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Abstract

Incrementally k-list coloring a graph means that a graph is given by adding
vertices step by step, and for each intermediate step we ask for a vertex
coloring such that each vertex has one of the colors specified by its associated
list containing some of in total k colors. We introduce the “conservative
version” of this problem by adding a further parameter c ∈ N specifying the
maximum number of vertices to be recolored between two subsequent graphs
(differing by one vertex). The “conservation parameter” c models the natural
quest for a modest evolution of the coloring in the course of the incremental
process instead of performing radical changes. We show that even on biparite
graphs the problem is NP-hard for k ≥ 3 and W[1]-hard for an unbounded
number of colors when parameterized by c. In contrast, also on general
graphs the problem becomes fixed-parameter tractable with respect to the
combined parameter (k, c). We prove that the problem has an exponential-size
kernel with respect to (k, c) and there is no polynomial-size kernel unless
NP ⊆ coNP/poly. Furthermore, we investigate the parameterized complexity
on various subclasses of perfect graphs. We show fixed-parameter tractability
for the combined parameter treewidth and number k of colors. Finally, we
provide empirical findings on the practical relevance of our approach in terms
of an effective graph coloring heuristic.
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1. Introduction

We study an incremental version of the graph coloring problem:

Incremental Conservative k-List Coloring (IC k-List
Coloring)
Input: A graph G = (V,E), x ∈ V , a k-list coloring f for
G[V \{x}] with respect to the color lists L(v) ⊆ {1, . . . , k} ∀v ∈ V ,
and c ∈ N.
Question: Is there a k-list coloring f ′ for G such that the cardi-
nality of {v ∈ V \ {x} | f(v) 6= f ′(v)} is at most c?

Herein, a function f : V → {1, 2, . . . , k} is called a k-coloring for a graph G =
(V,E) when f(u) 6= f(v) for all {u, v} ∈ E. For color lists L(v) ⊆ {1, . . . , k},
v ∈ V , a k-coloring for G is called a k-list coloring when f(v) ∈ L(v) for all
v ∈ V . Occasionally, we also study IC k-Coloring, which is the special
case that L(v) = {1, . . . , k} for all v ∈ V .

Intuitively, IC k-List Coloring models that a graph is built by sequen-
tially adding vertices (together with the incident edges). Thereby, referring
to the added vertex by x, the task is to efficiently compute a k-list color-
ing for G = (V,E) from a known k-list coloring of G[V \ {x}]. It can be
understood as an incremental version of k-List Coloring, where one has
to find a k-list coloring from scratch. As will turn out, the introduction of
the conservation parameter c in the above definition helps in making the
otherwise hard problem (fixed-parameter) tractable. Notably, conservation
has a natural justification from applications where one may rather prefer an
“evolution” of the coloring through the incremental process than a “revolution”.
We will become more specific about this in the following.

Related Work. We start by describing the related incremental clustering
problem Incremental Constrained k-Center. Here, we are given a
pairwise distance function on objects and a partition of the objects into
k clusters, a so-called k-clustering, such that the objective function “max-
imum distance between objects in the same cluster” is minimized. Then,
after adding one new object, the task is to compute a new k-clustering under
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the constraint that at most c objects of the previous clustering change their
cluster and the value of the objective function is not getting worse. Here
the conservation parameter c reflects the fact that in many settings users
would not accept a radical change of the clustering since this may cause a big
loss of information acquired in a costly process for the previous clustering.
Incremental Constrained k-Center can be interpreted as a special
case of IC k-Coloring as follows: Model the objects as vertices of a graph
such that there is an edge between two vertices if the distance between the
corresponding objects is greater than the value of the objective function.

Incremental Constrained k-Center is only one example from the
field of constrained clustering [1], where an incremental and also conservative
approach as introduced here seems promising. Roughly speaking, in con-
strained clustering one tries to make use of additional information about the
problem domain where the objects to be clustered come from. The additional
information is provided by so-called constraints where the most prominent
are must-link (two objects must belong to the same cluster) and cannot-link
constraints (two objects have to be in different clusters). Furthermore, in the
field of dynamic graph clustering, algorithms that locally optimize a clustering
for a changing set of objects instead of computing it from scratch have been
identified as useful, not only measured in terms of running time but also in
terms of clustering quality [26]. Refer to Charikar et al. [11] for a broader
view on incremental clustering and an analysis in terms of performance ratio
of polynomial-time approximation algorithms.

The k-List Coloring problem is a well-studied generalized graph color-
ing problem, where a graph together with a list of admissible colors for each
vertex is given and one has to decide whether the graph admits a k-list coloring
or not. In contrast to k-Coloring, where all colors are admissible for each ver-
tex, k-List Coloring remains NP-hard even on subclasses of perfect graphs
such as planar bipartite, (unit) interval and (complete) split graphs [9]. From a
parameterized point of view, it has been shown that k-List Coloring is W[1]-
hard with respect to treewidth [19] and, recently, even for vertex cover size [22].

Incremental coloring is closely related to the Precoloring Extension
problem (PrExt), which is the special case of k-List Coloring where each
color list contains either one or all colors. In other words, the task is to extend
a partial k-coloring to the entire graph. It has been shown that on general
graphs PrExt is not fixed-parameter tractable with respect to the parameter
treewidth [19] but, unlike k-List Coloring, it becomes fixed-parameter
tractable when parameterized by the vertex cover size [22]. Moreover, PrExt
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is NP-complete on planar bipartite graphs [34] and W[1]-hard with respect to
the number of precolored vertices for interval graphs [35]. We will show that
the NP-hardness results can be transferred to IC k-List Coloring for all
hereditary graph classes but it becomes tractable when adding a conservation
parameter.

Our incremental coloring setting based on the conservation parameter c
can also be interpreted as a local search approach where c measures the
degree of locality. Recently, there has been strong interest in analyzing
the parameterized complexity of l-local search in terms of some locality
parameter l [20, 27, 37]. Our locality measure c can also be seen as “transition
cost” between old and new solutions—to keep this cost small has been
identified as an important target, for instance, in the application of the
reconfiguration of data placements [41].

A further related field of studies is reoptimization [3]. Here, starting
with an optimal solution of an optimization problem, one asks how to com-
pute a solution for a locally modified instance more efficiently by using the
known solution for the old instance instead of starting the computation from
scratch. We shall show that without adding the conservation parameter
the reoptimization of coloring problems remains hard even on special graph
classes.

Our Results. We begin a study of IC k-List Coloring in terms of
parameterized complexity [17, 24, 38], considering the two parameters k
(number of colors) and c (number of recolored vertices). We show that the
problem is NP-hard for fixed k ≥ 3 and W[1]-hard when parameterized by c. In
contrast, it becomes fixed-parameter tractable with respect to the combined
parameter (k, c). We show that IC k-List Coloring has a 3(k − 1)c-
vertex kernel and that there is (under some reasonable complexity-theoretic
assumptions) no polynomial kernel with respect to (k, c). Furthermore, we
initiate the study of IC k-List Coloring’s parameterized complexity on
special graph classes. For instance, we show that IC k-List Coloring
is polynomial-time solvable on trees and, in general, it is fixed-parameter
tractable with respect to the combined parameter k and treewidth. In addition,
we show that IC k-List Coloring admits a polynomial kernel on unit
interval graphs whereas it, by reasonable complexity-theoretic assumptions,
does not on bipartite graphs. Finally, meant as a proof of concept we
provide first empirical evidence for the practical relevance of “parameterizing
by conservation”, demonstrating how our algorithms can be successfully
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employed as subroutines in an effective iterative local search heuristic for
graph coloring.

2. Preliminaries

In this paper, all graphs are simple and undirected. For a graph G = (V,E),
we set V (G) := V and E(G) := E. Analogously, for a path P = [v1, . . . , vj],
where we interpret the edges to be directed from start to the end vertex, we
write V (P ) := {v1, . . . , vj} and E(P ) := {(vi, vi+1) | 1 ≤ i < j} for all directed
edges on P . For a graph G = (V,E) and a vertex set S ⊆ V , we write G[S] to
denote the graph induced by S in G, that is, G[S] := (S, {e ∈ E | e ⊆ S}). If
the graph G[S] is edgeless, we call S an independent set. We define the (open)
neighborhood of a vertex v by N(v) := {u ∈ V | {u, v} ∈ E}. Moreover, for a
given k-coloring f of G and a color i, we set N(v, i) := {u ∈ N(v) | f(u) = i}.
For a vertex v ∈ V , we write G−v instead of G[V \{v}] and, correspondingly,
for a vertex set S ⊆ V we write G − S instead of G[V \ S]. For a vertex
subset S ⊂ V we briefly write E(S) for E(G[S]).

A graph class F is hereditary if it is closed under taking induced subgraphs,
that is for all G ∈ F and vertex subsets S ⊆ V (G) it holds that G[S] ∈ F .
Moreover, we call a graph class F closed under attaching pendant vertices
when for all graphs G ∈ F and v ∈ V (G), after adding a new vertex v′ and
connecting it to v, the modified graph remains in F .

For a finite alphabet Σ, consider a parameterized language L ⊆ Σ∗ × N.
The corresponding decision problem is called the parameterized problem
and it is fixed-parameter tractable if all instances (I, k) ∈ Σ∗ × N can be
decided in f(k) · |I|O(1) time, where k is the problem parameter and the
computable function f solely depends on k [17, 24, 38]. The corresponding
algorithm is called a fixed-parameter algorithm. A recent development extends
parameterized complexity analysis into a multivariate complexity analysis
where the parameter typically consists of more than one number [18, 39].

A parameterized reduction from a parameterized language L to another
parameterized language L′ is a function that, given an instance (I, k) of L,
computes in f(k)·|I|O(1) time an instance (I ′, k′) of L′ (with k′ only depending
on k) such that (I, k) ∈ L ⇔ (I ′, k′) ∈ L′. Based on this, Downey and
Fellows [17] established a hierarchy of complexity classes in order to classify
(likely) fixed-parameter intractable problems. The basic class of parameterized
intractability is W[1] and there is strong evidence that a problem shown to
be W[1]-hard is not fixed-parameter tractable [17, 24, 38].
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Problem kernelization is a core tool in the design and analysis of fixed-
parameter algorithms [5, 28]. A kernelization of a parameterized problem
is a polynomial-time computable function transforming an instance (I, k)
into another instance (I ′, k′) of the same problem such that k′ ≤ k, (I, k) ∈
L ⇔ (I ′, k′) ∈ L, and |I ′| ≤ g(k) for a computable function g [17, 24, 38].
Furthermore, we refer to the reduced instance (I ′, k′) as problem kernel
and g measures its size. If g is a polynomial function then we call (I ′, k′) a
polynomial kernel. The process of kernelization is often specified by so-called
data reduction rules.

3. Complexity of IC k-List Coloring

In this section, we first show that IC k-Coloring and thus also IC k-List
Coloring is NP-complete even on bipartite graphs for any k ≥ 3 (see Sec-
tion 3.1). In the second part (Section 3.2), we start showing W[1]-hardness
for IC k-List Coloring with respect to the conservation parameter c.
Since we encounter computational hardness with respect to these “natural“
parameterizations, we then proceed with a simple search tree strategy show-
ing that IC k-List Coloring is fixed-parameter tractable with respect
to the combined parameter (k, c). Moreover, we examine the complexity
of IC k-Coloring in comparison to IC k-List Coloring. Finally, we
investigate the dividing line between tractability and hardness for IC k-List
Coloring when restricted to special graph classes.

3.1. NP-Completeness

Proposition 1. IC k-List Coloring ( IC k-Coloring) is NP-complete
under Turing-reductions on all hereditary graph classes where k-List Col-
oring ( k-Coloring) is NP-complete.

Proof. Containment in NP is obvious. For the hardness proof, we Turing-
reduce k-Coloring to IC k-Coloring on a hereditary graph class F as
follows. Let G = (V,E) ∈ F with V = {v1, . . . , vn} be an instance of
k-Coloring on F .

Set Gi := G[{v1, . . . , vi}] for 1 ≤ i ≤ n. Note that Gn = G and Gi ∈ F
for all 1 ≤ i ≤ n. To decide the k-colorability of G, we proceed inductively:
Obviously, if some Gi, 1 ≤ i ≤ n, is not k-colorable, then G is neither.
Assume that Gi−1 is k-colorable. Choosing c := i, which allows to recolor all
vertices, it follows for all 1 ≤ i < n that Gi+1 is k-colorable iff Gi+1 can be
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incrementally colored by recoloring at most c vertices in a k-coloring for Gi.
Thus, we can decide the question about the k-colorability of G inductively by
deciding at most n recoloring problems. This implies the NP-hardness under
Turing-reductions of IC k-Coloring on the graph class F if k-Coloring
is NP-hard on F .

The presented construction also works for the Turing-reduction from
k-List Coloring to IC k-List Coloring.

Proposition 1 implies that IC k-List Coloring is NP-complete (under
Turing-reductions) on complete bipartite, chordal, and (unit) interval graphs.
In Section 4.3, we investigate the complexity of IC k-List Coloring
on special graph classes in more detail. The strategy behind the proof of
Proposition 1 is also used in Section 5 to devise an empirically effective
heuristic for graph coloring. Furthermore, with the same strategy it can be
shown that the W[1]-hardness results for k-List Coloring with respect
to treewidth [19] and with respect to vertex cover size [22] carry over to
IC k-List Coloring.

Note that Proposition 1 only proves NP-hardness with respect to Turing-
reductions. Like many-to-one reductions, they also imply the non-existence
of a polynomial-time algorithm, unless NP = P. For our further theorectical
studies concerning polynomial kernelizability, however, we need NP-hardness
with respect to many-to-one reductions. The following theorem states that
even in the case k = 3 and without color lists, the resulting IC 3-Coloring
problem is NP-complete.

Theorem 2. IC 3-Coloring is NP-complete on bipartite graphs.

Proof. Containment in NP is obvious. We next prove NP-hardness. Bodlaen-
der et al. [7, Theorem 1] have shown that PrExt is NP-complete for k = 3 on
bipartite graphs. More specifically, given a bipartite graph G = (V1 ∪ V2, E)
and three distinguished vertices v1, v2, and v3 in G, it is NP-hard to decide
whether there is a 3-coloring f of G such that f(vi) = i for all i ∈ {1, 2, 3}.
Since each bipartite graph is 2-colorable, there is a trivial solution for PrExt
with k = 3 on bipartite graphs when the vertices {v1, v2, v3} are not con-
tained in the same partition (either V1 or V2). Thus, we can assume that
v1, v2, v3 ∈ V1. In order to construct an equivalent IC 3-Coloring instance
(G′, x, f ′, c), let G′ be a copy of G and let f ′ be a 2-coloring of G′ where all
vertices in V1 receive color 1 and, correspondingly, all vertices in V2 have
color 2.
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Next, we extend G′ and, correspondingly, f ′. To this end, forbidding a
color i ∈ {1, 2, 3} for a vertex v means that we add c degree-one neighbors
to v where all of them have color i. Clearly, this operation can be always
performed without destroying bipartiteness and vertex v cannot have color i
in any solution for IC 3-Coloring, since before recoloring v to i one has
to recolor all of the at least c neighbors of v with color i. We now add
the vertex x to G′ and we forbid color 1 and 3 for x. Moreover, we add a
degree-two neighbor u2 to x which is also adjacent to v2. We set the color
of u2 to 2 and forbid color 3 for u2. Observe that, since x can be only colored
with 2, this forces a recoloring of u2 to 1 and thus forces v2 to be recolored.
By forbidding color 3 for v2 we force that v2 gets color 2 in any solution.
Symmetrically, in order to force that v3 gets color 3, we add a degree-two
vertex u3 of color 2 which is adjacent to x and v3. Moreover, we forbid
color 3 for u3 and color 2 for v3. Observe that G′ is still bipartite. We forbid
color 2 and 3 for vertex v1, and thus v1 cannot be recolored. Finally, we
set c := |V1 ∪ V2| + 2 and, thus, we allow to recolor all vertices in G′ that
correspond to G plus the two vertices {u1, u2}.

By the construction above, it is clear that the vertices {v2, v3} are forced
to recolor such that v2 gets color 2 and v3 gets color 3. Moreover, the color
of v1 cannot be changed. Then, the value of c allows to recolor all other
vertices that corresponds to G and, thus, any recoloring of G′ with at most c
recolorings corresponds to a 3-coloring of G where the color of vi is i for
all i ∈ {1, 2, 3}.

Clearly, if IC k-Coloring is NP-hard on a graph class F , then IC k-List
Coloring is NP-hard on F as well. Herein, the corresponding reduction
simply adds a list of all colors to each vertex.

Corollary 3. IC k-List Coloring is NP-complete on bipartite graphs.

Having shown that all hardness results for IC k-Coloring transfer to
IC k-List Coloring, the following theorem states that the reverse direction
holds on graph classes that are closed under attaching pendant vertices.

Theorem 4. If IC k-List Coloring is NP-hard on a graph class F that
is closed under attaching pendant vertices, then IC k-Coloring is also
NP-hard on F .

Proof. Consider an instance (G, f, L, c, x) of IC k-List Coloring on a
graph class F which is closed under attaching pendant vertices. The graph G′,
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which is intended to be part of an equivalent IC k-Coloring instance, is
initialized with G. Then, for each vertex v ∈ V (G) and each color i /∈ L(v),
add c pendant vertices (each of these vertices is only adjacent to v) of color i
to the graph. Obviously, these vertices prevent a recoloring of v with color i,
meaning that each recoloring of G′ is also a valid recoloring of G and vice
versa. In total, because there are at most (k−1) “missing colors” in each color
list, we added at most c · (k− 1) · V (G) pendant vertices by this construction.
Finally, the parameter c for the IC k-Coloring instance is equal to the
given one in the IC k-List Coloring instance.

For example, by Theorem 4 IC k-Coloring is NP-complete on planar
bipartite and chordal graphs. Again, we refer to Section 4.3 for a deeper
investigation of the complexity of IC k-Coloring on special graph classes.

3.2. Parameterized Complexity

We proceed by considering the parameterized complexity of IC k-List
Coloring with respect to the parameter c (for unbounded k). In contrast
to the parameter k, when c is a constant, IC k-List Coloring clearly
becomes polynomial-time solvable; this immediately follows from performing
a straightforward brute-force algorithm where the degree of the polynomial
depends on c. However, we show that IC k-List Coloring is W[1]-hard with
respect to the parameter c, excluding hope for fixed-parameter tractability.

In order to show the W[1]-hardness with respect to c, we present a param-
eterized reduction from the W[1]-complete k-Multicolored Independent
Set problem [21]. This is the problem to decide for a given k-coloring f
of a graph G whether there is a k-multicolored independent set, that is, an
independent set S ⊆ V (G) with |S| = k and ∀u, v ∈ S : f(u) 6= f(v).

Theorem 5. IC k-List Coloring is W[1]-hard with respect to the parame-
ter c.

Proof. Let G = (V,E) with V = {v1, . . . , vn} be a k-colored graph (through a
coloring f), taken as an instance for k-Multicolored Independent Set.
We construct a graph G′ = (V ′, E ′) from G such that by choosing c := 2k the
instance (G′, x, f ′, L, c) is an equivalent instance of IC k-List Coloring.
Herein, f ′ is a list coloring of G′ − x with n+ 1 colors and L represents the
color lists L(v), v ∈ V ′. Note that x is the vertex added in the incremental
process. We add k + 1 new vertices to V , setting V ′ := V ∪ {x, s1, . . . , sk}.
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Figure 1: Illustration of the parameterized reduction in the proof of Theorem 5. On the
left-hand side, an instance of k-Multicolored Independent Set, consisting of a graph
on the vertex set {v1, . . . , v6} and a 3-coloring, is depicted. The instance of IC k-List
Coloring constructed in the reduction is shown on the right-hand side. The vertex
subset {v2, v3, v6} forms a 3-colored independent set for the graph on the left-hand side and
thus recoloring the vertices s1 to color 2, s2 to 3, s3 to 6, and all vertices from {v2, v3, v6}
to π, results in a proper coloring of the graph on the right-hand side.

Denoting the (n + 1)st color in f ′ by π, for vi ∈ V we set f ′(vi) := i and
L(vi) := {i, π}.

It remains to define f ′ for the vertices from {x, s1, . . . , sk}, the edge set E ′

with E ⊆ E ′, and the color lists for x and all si, 1 ≤ i ≤ k. To this end, note
that each vertex si shall one-to-one correspond to the subset of vertices from V
colored i. Set f ′(si) := π for 1 ≤ i ≤ k and L(si) := {f ′(v) | v ∈ Vi} ∪ {π},
where Vi := {v ∈ V | f(v) = i}. Note that L(si) ∩ L(sj) = {π} for i 6= j.
Moreover, we add edges between si and all vertices from Vi. Finally, we set
f ′(x) := π, L(x) := {π}, and make x adjacent to all vertices from {s1, . . . , sk}.
This completes the construction, illustrated in Figure 1.

The idea behind the construction of G′ is that those vertices in V ⊂ V ′

that can be recolored to the color π one-to-one correspond to the vertices in
a k-multicolored independent set. To show the correctness of the described
parameterized reduction, assume that (G′, x, f ′, L, c) as given above is a yes-
instance of IC k-List Coloring. Consider the set of recolored vertices,
that is, S ′ := {v ∈ V ′ \ {x} | f ′(v) 6= f̃(v)}, where f̃ is the coloring obtained
after the recoloring process has taken place. By construction, f̃(x) = π
and this implies that {s1, . . . , sk} ⊆ S ′. Since for each si all vertices in Vi
are differently colored and si has a neighbor of each color in L(si) \ {π}, it
follows that exactly one vertex from Vi will be recolored (each time caused by
the recoloring of si). All these chosen “Vi-vertices” receive the color π and,
because E ⊂ E ′, they must form a size-k independent set.
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For the reverse direction, let S be a k-multicolored independent set in G.
Obviously, recoloring the vertices in S to π, leads to a recoloring of the
instance (G′, f ′, L, c). Thereby, we need k recolorings for {s1, . . . , sk} and
k recolorings for the vertices in S and thus c = 2k recoloring operations.

The exponential time hypothesis (ETH) due to Impagliazzo and Paturi [31]
postulates that 3-Sat cannot be solved in subexponential time. For intu-
ition, the ETH denies the existence of a 2o(n)-time algorithm for 3-Sat,
where n is the number of variables in the given 3-Cnf-formula. It was
shown that k-Independent Set cannot be solved within O(no(k)) time
unless the ETH fails [12, 23]. Observe that the parameterized reduction from
k-Multicolored Independent Set to IC k-List Coloring as described
in the proof of Theorem 5 increases the parameter c only by a factor of two.
This implies the following.

Corollary 6. Unless the ETH fails, there is no O(no(c))-time algorithm for
IC k-List Coloring.

The results presented so far are negative in terms of fixed-parameter
tractability, motivating the study of the combined parameter (k, c). Surpris-
ingly, a simple search strategy leads to fixed-parameter tractability in this
case.

Theorem 7. IC k-List Coloring can be solved in O(k ·(k−1)c ·(|V |+ |E|))
time, that is, it is fixed-parameter tractable with respect to the combined
parameter (k, c).

Proof. Given a graph G = (V,E) and a k-list coloring f for G−x with respect
to the color lists L(v), v ∈ V , observe that if for the inserted vertex x it holds
that {f(v) | v ∈ N(x)} ⊂ L(x), then there is a “free color” left for x and
x can be colored using this free color. Otherwise, {f(v) | v ∈ N(x)} ⊇ L(x).
Hence, a recoloring is necessary. First, branch into the |L(x)| ≤ k possibilities
how to color x. In each branch, at least one of the neighbors of x has the
same color as x and hence needs to be recolored. Now, we have at most
k − 1 options to do so. This process continues until all “color conflicts” have
disappeared or in total c vertex recolorings have been performed without
obtaining a k-coloring. It is easy to see that this strategy leads to a search
tree of size O((k − 1)c) (depth c and branching factor k − 1). From this, the
running time O(k · (k − 1)c · (|V |+ |E|)) follows.
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We come back to this search tree strategy in Section 5 when dealing with
the implementation of our approach and corresponding empirical studies on
benchmark instances.

By applying the construction of adding “pendent vertices” (as introduced
in the proof of Theorem 4), the W[1]-hardness result from Theorem 5 along
with Corollary 6 can be transferred to IC k-Coloring. Moreover, it is
straightforward to adapt the search tree algorithm given in the proof of
Theorem 7 for IC k-Coloring. However, our major focus is on IC k-List
Coloring since this more general problem allows for an elegant formulation
of data reduction rules. The following section will deal with this.

4. Kernelization and Special Graph Classes

Developing a polynomial-time executable data reduction rule, next we
describe how to transform an instance of IC k-List Coloring into an equiv-
alent but size-reduced instance, known as problem kernel in parameterized
algorithmics. Unfortunately, our worst-case upper bound on the kernel size is
exponential in the combined parameter (k, c) (Sec. 4.1). However, we comple-
ment this result by showing that IC k-List Coloring does not admit a kernel
of polynomial size unless an unlikely collapse in structural complexity theory
occurs (Sec. 4.2). This negative result even holds for the special case of bipar-
tite graphs. Finally, focusing on special graph classes, we show that IC k-List
Coloring is fixed-parameter tractable with respect to the combined param-
eter “k and treewidth” and has a polynomial kernel when restricted to unit
interval graphs (Sec. 4.3). Moreover, we survey the complexity of IC k-List
Coloring and related problems on special graph classes (Table 1 in Sec. 4.3).

4.1. An Exponential-Size Kernel on General Graphs

Assume that a graph G = (V,E), x ∈ V , c ∈ N, and a k-list coloring f for
G−x form a yes-instance for IC k-List Coloring. Additionally, let a k-list
coloring f ′ for G be a recoloring, that is, the cardinality of the corresponding
recoloring set S := {v ∈ V \ {x} | f ′(v) 6= f(v)} ∪ {x} is at most c+ 1. The
recoloring set S contains all recolored vertices including x.

Our kernelization approach makes use of the following observations. If
there exists a connected component Z in G[S] such that x /∈ Z, then one can
simply remove Z from S by setting f ′(v) = f(v) for all v ∈ Z, obtaining a
smaller recoloring set. Hence, we can assume without loss of generality that
for every vertex v ∈ S there exists a path from x to v in G[S]. Actually, there
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must exist a so-called conflict path for every vertex v, that is, a simple path
from x to v with the special property that for every edge (u,w) on the path
it holds that f ′(u) = f(w). The non-existence of a conflict path for a vertex
v ∈ S implies f ′(u) 6= f(v) for all u ∈ N(v), thus, we can again remove v
from S, setting f ′(v) = f(v). Therefore, one can view the recoloring of u as
the reason why w must also be recolored. The following lemma summarizes
the above observations.

Lemma 8. For a recoloring set S of cardinality at most c+ 1, the graph G[S]
contains a conflict path of length at most c for every vertex in S.

In order to describe the idea behind our data reduction rule, assume that
v ∈ S and denote the corresponding conflict path in G[S] by Pv. Clearly,
V (Pv) ⊆ S. Consider an arbitrary edge (u,w) on Pv. Since f ′(u) = f(w), it
follows that N(u, f(w)) ⊆ S. By summing up the number of these vertices for
each edge on Pv, this can be viewed as the costs (number of recolored vertices)
of a conflict path Pv. Utilizing this idea, our data reduction rule computes for
each vertex a possible conflict path of minimum cost and removes the vertex
when the costs are greater than the conservation parameter c.

Removing a vertex v means to remove v and all its incident edges and
to delete the color f(v) in the color list of all neighbors. This makes sure
that, in the process of constructing the solution for the original instance,
we can reinsert v with color f(v) in any solution for the kernel. Actually,
the possibility of conveniently removing and reinserting a vertex is the main
reason why we work with list coloring.

As the name suggests, a possible conflict path for a vertex v is a path which
could become a conflict path for v when v ∈ S. Therefore, a possible conflict
path Pv is a simple path such that f(w) ∈ L(u) for each edge (u,w) ∈ E(Pv).
Next, a cost function l : V → N provides for every vertex a lower bound for
the number of vertices that need to be recolored when reaching the vertex
on a possible conflict path. Using this, we now formulate our data reduction
rule; its correctness can be directly inferred from Lemma 8.

Reduction Rule 1. If there is a vertex v with l(v) > c, then remove v.

We compute our cost function l in an iterative manner. We start with an
empty set M and initialize l(x) := 0 and l(v) :=∞ for all v ∈ V \{x}. The
set M contains the vertices for which the cost function is already computed.
Next, we choose a vertex v ∈ V \M with minimum cost function value and
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add it to M (in the first step we add x). Next, consider a neighbor u of v
with f(u) ∈ L(v). When v is the predecessor of u on a cheapest possible
conflict path for u, meaning that v will be recolored to f(u), then besides u
all vertices in N(v, f(u)) \M have to be recolored. Hence, we can update
the cost function value by setting l(u) := min{l(u), l(v) + |N(v, f(u)) \M |}.
This process will be continued until M = V .

Observe that our algorithm to compute the cost function works similarly to
Djikstra’s algorithm for computing all shortest paths starting at one particular
vertex, say x, to all other vertices in a positively edge-weighted graph. It thus
can be executed with the help of a priority queue in O(|V | log |V |+ |E|) time.
The basic idea is the same, starting at x, maintain during an incremental
process a set M of vertices whose shortest (possible conflict) path already
has been found. Then, the minimum cost or length of a path from x to a
vertex v ∈ M plus the cost of an edge to a vertex u /∈ M must establish a
shortest path for u. Other than in Dijkstra’s algorithm, the cost of an edge is
not given in advance, but is determined by the number of those vertices in the
neighborhood of v that have to be recolored if v precedes u on a conflict path
for u. Thus, the cost of the edge (v, u) is determined by N(v, f(u)) minus
the (potentially) already recolored neighbors of v in M .

Theorem 9. IC k-List Coloring admits a 3 · (k− 1)c-vertex kernel, which
can be computed in O(|V | log |V |+ |E|) time.

Proof. We show that the exhaustive application of Rule 1 leads to the claimed
kernel. Throughout the proof, we assume k ≥ 3. In order to bound the size
of a reduced graph G, at first we construct a worst-case graph T . Next, we
prove that the size of T is bounded by the asserted kernel size. We complete
our proof by showing that |V (G)| ≤ |V (T )|.

The graph T is a rooted tree in which the distance of all leaves to the
root xT is exactly c. We set L(v) := {1, . . . , k} for all v ∈ V (T ). The root
has one child of each color and all other inner vertices have one child of
each color except their own color. Observe that, because |N(v, i)| = 1 for
all vertices v ∈ V (T ) and colors i 6= f(v), the cost function lT assigns each
vertex its distance to the root. Thus, the instance (T, L, c) for IC k-List
Coloring is reduced with respect to Rule 1. For a reduced graph and its
corresponding cost function, for instance, T and lT , we define a partition of
V (T ) by V j

T := {v ∈ V (T ) | lT (v) = j} for 0 ≤ j ≤ c. By construction, it
follows that V 0

T = {xT} and |V j
T | = k · (k−1)j−1. Thus, the overall size bound
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for V (T ) is as follows:

|V (T )| = 1 + k ·
c∑
j=1

(k − 1)j−1 = 1 + k ·
(

1− (k − 1)c

2− k

)
= 1 +

k

k − 2
((k − 1)c − 1) ≤ 3 · (k − 1)c.

Next, we prove the kernel size for the reduced graph G. Let lG be the
corresponding cost function and consider the partition V j

G for 0 ≤ j ≤ c
of V (G). In the following, by induction on j we shall show that |V j

G| ≤ |V
j
T |

for all 0 ≤ j ≤ c, implying |V (G)| ≤ |V (T )|.
Clearly, by definition |V 0

G| = |V 0
T | = 1. Consider a vertex v ∈ V j

G for some
1 ≤ j ≤ c and a cheapest possible conflict path Pv = [x, . . . , w, v] for v such
that w ∈ V j−t

G for some 1 ≤ t ≤ j and thus lG(v)− lG(w) = t. By definition
of the cost function lG, there are at most t vertices with color f(v) in V j

G

whose ancestor on a cheapest possible conflict path is w. Formally, defining
the ancestor function by p(v) := w and p−1(w) := {v ∈ V j

G | p(v) = w} we
can infer that |p−1(w) ∩ N(w, f(v))| ≤ t. Considering all colors, it follows
that |p−1(w)| ≤ t · (k − 1).

To show |V j
G| ≤ |V

j
T |, next, by removing all vertices in p−1(w) from G

we construct a graph G̃. Then, we insert tree Tw with w as root into G̃.
Similarly to the structure of T , every inner node of Tw has exactly one child
of each color and all leaves of Tw have distance exactly t to the root w.
Thus, V j

G̃
contains all (k − 1)t leaves of Tw. Assuming k ≥ 3, it follows that

(k − 1)t ≥ t · (k − 1) ≥ |p−1(w)| and, by this, we can infer that |V j
G| ≤ |V

j

G̃
|.

This process can be executed for all ancestors w on a cheapest possible conflict
path for each v ∈ V j

G. Since the structure of Tw is similar to that of T , we
obtain that |V j

G| ≤ |V
j

G̃
| ≤ |V j

T |.

Observe that, by a fundamental theorem [10], a fixed-parameter algorithm
of running time f(k) ·nO(1) implies a kernel of size f(k). Thus, an exponential
size kernel for IC k-List Coloring as it is presented in Theorem 9 already
follows from the fixed-parameter algorithm as stated in Theorem 7. However,
a direct kernelization algorithm is still of interest: First, it can establish
the basis to build on for further improving the kernel size. Second, the
corresponding data reduction rule can be used when solving the problem in
practice, as we demonstrate in Section 5.

We close this section by showing how positive kernelization results (and cor-
responding efficient kernelization procedures) for IC k-List Coloring (such
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as Theorem 9) can be transferred to IC k-Coloring. Clearly, IC k-Col-
oring can be reduced to IC k-List Coloring by adding a color list that
contains all colors to each vertex. Then, from the proof of Theorem 4 we
can conclude that each kernelization algorithm for IC k-List Coloring
together with a straightforward procedure which, afterwards, replaces each
“missing color” in the color lists by pendant vertices, is also a valid kerneliza-
tion for IC k-Coloring. Consequently, if IC k-List Coloring admits a
polynomial kernel on a graph class F that is closed under attaching pendant
vertices, then IC k-Coloring also admits a polynomial kernel on F .

Corollary 10. If IC k-List Coloring admits a problem kernel of size g(k, c)
on a graph class that is closed under attaching pendant vertices, then IC k-Col-
oring admits a problem kernel of size c · (k − 1) · g(k, c) for this graph class.

4.2. Non-Existence of a Polynomial Kernel

We have shown that IC k-List Coloring admits a (3 · (k − 1)c)-vertex
kernel. Using a recently developed framework [6, 25], here we prove that
there is no hope to improve this result to a polynomial kernel.

Bodlaender et al. [6] and Fortnow and Santhanam [25] showed that a
compositional parameterized problem (whose unparameterized variant is
NP-complete) does not have a polynomial kernel, unless NP ⊆ coNP/poly. One
of the most prominent (but not the strongest) consequence of NP ⊆ coNP/poly
would be that the polynomial hierarchy collapses to the third level. A
parameterized problem is compositional if there exists an algorithm which
receives as input a sequence of instances (I1, c), . . . , (Ir, c) and outputs an
instance (I, c′) such that (I, c′) is a yes-instance iff (Ij, c) is a yes-instance for
some 1 ≤ j ≤ r. Furthermore, the running time of the algorithm has to be
bounded by a polynomial in

∑r
j=1 |Ij|+ c and c′ ≤ poly(c).

To prove the non-existence of a polynomial kernel for IC k-List Color-
ing, we first show that IC 3-Coloring is compositional with respect to the
conservation parameter c. This proves together with the NP-hardness (see
Theorem 2) that, unless NP ⊆ coNP/poly, IC 3-Coloring does not admit a
polynomial kernel. Using this result, we then show by a so-called polynomial
parameter transformation [8] that the same holds for the general IC k-List
Coloring problem.

Theorem 11. IC 3-Coloring has no polynomial kernel with respect to the
conservation parameter c, unless NP ⊆ coNP/poly.
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Proof. Suppose that we are given a sequence of IC 3-Coloring instances
(G1, x1, c), . . . , (Gr, xr, c) for an arbitrarily large positive integer r. Adopting
an idea due to Dom et al. [16], our composition algorithm makes a case
distinction depending on the size of r relative to c.

Case 1 (3r > 2c): Use the search tree algorithm described in Section 3
and simply solve all instances. Depending on whether one encountered a
yes-instance or not, construct a trivial yes- or no-instance as a result of the
composition algorithm. We need O(2c · |Gj|) time per instance, hence the
overall running time is bounded by O(r · 2c ·max1≤j≤r |Gj|) or, due to our
case assumption by O(r2 ·max1≤j≤r |Gj|).

Case 2 (3r ≤ 2c): In this more complicated case, we construct a new
graph G by connecting the graphs G1, . . . , Gr as the leaves of a binary tree.
The rough idea is as follows. Starting at the root x of the binary tree, one can
traverse the tree on a conflict path for reaching any subgraph Gj . Then, every
recoloring of Gj for some 1 ≤ j ≤ r is a recoloring for G, and vice versa. We
first describe the construction of G in detail and then prove its correctness.

Starting with an empty graph G, first insert a constant vertex si of
color i for each color i ∈ {1, 2, 3}. Let c′ := c+ dlog(3r)e be the conservation
parameter that forms together with G the result of our reduction. By adding c′

neighbors of each color (except for si’s color), make sure that the color of a
constant vertex will never change.

In order to insert the graph Gj , 1 ≤ j ≤ r, into the graph G, one has to as-
sign a 3-coloring toGj . Therefore, preserving the color of the vertices, use three
copies of Gj . We refer to the copies as G1

j , G
2
j , G

3
j and to the corresponding x-

vertices as x1j , x
2
j , and x3j . Next, adjust the graphs for all i ∈ {1, 2, 3} as follows:

Using the permutation π = (1 2 3) (cycle notation), set the color of xij in Gi
j

to π(i). Furthermore, remove all edges in Gi
j between the vertex xij and every

vertex in Nπ(xij) := N(xij, π(i)) ∪N(xij, π(π(i))). After this, Gi
j is correctly

colored. To prevent a recoloring of the vertices in Nπ(xij) with color i, insert
an edge from the constant vertex si to each vertex in Nπ(xij). Adding the edge
{xij, sπ2(i)} then completes the construction of Gi

j . Figure 2 shows an example.
Next, for all colors 1 ≤ i ≤ 3 and 1 ≤ j ≤ r, insert the graphs {Gi

j}
into G and connect the vertices {xij} through a balanced binary tree. The
first property of the tree is that every inner vertex, where we assume the xijs
to be “leaves“, connects two differently colored vertices and we assign the
third color to it. Second, balanced means that each vertex xij has the same
distance to the root. Both properties can be fulfilled by “filling up” the tree
with constant vertices.
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Gj

xj s1 s2 s3

G1
j

x1j

G2
j

x2j

G3
j

x3j

Figure 2: Example for the composition algorithm for IC 3-Coloring. The left part
shows a graph Gj of an input instance. The right part shows the three duplications of Gj

and the modifications on them. To keep the figure simple, the neighbors of the constant
vertices {s1, s3, s3}, which prevent their recoloring, are omitted.

Finally, we prove the correctness of our composition algorithm. The algo-
rithm outputs the instance (G, x, c′) with c′ := c+dlog(3r)e. The construction
of G can be done in polynomial time and since 3r ≤ 2c, it follows that c′ ≤ 2c.

It remains to show that (G, x, c′) is a yes-instance iff (Gj, xj, c) is a yes-
instance for at least one 1 ≤ j ≤ r. To this end, the first property of the binary
tree implies that (starting at the root x) each inner vertex serves as a “switch”
between on which of its both children a conflict path can continue. Hence, by
a path through the tree we can reach each vertex xij. Because of the second
property, such a conflict path requires exactly dlog(3r)e recoloring operations.

Consider the situation where a conflict path through the tree reaches xij.
Recalling that xij has color π(i) and G contains the edge {xij, sπ(π(i))}, one
has to recolor xij with color i. Now, when Gj can be recolored by at most c
changes such that xj obtains color i, then this recoloring is also a proper
recoloring for Gi

j. The reverse direction also holds, because we excluded the
possibility of recoloring the vertices in Nπ(xij) with color i.

Altogether, we have shown that the problem is compositional and the
claimed result follows from an application of Bodlaender et al.’s [6] and
Fortnow and Santhanams [25] results.

According to the framework of Bodlaender et al. [6, 8], there are two ways
to show that a problem does not admit a polynomial kernel. First, as we did
for IC 3-Coloring, one can show that the problem is compositional. Second,
one can reduce by a polynomial parameter transformation a problem for which
the non-existence of a polynomial kernel is already known to the problem
in question. A polynomial parameter transformation is a parameterized
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reduction restricted to run in polynomial time and the parameter value of the
instance reduced to is bounded from above by a polynomial function of the
parameter in the instance reduced from. Adding the color list L(v) = {1, 2, 3}
for each vertex v is a simple polynomial parameter transformation from
IC 3-Coloring to IC 3-List Coloring.

Corollary 12. IC k-List Coloring has no polynomial kernel for all k ≥ 3,
unless NP ⊆ coNP/poly.

We close the section with the following strengthening of Theorem 11,
showing that there is also no hope to find a polynomial kernel even when
we restrict IC k-List Coloring to bipartite graphs: The composition
algorithm for IC 3-Coloring (proof of Theorem 11) composes the sequence of
instances by a binary tree. Hence when the given sequence of IC 3-Coloring
instances consists of bipartite graphs, then the composed graph is also bipartite.
Together with Corollary 3 this implies the following.

Corollary 13. IC k-List Coloring restricted to bipartite graphs has no
polynomial kernel, unless NP ⊆ coNP/poly.

4.3. Improved Algorithmic Results for Special Graph Classes

In what follows, first we consider graphs of bounded treewidth and then
come to unit interval graphs. Finally, in Table 2 we survey old and new
results and open problems.

A Polynomial-Time Algorithm for Graphs of Bounded Treewidth.
In this section, we present a dynamic programming algorithm which proves
that IC k-List Coloring is fixed-parameter tractable with respect to the
combined parameter (k, ω), where ω denotes the treewidth of the underlying
graph. Recall that Proposition 1 implies, unless P=NP, that IC k-List
Coloring is neither with respect to the parameter k nor with respect to
the parameter treewidth ω fixed-parameter tractable. Thus, it is natural to
consider the combined parameter.

Definition 4.1. A tree decomposition of a connected graph G = (V,E) is
a tree T where the vertices in V (T ) are subsets X1, X2, . . . , Xt of V , called
bags, such that

i) for each edge {u, v} ∈ E there is a bag Xi where {u, v} ⊆ Xi and
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ii) if u ∈ Xi ∩Xj then it follows that u is also contained in each bag on the
path from Xi to Xj in T .

The cardinality of the largest bag minus one is the treewidth of G.

A tree decomposition of a general graph can be computed by a fixed-
parameter algorithm with respect to the treewidth [4]. Thus, in the following
we may assume that the graph in an IC k-List Coloring instance is given
with its tree decomposition.

Theorem 14. IC k-List Coloring can be solved in O(kω+1ω2 · |V |) time
on a graph G = (V,E) with treewidth ω and thus is fixed-parameter tractable
with respect to the combined parameter (k, ω).

Proof. Let the graph G = (V,E) together with a tree decomposition T ,
x ∈ V , the k-coloring f with respect to the color lists L, and the conservation
parameter c ∈ N form an instance of IC k-List Coloring. Following a
standard approach, we describe a dynamic programming algorithm which
proceeds in a bottom-up manner on the graph T and actually computes a
minimum number of needed recolorings. To this end, assume that T is a nice
tree decomposition: Every bag Xi of T has at most two children; if Xi has two
children Xj and Xl, then Xj = Xl and we thus call Xi a join bag. Furthermore,
if a bag Xi has only one child, say Xj, then their cardinalities differ by one
and either Xj ⊂ Xi (call Xi a insert bag) or Xi ⊂ Xj (call Xi a forget bag).
Note that an arbitrary tree decomposition can be transformed in linear time
into a nice tree decomposition without an increase of the treewidth [33]. In
the following we assume that T is a nice tree decomposition and, additionally,
that it is rooted in an arbitrary bag.

Now, we describe our dynamic programming algorithm. The basic idea
is to store for each bag Xi a table that contains all k-list colorings of G[Xi]
together with a valuemi(C); this value indicates the number of recolorings that
are necessary if one extends C to a k-list coloring of the graph corresponding
to the subtree rooted at Xi. Now, the table of each leaf bag Xi is initialized
with all valid k-list colorings of G[Xi] and, for each k-list coloring C, the
value mi(C) is determined by the number of recolored vertices in Xi.

Next, to proceed in a bottom-up manner, let Xi be a bag in T where all its
children are already treated. In the first case, suppose Xi is a join node with
children Xj and Xl. Clearly, by definition of a nice tree decomposition, Xi =
Xj = Xl and thus the corresponding tables contain the same colorings. Copy
all these colorings into the table of Xi. Moreover, set mi(C) := mj(C)+ml(C).
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In the second case, suppose that Xi is an insert node and thus has only
one child Xj. Then, there is vertex u such that u ∈ Xi \Xj. For each k-list
coloring C in the table of Xj and for each color i ∈ L(u), check whether C
together with the coloring of u with i is a valid k-list coloring of G[Xi]. If
so, then extend the k-list coloring C by assigning color i to the vertex u to
a k-list coloring C ′ and store C ′ in the table of Xi, and if i = f(u) then set
mi(C

′) := mj(C), otherwise set mi(C
′) := mj(C) + 1.

In the last case, that is Xi is a forget node with a child Xj, there is a
vertex u ∈ Xj \Xi. Partition all colorings in the table of Xj into sets such
that within a set the colorings only differ in what color they assign to u. Now,
when merging the colorings in each set by deleting the color for u, one obtains
all k-list colorings for G[Xi] and hence stores these colorings in the table of Xi.
Herein, if the coloring C was determined by merging the colorings C1, . . . , Ct,
then set mi(C) := min1≤i≤tmj(Ci). After filling up the table of the root
bag Xr in T , the algorithm answers that the given IC k-List Coloring
instance is a yes-instance iff there is at least one coloring C in the table of
the root where mr(C) ≤ c.

The running time of the above described algorithm is O(kω+1ω2 · |V |)
because there are at most |V | bags in T and the table of each bag contains
at most kω+1 colorings. In addition, when computing the table of a leaf bag,
then one needs O(ω2) time to check whether a coloring is feasible for the
subgraph induced by the bag and to count the number of recolored vertices.
The table of an insert, forget, or join node can be computed in O(kω+1ω)
time.

Next, we address the correctness of the algorithm. Suppose that there is a
coloring C ′ in the root bag Xr of T where mr(C

′) ≤ c. It is straightforward,
by applying a traceback technique, to obtain a k-list coloring coloring C of the
entire graph. It is obvious that C assigns a color to each vertex in V for its
color list and that there are at most c vertices whose colors in C differ from f .
Thus, it remains to argue that C is a feasible coloring, that is C(u) 6= C(v)
for all {u, v} ∈ E. Observe that C restricted to the vertices in a bag Xi

has to be a k-list coloring for G[Xi]. Furthermore, because of the second
condition in Definition 4.1, for each edge {u, v} ∈ E there is a bag Xi such
that {u, v} ⊆ Xi and thus C(u) 6= C(v).

A Polynomial Kernel for Unit Interval Graphs. We have shown that
IC k-List Coloring admits a 3 · (k − 1)c-vertex kernel on general graphs.
We discussed that there cannot be a substantial improvement on this; to goal
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Table 1: Overview of the complexity of IC k-List Coloring and IC k-Coloring in
comparison to PrExt and k-List Coloring on subclasses of perfect graphs. Furthermore,
unless NP ⊆ coNP/poly, it is listed whether a polynomial kernel for IC k-List Coloring
with respect to the conservation parameter c is possible or not. Non-boldfaced results
can be directly deduced (partially, from Proposition 1 & Theorem 4 and the results of
Section 4.3). The abbreviation “NP-c” stands for NP-complete, “NP∗-c” for NP-complete
under Turing-reductions, and P for polynomial-time solvable.

graph class IC k-List Col. IC
k-Col.

PrExt k-List
Col.

poly
kernel

trees / P P P P [32]
complete bipartite ? NP∗-c P P [9] NP-c [32]
bipartite no NP-c NP-c NP-c [34] NP-c
chordal ? NP∗-c NP-c NP-c NP-c
interval ? NP∗-c ? NP-c [2] NP-c
unit interval yes NP∗-c ? NP-c [36] NP-c
cographs ? ? ? P [30] NP-c [32]
distance-hereditary ? NP∗-c NP-c NP-c [9] NP-c
split ? NP∗-c ? P [30] NP-c [32]

of a polynomial kernel is illusory even on bipartite graphs (see Corollary 13).
On the positive side, we have shown that IC k-List Coloring is polynomial-
time solvable on graphs of bounded treewidth. In this section, we close our
complexity studies for IC k-List Coloring on special graph classes by
pointing out another positive result, that is, there is anO(k·c)-vertex kernel on
unit interval graphs. Note that, since PrExt (and, thus k-List Coloring)
is NP-complete on unit interval graphs, Proposition 1 implies NP-hardness
(under Turing-reductions) for IC k-List Coloring on unit interval graphs.
Finally, in Table 1 we summarize all our results and compare them with what
is known about the closely related problems k-List Coloring and PrExt.

Roberts [40] proved that a graph G = (V,E) is unit interval iff it has
a compatible vertex ordering, that is, an ordering v1, . . . , vn of all vertices
in V such that from {vi, vt} ∈ E for i < t it follows that {vi, vj}, {vj, vt} ∈ E
for all i < j < t. Clearly, this implies that {vi, vi+1, . . . , vt} induces a clique
in G and, if G is k-colorable, then t− i < k. For an IC k-List Coloring
instance on a unit interval graph G, consider a compatible ordering of V (G).
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In this ordering let vl be the first neighbor and vr be the last neighbor of x.
By Roberts’ characterization, we can infer that l − t ≤ 2k − 1 and thus there
are at most 2(k − 1) vertices “affected” when assigning a color to x. More
generally, initiated by assigning a color to x, after a sequence of recolorings
the position of a vertex in a compatible ordering that has to be recolored,
cannot be more than k − 1 positions away from the vertices that already
have been recolored. We can infer that by performing at most c recolorings
one cannot reach a vertex that is more than c(k − 1) positions away from x.
Hence, computing a compatible ordering and then deleting all vertices (along
with their color in the list of their neighbors) that are at a larger distance
from x, results in a (2c(k − 1) + 1)-vertex kernel for IC k-List Coloring
on unit interval graphs.

5. Implementation and Experiments

To explore the practical potential and usefulness of IC k-List Coloring,
we have implemented our search tree algorithm (see Section 3) and used
it as a subroutine of a popular greedy heuristic for coloring graphs. The
derived algorithm outperforms an often used heuristic algorithm called Iterated
Greedy [13] in terms of quality and running time. Moreover, we provide
practical evidence that in the corresponding graph coloring approach the
conservation parameter c can often be set to pretty small values, typically
smaller than k (number of colors).

Graph Coloring Instances. We performed our tests on a collection of
graph coloring instances, previously used in the “Graph Coloring and its
Generalizations“ Symposium (2002) [15]. Before that, some of these graph
coloring instances were studied in the DIMACS Implementation Challenge
(1993) [14].

Altogether, the collection of instances contains 64 graphs, where the
number of vertices ranges from 25 to 4730 (the average vertex number is 1067).
The average density of the graphs (ratio of the number of vertices to the
number of edges) is 15%. The instances cover a wide range of graph classes
such as so-called Leighton, latin square, and queen graphs.1

1For more details see http://mat.gsia.cmu.edu/COLOR02/.
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Implementation Details. All algorithms have been implemented in Java.
The source code is open source and freely available along with a full list of
results.2 The potential speed loss in comparison to other program languages is
of minor relevance since we are dealing with exponential-time algorithms. All
experiments were run on an AMD Athlon 64 3700+ machine with 2.2 GHz, 1 M
L2 cache, and 3 GB main memory running under the Debian GNU/Linux 5.0
operating system with Java 1.6.0 12 (option: -Xmx256M).

Next, we describe some details of the implementation of the graph coloring
algorithms. We first implemented the following greedy strategy: Processing
the vertices in descending order according to their degree, color a vertex with
an already used color whenever possible, otherwise use a new color for the
vertex. There exist many strategies how to choose a color from all possible
already used colors. We implemented the strategies Simple (choose the first
color according to any ordering), Largest First (choose the color which is
used most often) and Random (random color). For all our results we ran the
algorithm with all strategies and list the best result that was found during
these trials. In each trial the best result among these three strategies is then
used to ”initialize“ the other two algorithms.

The greedy algorithm suffers from the fact that the color of an already
colored vertex cannot be revoked in case of it is necessary in order to proceed
the coloring. This is the point where our search tree algorithm comes into
play. Consider the situation where the greedy algorithm “fails”, that is,
during the coloring of a graph G = (V,E) with V := {v1, . . . , vn} a vertex vi,
1 < i ≤ n, cannot be colored with the already used colors {1, . . . , k} since
vi has in Gi := G[v1, . . . , vi] at least one neighbor of each color. Instead of
adding a new color k+1 for vertex vi, we try to solve an IC k-List Coloring
instance on the graph Gi with vi as the uncolored vertex x by our search tree
algorithm to get a k-coloring for Gi. If our search tree algorithm cannot find
a k-coloring for Gi, then we color the vertex vi with the new color k + 1.

Our search tree implementation incorporates the idea, which is also used
in our data reduction rule (Rule 1), to check after each recoloring whether
the number of conflicts is at most c (conservation parameter). Using our cost
function (see Section 3), the fact that the cost of a cheapest possible conflict
path is greater than c implies that the number of conflicts is greater than c.
Thus, our search tree algorithm will never recolor a vertex which would be

2Incremental Graph Coloring: http://www.akt.tu-berlin.de/menue/software/
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Table 2: Summary of our experiments. The first column k for each algorithm denotes the
best number of colors which was found and the last column provides the running time in
seconds. Each value was obtained as the average over four runs (standard deviation in
brackets). For the Iterated Greedy algorithm #iter denotes the number of iterations. For
our search tree based algorithm, c denotes the conservation parameter.

name greedy Iterated Greedy search tree
k time k #iter time k c time

ash608GPIA 8 0.2 5.0 [0.0] 1058.8 33.2 [1.3] 5.0 [0.0] 8 0.2 [0.0]
DSJC1000.1 29 0.1 27.5 [0.6] 1243.8 24.5 [5.0] 25.0 [0.0] 6 0.5 [0.1]
DSJC500.1 17 0.0 16.8 [0.5] 1217.5 6.7 [2.3] 14.8 [0.5] 8 0.3 [0.1]
latin square 10 148 0.3 109 [1.4] 2765.3 68.8 [9.2] 116.8 [2.6] 4 1.5 [0.6]
le450 15a 18 0.0 18.0 [0.0] 1000 5.0 [0.0] 16.0 [0.0] 7 1.2 [0.2]
qg.order40 44 0.3 42.0 [0.0] 1033.8 59.9 [1.7] 41.0 [0.0] 5 4.8 [0.3]
queen16 16 26 0.0 20.3 [0.5] 1295 2.2 [0.7] 19.3 [0.5] 7 0.4 [0.2]
school1 nsh 31 0.0 14.0 [0.0] 1443.8 3.7 [0.3] 23.0 [5.4] 6 0.2 [0.1]
wap03 55 4.0 53.8 [0.5] 1006.3 475.5 [3.4] 50.0 [0.0] 5 3.9 [0.3]

reduced by Rule 1.
The potential to find a k-coloring for Gi (if possible) depends on the choice

of the value for the conservation parameter c. On the one hand, the higher the
value, the higher the potential; on the other hand, the value of c makes the
“major contribution” to our algorithm’s running time. Based on preliminary
experiments, we chose c ≤ 8 maximal under the constraint k · (k − 1)c ≤ 1010,
this led to high-quality and fast results. A more thorough investigation of
this tradeoff is a promising task for future research.

We compare our above described algorithm to the Iterated Greedy Algo-
rithm [13], which is also based on the described greedy algorithm. Its main
idea is to iteratively run the greedy algorithm (mixing the described strategies
how to choose a possible color). Thereby, the algorithm makes use of the fact
that if the greedy algorithm processes the vertices with respect to an already
known k-coloring, it will not produce a worse coloring. Clearly, the hope is,
while using a “smart permutation” of the vertices, to get a better coloring
(in terms of number of colors). We implemented Iterated Greedy in basically
the same manner as proposed by Culberson and Luo [13], meaning that we
adopted the strategies how generating “smart permutations”, also aborting
the iteration when 1000 times no better coloring was found.
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Results. Our experimental findings are as follows. Table 2 contains the
results for some important instances. Our algorithm applied to all 64 instances
(called search tree in Table 2) finds for 89% and Iterated Greedy for 83% of
the instances a better coloring than the naive greedy algorithm. Thereby, our
algorithm could decrease the number of colors by about 12% and Iterated
Greedy by about 11%. Furthermore, our algorithm is by a factor of 50 and
Iterated Greedy is by a factor of 170 slower than the greedy algorithm. In other
words, the greedy algorithm needs 23 seconds, our algorithm needs 19 minutes
and Iterated Greedy needs 1 hour 5 minutes for coloring all instances.

In summary, in most cases our algorithm is superior to the Iterated Greedy
algorithm, both in terms of number of used colors and running time. We em-
phasize that the potential of our algorithm is bounded by having chosen an up-
per bound of 8 for the conservation parameter c. We conjecture that the quality
of our results can be improved for higher values of c. Our results indicate that
adding the conservation parameter leads to a problem formulation which can
be used to attack practical instances of the classical graph coloring problem.

6. Conclusion

We believe that the incremental setting combined with “parameterization
by conservation” is a natural and fruitful approach for many other opti-
mization problems besides coloring, including clustering problems such as
Incremental Constrained k-Center. However, there remain numerous
challenges for future research even when restricting the focus to coloring
problems. Among others, for IC k-List Coloring we leave open to achieve
a problem kernel of O(ck) vertices contrasting our O(kc)-vertex kernel. More-
over, it would be interesting to investigate the existence of a subexponential
kernel, as this is not excluded by our no-polynomial size kernel result. Im-
proving on the upper bounds of our simple search tree algorithm (Theorem 7)
is desirable as well. We have shown that on unit interval graphs IC k-List
Coloring admits a polynomial kernel in distinction to bipartite graphs.
However, the complexity for many interesting graph classes is left open (see
Table 1). To study whether improvements in terms of fixed-parameter al-
gorithms and polynomial-time data reduction rules are achievable for such
restricted graph classes is a worthwhile undertaking.
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