorem 20
and k := x.

We now show that if I is a yes-instance then opt(I ′) = 3h and if I is a
no-instance then opt(I ′) ≥ x/2.

Suppose that I contains an exact cover B′ ⊆ B of size h. Then removing
from G the 3h edges between v(Bj) ∈ B′ and v(ai) ∈ A, we obtain a k-anonymous
graph G′, since all vertices from the block of degree three from G are in G′ in
the block of degree two.

Suppose that G has a k-deletion set S of size at most x/2− 1. First, observe
that V (S) does not contain a vertex having degree two in G: Since |S| ≤ x/2− 1,
at most x − 2 degree-two vertices can be contained in V (S). Since G − S is
k-anonymous, k = x, and G does not contain any degree-zero or degree-one
vertex, this implies that V (S) does not contain any degree-two vertex. Next,
observe that the only edges in G that have no degree-two vertex as endpoint
are edges with one set-vertex and one element-vertex as endpoints. Since each
set-vertex is, by construction, adjacent to at most three element-vertices, this
implies that all set-vertices in G − S have degree at least four. Furthermore,
since the 3h element-vertices are the only vertices in G having degree three
and S is a k-deletion set with k = x > 3h, this implies that V (S) contains
all element-vertices. Furthermore, as G does not contain any degree-zero or
degree-two vertex, it follows that each element-vertex is incident to exactly one
edge in S. Observe that G contains no vertex of degree five or six. Since S is a
k-deletion set of size at most x/2− 1, this implies that each set-vertex in V (S)
has degree four in G − S and is incident to exactly three edges in S. Hence,
V (S) contains exactly h set-vertices and the corresponding sets form an exact
cover of size h for I. Thus, if I does not contain any exact cover of size h, then
there exists no k-deletion set of size x/2− 1 for G and, hence, opt(I ′) ≥ x/2.

Thus we obtain a gap-reduction with the gap at least x/(2·3h) ≥ |V |1−ε (see
the proof of Theorem 20 for intermediate steps in the inequality).

Similarly to Max-Anonym V-Del, we now show strong inapproximability
of Max-Anonym E-Del, even when allowing fpt-time instead of polynomial
time. Note that, in contrast to the vertex deletion case in Subsection 3.3, we
obtain the same inapproximability result as in the minimization variant in terms
of the approximation factor. Unlike the previous reductions and the reductions
in Subsection 3.3, we reduce from the W[1]-complete Clique problem, thus
building on a slightly stronger assumption.
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Theorem 22. For every 0 < ε ≤ 1, Max-Anonym E-Del is not fixed-
parameter n1−ε-approximable with respect to parameter s, unless FPT = W[1].

Proof. Let 0 < ε ≤ 1 be a constant. We provide an fpt gap-reduction with
gap n1−ε from the W[1]-complete Clique problem [13] parameterized by the
solution size h.
Clique [20, GT19]
Input: An undirected graph G = (V,E) and an integer h ∈ N.
Question: Is there a subset V ′ ⊆ V of at least h pairwise adjacent vertices?

Input:
h = 4

Solution:

Let I = (G, h) be an instance of Clique. Assume without loss of generality
that ∆G + 2h+ 1 ≤ n, where n = |V |. If this is not the case, then one can add
isolated vertices to G until the bound holds.

We construct an instance I ′ = (G′ = (V ′, E′), s) of Max-Anonym E-Del
as follows: First, copy G into G′. Then, add a vertex u and connect it to the n
vertices in G′. Next, for each vertex v ∈ V add to G′ degree-one vertices that are
adjacent only to v such that degG′(v) = n− h. This is always possible since we
assumed ∆G + 2h+ 1 ≤ n. Observe that in this way at most n(n−h) degree-one
vertices are added. Now, set x := d(4n)3/εe and add cliques with two, n− 2h+ 1,
and n−h+1 vertices such that after adding these cliques the number of degree-d
vertices in G′, for each d ∈ {1, n−2h, n−h}, is between x+h and x+h+n, that
is, x+ h ≤ |BG′(d)| ≤ x+ h+ n; recall that BG′(d) is the set of vertices having
degree d in G′. After inserting these cliques, the graph consists of four blocks: of
degree one, n− h, n− 2h, and n, where the first three blocks are roughly of the
same size (between x+ h and x+ h+ n vertices) and the last block of degree n
contains exactly one vertex. To finish the construction, set s :=

(
h
2

)
+ h.

Now we show that if I is a yes-instance, then opt(I ′) ≥ x, and if I is a
no-instance, then opt(I ′) < 2s.

Suppose that I contains a clique C ⊆ V of size h. Then, deleting the
(
h
2

)
edges

within C and the h edges between the vertices in C and u does not exceed the
budget s and results in an x-anonymous graph G′′: Since h edges incident to u
are deleted, it follows that degG′′(u) = n − h. Furthermore, for each clique-
vertex v ∈ C also h incident edges are deleted (h−1 edges to other clique-vertices
and the edge to u), thus it follows that degG′′(v) = n− 2h. Since the degrees of
the remaining vertices remain unchanged, and |BG′(n− h)| ≥ x+ h, it follows
that each of the three blocks in G′′ has size at least x. Hence, G′′ is x-anonymous.

For the reverse direction, suppose that there is a 2s-deletion set S of size
at most s in G′. Since u is the only vertex in G′ with degree n, and all other
vertices in G′ have degree at most n− h, it follows that S contains at least h
edges that are incident to u. Since NG′(u) = V , it follows that the degree of
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at least h vertices of the block BG′(n − h) is decreased by one. Denote these
vertices by C. Since |S| ≤ s and h edges incident to u are contained in S, it
follows that at most 2s−h+1 vertices are incident to an edge in S. Furthermore,
since S is a 2s-deletion set, it follows that the vertices in C have in G′−S either
degree one or degree n− 2h. Thus, by deleting the at most

(
h
2

)
remaining edges

in S, the degree of each of the h vertices in C is decreased by at least h − 1.
Hence, these

(
h
2

)
edges in S form a clique on the vertices in C and thus I is a

yes-instance. Therefore, it follows that if I is a no-instance, then there is no
2s-deletion set of size s in G′′ and hence opt(I ′) < 2s.

Altogether, we obtain a gap-reduction with the gap at least x/(2s). Set n′ :=
|V ′|. By construction we have 3x ≤ n′ ≤ n2 + 3x+ 3h+ 3n+ 1. By the choice
of x it follows that x > n′/4, since

n′

4
≤ 1

4
(n2 + 3x+ 3h+ 3n+ 1) = x+

1

4
(n2 + 3h+ 3n+ 1− x)︸ ︷︷ ︸

<0

< x.

Hence the gap is

x

2s
>

(n′)1−ε+ε

4(h2 + h)
≥ n′1−ε (n′)ε

8h2
> (n′)1−ε x

ε

8n2
= (n′)1−ε (4n)3ε/ε

8n2
> (n′)1−ε.

Thus, the statement of the theorem follows from Lemma 1.

Note that the reduction above also shows that Anonym E-Del is W[1]-hard
with respect to the combined parameter (s, k): It is shown that if the input
graph G contains a clique of size h, then there exists an x-deletion set S of
size s =

(
h
2

)
+ h in G′. Since x > 2s it follows that S is also a 2s-deletion set

of size s. We also proved that if G′ contains a 2s-deletion set of size s, then
there exists a size-h clique in G. Hence, we obtain the following: (G, h) is a
yes-instance of Clique if and only if (G′, 2s, s) is a yes-instance of Anonym
E-Del. Thus, we arrive at the following corollary.

Corollary 23. Anonym E-Del is W[1]-hard with respect to the combined
parameter (s, k).

5. Fixed-Parameter Tractable Cases

Theorem 2 and Corollaries 7 and 23 show that Anonym E-Del and Anonym
E-Del are fixed-parameter intractable for the each of single parameters s, k,
and ∆ as well as for the combined parameter (s, k). Here we show fixed-parameter
tractability with respect to the combined parameter (s,∆) for the following
general problem variant where one might insert and delete specified numbers of
vertices and edges.
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Degree Anonymity Editing (Anonym-Edt)
Input: An undirected graph G = (V,E) and five positive inte-

gers s1, s2, s3, s4, and k.
Question: Is it possible to obtain a graph G′ = (V ′, E′) from G using at

most s1 vertex deletions, s2 vertex insertions, s3 edge deletions,
and s4 edge insertions such that G′ is k-anonymous?

Input: k = 5

s4 = 2
s1 = s2 = s3 = 1

Solution:

Observe that here we require that the inserted vertices have degree zero and we
have to “pay” for making the inserted vertices adjacent to the existing ones. In
particular, if s4 = 0, then all inserted vertices are isolated in the target graph.
Note that there are other models where the added vertices can be made adjacent
to an arbitrary number of vertices [9, 10]. Our ideas, however, do not directly
transfer to this variant.

For convenience, we set s := s1 + s2 + s3 + s4 to be the number of allowed
graph modification operations.

Theorem 24. Anonym-Edt is fixed-parameter tractable with respect to the
combined parameter (s,∆).

Proof. Let I = (G = (V,E), k, s1, s2, s3, s4) be an instance of Anonym-Edt. In
the following we describe an algorithm finding a solution if it exists. Intuitively,
the algorithm first guesses a “solution structure” and then checks whether the
graph modification operations associated to this solution structure can be per-
formed in G. A solution structure is a graph S with at most s(∆ + 1) vertices
where

1. each vertex is equipped with an color from {0, 1, . . . ,∆} indicating the
degree of the vertex in G and

2. each edge and each vertex is marked either as “to be deleted”, “to be
inserted”, or “not to be changed” such that

(a) all edges incident to a vertex marked as “to be inserted” are also
marked as “to be inserted”,

(b) at most s1 vertices and at most s3 edges are marked as “to be deleted”,
and

(c) at most s2 vertices and at most s4 edges are marked as “to be inserted”.

The intuition behind this definition is that a solution structure S contains all
graph modification operations in a solution and the vertices that are affected
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by the modification operations, that is, the vertices whose degree is changed
when performing these modification operations. Observe that any solution for I
defines such a solution structure with at most s(∆ + 1) vertices as each graph
modification affects at most ∆ + 1 vertices. This bound is tight in the sense that
deleting a vertex v affects v and its up to ∆ neighbors. Furthermore, observe
that once given such a solution structure, we can check in polynomial time
whether performing the marked edge/vertex insertions/deletions results in a
k-anonymous graph G′ since the coloring of the vertex indicates the degrees of
the vertices that are affected by the graph modification operations.

Our algorithm works as follows: First it branches into all possibilities for
the solution structure S. In each branch it checks whether performing the
graph modification operations indicated by the marks in S indeed result in
a k-anonymous graph. If yes, then the algorithm checks whether the graph
modification operations associated to S can be performed in G. To this end, all
edges and vertices marked as “to be inserted” are removed from S and the marks
at the remaining vertices and edges are also removed and the resulting “cleaned”
graph is called S′. Finally the algorithm tries to find S′ as an induced subgraph
of G such that the vertex degrees coincide with the vertex-coloring in S′. If
the algorithm succeeds and finds S′ as an induced subgraph, then the graph
modification operations encoded in S can be performed which proves that I is a
yes-instance. If the algorithm fails in every branch, then, due to the exhaustive
search over all possibilities for S, it follows that I is a no-instance. Thus, the
algorithm is correct.

As to the running time: There are s(∆ + 1) possibilities for the number
of vertices in the solution structure. Hence, there are at most s(∆ + 1) ·
2(s(∆+1)

2 ) < 2(s(∆+1))2

graphs with s(∆ + 1) vertices. Furthermore, there are at
most (∆ + 1)s(∆+1) possibilities to equip the vertices with colors {0, 1, . . . ,∆}
and 3s(∆+1)+(s(∆+1)

2 ) possibilities to mark the vertices and edges.
Overall, the algorithm branches into 2O((s∆)2) possibilities for the solution

structure S. As mentioned above, checking whether performing the graph
modification operations indicated by S indeed results in a k-anonymous graph
can be done in polynomial time.

Next, the algorithm checks for each S that may lead to a k-anonymous graph
whether the cleaned graph S′ occurs as an induced subgraph in G such that
degree constraints given by the vertex coloring are fulfilled. Observe that since
our input graph G has maximum degree ∆ it also has a local tree-width of at
most ∆ [26]. Thus, for finding S′ as induced subgraph, we can use a general
result of Frick and Grohe [26, Theorem 1.2] showing that deciding whether a
graph H of local tree-width at most ` satisfies a property φ definable in first-order
logic is fixed-parameter tractable with respect to the combined parameter (|φ|, `).
The subgraph isomorphism problem can be solved with this result on graphs
with bounded local tree-width [26]. Thus it remains to specify the part of the
formula φ that ensures the degree constraints. To this end, Frick and Grohe [26]
gave as example the formula

x ∈ V ∧ ¬∃y∃z(¬(y = z) ∧ (x, y) ∈ E ∧ (x, z) ∈ E)
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to express that a vertex x ∈ V has degree at most one. This formula can be
extended to express that x ∈ V has degree at most ` for some 1 ≤ ` ≤ ∆ and
the size of the formula is upper-bounded in a function of ∆. Similarly, removing
the first negation symbol yields the statement that x ∈ V has a degree of at
least two (degree at least `+ 1 in the extended version). Hence, we can express
the degree constraints and the formula size is still bounded by a function of s
and ∆ (as there are up to s(∆ + 1) vertices in S′). Hence, applying the results
of Frick and Grohe [26] shows that the overall algorithm runs in fpt-time with
respect to (s,∆).

We remark that Theorem 24 is a mere classification result. We claim without
proof by slightly adapting the color-coding approach used by Cai et al. [27]
and Golovach [28] one can obtain a running time of 2(s∆)O(1)

nO(1): The idea
is to randomly color the vertices in the graph with green and red. Then
the subgraph G′ = (V ′, E′) we are looking for is with probability 2(∆+1)|V ′|

completely contained within the green vertices and NG(V \ V ′) are colored
red. By brute-force, one can determine in O(|V ′|!) whether a green component
fits with a connected component of the sought subgraph such that the degree
constraints are fulfilled. Thus, using a knapsack dynamic program over the green
components, one can compute the whole subgraph G′ in the claimed running
time. As the running time would be still impractical, we refrain from giving a
formal proof.

Next, we show that considering Anonym V-Del we can assume that s <
f(∆, k) for some function f . This implies that the above fixed-parameter
tractability results transfers to the parameter (k,∆).

Lemma 25. For every yes-instance (G = (V,E), k, s) of Anonym V-Del
with ∆ denoting the maximum degree of G, there is a subset S ⊆ V with |S| <
2∆+1∆3k such that G− S is k-anonymous.

Proof. Let (G = (V,E), k, s) be a yes-instance of Anonym V-Del and let S ⊆ V
be a k-deletion set. We show that if |S| ≥ 2∆∆32k, then we get a smaller
k-deletion set by removing a subset of k vertices from S.

Let D = {0, 1, . . . ,∆} be the set of possible vertex degrees in G − S. We
say a vertex v ∈ S is of type (D′, d′) with D′ ⊆ D and 0 ≤ d′ ≤ ∆ if D′ =
{degG−S(v′) | v′ ∈ NG−S(v)} and d′ = degG[(V \S)∪{v}](v). If |S| ≥ 2∆∆32k,
then S contains a set S′ of ∆2 · 2k vertices which are of the type (D′, d′) for
some D′ ⊆ D and 0 ≤ d′ ≤ ∆. Note that each vertex has at most ∆ vertices in its
first and at most ∆(∆−1) vertices in its second neighborhood. Hence, there must
be a set S′′ ⊂ S′ of 2k independent vertices with pairwise disjoint neighborhoods.
Let S+, S− ⊆ S′′ be any two sets of size k each such that S+∪S− = S′′. Consider
the graphs G1 = G − S and G2 = G − (S \ S+), that is, S+ is the subset of
vertices from S′′ that remains in G2 and S− is the subset of vertices from S′′

that is not in G2.
We show that if G1 is k-anonymous then G2 is also k-anonymous. Ev-

ery vertex from S+ has degree d′ in G2 because S+ is an independent set.
Since |S+| = k, there are at least k vertices of degree d′, that is, the vertices
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from S+ are k-anonymous. Every vertex v that is in G1 and in G2 satisfies
that either degG2

(v) = degG1
(v) or degG2

(v) = degG1
(v) + 1, because the ver-

tices from S+ have pairwise disjoint neighborhoods. Now, there are two cases
for d′′ = degG1

(v): If d′′ /∈ D′, then degG2
(v) = d′′. Furthermore, there are at

least as many vertices of degree d′′ in G1 as in G2, because no vertex from S+ is
adjacent to any vertex of degree d′′ in G1. If d′′ ∈ D′, then a vertex with de-
gree d′′ in G1 may have degree d′′+ 1 in G2 because it is adjacent to some vertex
in S+. However, since the vertices from S+ have pairwise disjoint neighborhoods,
for each of the k vertices from S+ there is at least one vertex that has degree d′′
in G1 and degree d′′ + 1 in G2 Furthermore, for each of the k vertices from S−
there is at least one vertex that has degree d′′ in G1 and G2. In each case, there
are at least k vertices with degree degG2

(v) in G2. Thus, G2 is k-anonymous.

By combining Theorem 24 and Lemma 25 we obtain fixed-parameter tractabil-
ity with respect to the combined parameter (k,∆). For an instance (G, k, s)
of Anonym V-Del simply run the algorithm from Theorem 24 on the in-
stance (G, k,min{s, 2∆∆32k}).

The ideas behind Lemma 25 can be easily transferred to the edge deletion
variant.

Lemma 26. For every yes-instance (G = (V,E), k, s) of Anonym E-Del
with ∆ denoting the maximum degree of G there is a subset S ⊆ E with |S| <
2∆32k such that G− S is k-anonymous.

Proof. Let (G = (V,E), k, s) be a yes-instance of Anonym E-Del and let S ⊆ E
be a k-deletion set. We show that if |S| ≥ 2∆32k, then we get a smaller k-deletion
set by removing a subset of k edges from S.

We say an edge e = {u, v} ∈ S is of type (d1, d2) with 1 ≤ d1, d2 ≤ ∆
if d1 = degG−S(u) and d2 = degG−S(v). If |S| ≥ 2∆32k, then S contains a
set S′ of 2∆ · 2k edges which are of the type (d1, d2) for some 0 ≤ d1, d2 ≤ ∆.
Since each vertex has, by definition of ∆, at most ∆ neighbors, there must be a
set S′′ ⊂ S′ of 2k pairwise disjoint edges. Let S+ ⊆ S′′ be a set of size k. Now,
similarly to proof of Lemma 25, it follows that G− (S \S+) is also k-anonymous
as it contains at least k vertices of degree d1, d1 + 1, d2, and d2 + 1, respectively
and the other vertices remain untouched.

By combining Theorem 24 and Lemma 26 we also obtain fixed-parameter
tractability for Anonym E-Del with respect to the parameter (k,∆). Thus, we
arrive at the following classification result.

Corollary 27. Anonym V-Del and Anonym E-Del are fixed-parameter
tractable with respect to the combined parameter (k,∆).

6. Conclusion

In this work, we provided a thorough overview on the computational com-
plexity of the Degree Anonymity problem when considering vertex or edge
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deletions. We obtained various hardness results from the viewpoints of ap-
proximation and parameterized complexity, even in restricted graph classes.
Besides this large amount of hardness results we obtained a few positive results
(polynomial-time solvable cases) on highly structured graph classes.

Despite this (in terms of algorithmic tractability) discouraging picture of the
computational complexity, a number of open questions remains that still may
raise hope for broader positive results. In particular, these questions are:

1. Are Anonym Min-E-Del or Anonym Min-V-Del constant-factor ap-
proximable in polynomial time when k is a constant?

2. Are the two optimization variants of Anonym E-Edt constant-factor
approximable in polynomial time?

3. What is the complexity of Anonym V-Del on unit interval graphs and
on bipartite chain graphs?

4. Do all our NP-completeness results for Anonym V-Del on special graph
classes (see Subsection 3.2) also carry over to Anonym E-Del?

Despite serious efforts, we failed to extend the polynomial-time inapproxima-
bility results for Anonym Min-E-Del and Anonym Min-V-Del to exclude
approximation algorithms running in fpt-time with respect to the parameter k.
The reason is that all our gap-reductions relied on k being in the order of n.
This restriction made it easy to control the possibilities for the solutions in
the constructed graph, but leaves Question 1 as challenge for future research.
Question 2 seems to be closely related to Question 1 as we failed to answer both
questions for the same reason: The variant of editing edges allows to “repair”
a suboptimal decisions by reverting the degree of a vertex with one further
operation (edge deletion or insertion). In the case of edge deletions with constant
values of k it might be possible to “repair” suboptimal decision by decreasing the
degrees of just a few other vertices. We found no way of dealing even with one
of these two possibilities to repair suboptimal decisions. As to Question 4, our
findings so far support the conjecture that the hardness results mostly transfer,
but the reductions to prove this will become messy.
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