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1 Universität des Saarlandes, Saarbrücken, Germany
{jguo, suchy}@mmci.uni-saarland.de

2 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin,
Berlin, Germany

{sepp.hartung, rolf.niedermeier}@tu-berlin.de

Abstract. We extend previous work on the parameterized complexity
of local search for the Travelling Salesperson Problem (TSP). So far, its
parameterized complexity has been investigated with respect to the dis-
tance measures (which define the local search area) “Edge Exchange” and
“Max-Shift”. We perform studies with respect to the distance measures
“Swap” and “m-Swap”, “Reversal” and “m-Reversal”, and “Edit”, achiev-
ing both fixed-parameter tractability and W[1]-hardness results. Moreover,
we provide non-existence results for polynomial-size problem kernels and
we show that some in general W[1]-hard problems turn fixed-parameter
tractable when restricted to planar graphs.

1 Introduction

The Travelling Salesperson Problem (TSP) is probably the most studied combi-
natorial optimization problem. Almost all algorithm design techniques have been
applied to it or were even specifically developed for it [12]. Many heuristic algo-
rithms for TSP follow the paradigm of local search: Incrementally try to improve a
solution by searching within its local neighborhood defined by a distance measure.
Perhaps the most prominent and best examined distance measure for TSP is
the k-Edge Exchange neighborhood (also called k-Opt neighborhood in some
literature), where one is allowed to exchange at most k edges of the Hamiltonian
cycle forming the tour. Implementations of this strategy for k = 2, 3 belong to
the best performing heuristic algorithms for real-world instances [13]. However,
for larger k, for which one would expect a strong increase of quality, the running
time becomes infeasible since until now no algorithm is known which significantly
beats the trivial O(nk) running time needed for a brute-force exploration of the
local distance-k neighborhood. In an important step forward, considering the
problem within the framework of parameterized complexity [7, 17], Marx [15] has
shown that, by proving W[1]-hardness, there is no hope for an algorithm running
in f(k) · nc time for any function f (solely depending on k) and any constant c.
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Table 1. Overview of our results using k as the parameter and assuming m to be a
constant. The results written in italics are a direct consequence of a more general result.

Note that such an algorithm is desirable since the degree of the polynomial in
the input size does not depend on the parameter k. Moreover, assuming that the
ETH (exponential time hypothesis) [5, 10] does not fail, Marx has shown that

there is no algorithm running in O(no(
3√
k)) time.

In this work, besides the k-Edge Exchange neighborhood (briefly, Edge dis-
tance measure), we consider various other distance measures such as the Reversal
distance (which is also widely studied in bioinformatics in the context of genome
rearrangements [4]), the Swap distance where one is allowed to exchange two
vertices, and the Edit distance where one can move a vertex to an arbitrary new
position. For λ being any of these distance measures, we study the following
problem.

LocalTSP(λ)
Input: An undirected graph G = (V,E) with vertices labeled v1, . . . , vn
such that the identical permutation (id) v1, v2, . . . , vn, v1 is a Hamiltonian
cycle in G, an edge weight function ω : E → R+

0 , and a positive integer k.
Question: Is there a permutation π with λ(π, id) ≤ k that yields a Hamil-

tonian cycle with ω(π) < ω(id), where ω(π) =
∑n−1
i=1 ω({vπ(i), vπ(i+1)}) +

ω({vπ(n), vπ(1)})?

Our results. Table 1 summarizes our results. For λ ∈ {Swap, Edit, Reversal,
Edge}, we show that the result of Marx [15] for LocalTSP(Edge) can be
extended and even strengthened, that is, we show that LocalTSP(λ) is W[1]-
hard, implying that it is probably not fixed-parameter tractable for the “locality
parameter” k. Furthermore, again assuming that the ETH holds, there cannot be

an algorithm with running time O(no(
√
k)). In addition, exploring the limitations

of polynomial-time preprocessing, we indicate that, unless NP ⊆ coNP/poly, there
is no polynomial-size problem kernel for LocalTSP(λ) for any of the considered
distance measures λ.

On the positive side, for the Swap distance we show that, restricting by
a parameter m the distance of two vertices that are allowed to swap, makes
LocalTSP(m-Swap) fixed-parameter tractable with respect to the combined
parameter (k,m). Furthermore, we show that an analogously restricted Reversal
distance, called m-Reversal, again leads to fixed-parameter tractability. Continu-
ing to chart the border of tractability, we show that LocalTSP(λ) for λ ∈ {Swap,
Edit} is fixed-parameter tractable on planar graphs. Due to space limitations
most details are deferred to a full version of the paper.
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Related Work. The most important reference point is Marx’ study of Lo-
calTSP(Edge) [15] (using different notation). In addition, long before Marx,
Balas [1] studied LocalTSP(Max-Shift), where Max-Shift distance k means that
in order to obtain an improved Hamiltonian cycle the maximum number of posi-
tions that a vertex is allowed to shift is k. Contrasting the parameterized hardness
result of Marx [15], Balas showed that LocalTSP(Max-Shift) is fixed-parameter
tractable by providing an algorithm running in O(4k−1 · k1.5 · |V |) time.

2 Basic Notation and Distance Measures

Notation. Let Sn denote the set of all bijective mappings of the set {1, . . . , n}
to itself and let id ∈ Sn be the identity. A Hamiltonian cycle through a graph
G = (V,E) with vertices labeled v1, v2, . . . , vn is expressed by a permutation π ∈
Sn such that the edge set E(π) of π, defined as E(π) = {{vπ(i), vπ(i+1)} | 1 ≤
i < n} ∪ {{vπ(n), vπ(1)}}, is a subset of E. For a weight function ω : E → R+

0 we
define the weight of π by ω(π) =

∑
e∈E(π) ω(e). The Hamiltonian cycle π is called

improved compared to id when ω(π) < ω(id). In this sense, LocalTSP(λ) is the
question whether there is an improved Hamiltonian cycle π with λ(π, id) ≤ k.

A parameterized problem is said to be fixed-parameter tractable if there is
an algorithm that solves every instance (I, k) (where k is the parameter) within
f(k) · |I|c time for a constant c and a function f which solely depends on k [7, 17].
A kernelization algorithm computes for a given instance (I, k) in polynomial time
a new instance (I ′, k′) (called kernel) such that (I ′, k′) is a yes-instance iff (I, k)
is a yes-instance, k′ ≤ g(k), and |I ′| ≤ g(k) for a function g which solely depends
on k [2, 11]. The function g measures the size of the kernel.

Permissive algorithms and distance measures. So far, the distance between
Hamiltonian cycles was usually measured in terms of Edge distance, counting the
number of edges used by one cycle but not used by the other. Another measure
considered is the Max-Shift distance, which equals the maximum shift of the
position of a vertex between the two permutations. We consider several further
measures based on the following operations on permutations.

Definition 1. For a permutation 1, 2, . . . , n, we define the following operations:

reversal ρ(i, j) results in 1, . . . , i− 1, j, j − 1, . . . , i+ 1, i, j + 1, . . . , n;

swap σ(i, j) results in 1, . . . , i− 1, j, i+ 1, . . . , j − 1, i, j + 1, . . . , n;

edit ε(i, j) results in 1, . . . , i− 1, i+ 1, . . . , j − 1, j, i, j + 1, . . . , n.

We do not consider the elements 1 and n to be anyhow special and, therefore, the
operations can also be applied “over them”. For a constant m and 0 < j−i ≤ m−1
or n+ j − i ≤ m− 1 we speak about m-swaps and m-reversals.

The distance measures Swap, m-Swap, Edit, Reversal, and m-Reversal count the
minimum number of the appropriate operations to apply to one permutation in
order to obtain the other.
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Fig. 1. Hasse diagram of the relations between the distance measures. Let f : N → N.
An arrow from a distance measure λ to a measure τ labeled “f(k)” means that τ is
λ-bounded with function f(k).
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Fig. 2. A planar graph with two different Hamiltonian cycles. The cycles are only four
edge modifications and four reversals from each other, while they can be made arbitrary
far apart for any other of the measures by extending the horizontal lines. Furthermore,
the differences between the cycles are also very far apart considering the distance in
the graph and, as the graph has no other Hamiltonian cycles, there is no other solution
with changes concentrated in a constant distance to one particular vertex.

Definition 2. A distance measure λ is bounded by a distance measure τ (or
τ -bounded) if there is a function f : N→ N such that for any two permutations
π, π′ ∈ Sn it holds that λ(π, π′) ≤ f(τ(π, π′)).

It is easy to see that the relation of boundedness is reflexive and transitive and,
therefore, forms a quasi-order on the distance measures. Figure 1 depicts all
relations between the measures, omitting relations that can be deduced from the
transitivity, in this sense showing a “Hasse diagram” of this quasi-order. The
shown relations are easy to check. It is also not hard to come up with examples
showing that no further boundedness relations hold between the distance measures.
See Figure 2 for an interesting case of two Hamiltonian cycles which are close for
Reversal and Edge distances, but far apart for all the other distances considered.

Marx and Schlotter [16] proposed to distinguish between strict and permissive
local search algorithms. Strict local search algorithms find an improved solution (or
prove that it does not exist) within some limited distance from the given solution.
Permissive local search algorithms find any improved solution (potentially, with
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unbounded distance to the given solution), provided that an improved solution
exists within the limited distance of the given solution. The motivation for this
distinction is that finding an improved solution within a bounded distance of
a given solution may be hard even for problems where an optimal solution can
easily be found, e. g., Minimum Vertex Cover on bipartite graphs [14]. The
following lemma indicates a tight relationship between our notion of bounded
distance measures and the existence of permissive FPT-algorithms.

Lemma 1. If a distance measure λ is τ -bounded, then a (permissive) FPT-
algorithm for LocalTSP(λ) is a permissive FPT-algorithm for LocalTSP(τ).

3 General Graphs

We first show that LocalTSP(λ) is W[1]-hard for λ ∈ {Swap, Edit, Reversal,
Edge}. To this end, we build on the proof given by Marx [15]. In contrast to
Marx, who gave a reduction from the k-Clique problem, we reduce from the
k-Multicolored Clique problem. This simplifies the construction and makes
it even more powerful. Specifically, we show that, if there exists an improved
Hamiltonian cycle, then there is also one that can be obtained by O(k2) swaps.
Then, since the other measures are Swap-bounded and, unlike in Marx’ con-
struction, any improved Hamiltonian cycle in the constructed graph implies the
existence of a k-multicolored clique, the hardness result holds true even for them.

Theorem 1. LocalTSP(λ) is W[1]-hard with respect to k for λ ∈ {Swap, Edit,
Reversal, Edge}.

It was shown that k-Clique cannot be solved within O(no(k)) time unless
the ETH fails [5, 10]. It follows from the reduction given by Fellows et al. [8]
that if k-Multicolored Clique would be solvable in O(no(k)) time, then k-
Clique would also be solvable in O(no(k)) time. In the parameterized reduction
given in the proof of Theorem 1 reducing from k-Multicolored Clique
to LocalTSP(λ) for λ ∈ {Swap, Edit, Reversal, Edge} the parameter for
LocalTSP is within the square of the parameter of k-Multicolored Clique.
This implies the following corollary. For the case of Edge distance, it improves

the lower bound O(no(
3√
k)) given by Marx [15, Corollary 3.5].

Corollary 1. Unless the ETH fails, LocalTSP(λ) does not admit an algorithm

with running time O(no(
√
k)) for λ ∈ {Swap, Edit, Reversal, Edge}.

We have shown that on general graphs there is no hope to obtain an FPT-
algorithm for LocalTSP(Swap) parameterized by k. However, restricting the
distance measure to m-swaps makes the problem fixed-parameter tractable. As the
exponent of the polynomial in the running time is also independent of m, we state
the results with respect to the combined parameter (k,m). The corresponding
algorithm is based on the bounded search tree technique and it is mainly based
on the observation that the solution can be assumed to be given by a sequence of
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swaps that are somehow related. For a formal description we need the following
definition.

Let S be a sequence of swaps. We define an auxiliary swap graph GS as
follows. There is a vertex for each swap in the sequence S and two swaps σ(i, j)
and σ(t, l) are adjacent if either t or l is contained in {i− 1, i, i+ 1, j− 1, j, j+ 1}.
Furthermore, if a swap σ(i, j) is applied, we call the positions i and j and the
vertices at these positions affected.

Lemma 2. If a LocalTSP(λ) instance for λ ∈ {m-Swap, Swap} admits an
improved Hamiltonian cycle, it also admits an improved Hamiltonian cycle which
can be obtained by swaps (or m-swaps) such that their swap graph is connected.

Proof. Suppose that we are given a sequence S of swaps whose application to
a Hamiltonian cycle id ∈ Sn creates an improved Hamiltonian cycle π ∈ Sn.
Furthermore, assume that C1, . . . , Cp with p ≥ 2 are the connected components
of the corresponding swap graph GS . For any of these components C, we denote
by πC ∈ Sn the permutation that results from applying the swaps in C to id
preserving their order relative to S.

We shall show that the sets E(πC1) 4 E(id), . . . , E(πCp) 4 E(id) form a
partition of the set E(π)4 E(id) (4 denotes the symmetric difference). Having
proved this, the rest of the argumentation is as follows. Since ω(π) < ω(id) or
equivalently ω(E(π) \ E(id)) < ω(E(id) \ E(π)), it follows that there is at least
one component C of GS with ω(E(πC)\E(id)) < ω(E(id)\E(πC)). This implies
that ω(πC) < ω(id) and thus applying only swaps contained in C also results in
an improved Hamiltonian cycle πC .

It remains to prove that E(πC1)4E(id), . . . , E(πCp)4E(id) is a partition
of E(π)4 E(id). First, for all 1 ≤ i < j ≤ p by definition of the swap graph, it
follows that the positions, and thus also the vertices, affected by Ci are disjoint
from the positions and vertices that are affected by Cj . Formally, E(πCi)4E(id)∩
E(πCj )4E(id) = ∅. For any component C, we next argue that E(πC)4E(id) ⊆
E(π)4E(id). Clearly, for an edge e = {i, j} ∈ E(πC)4E(id), either vertex i or j
has to be affected by at least one swap in C. Then, no swap in S \ C also affects
either i or j, because such a swap would be adjacent to at least one swap in C.
Hence, e ∈ E(π)4E(id). Finally, consider an edge e = {i, j} ∈ E(π)4E(id). By
the same argument as above, all swaps that affect either the vertex i or j belong to
the same component of GS . Thus, since either vertex i or j is affected by a swap,
it follows that there is a component C of GS such that e ∈ E(πC)4 E(id). ut

Theorem 2. LocalTSP(m-Swap) is fixed-parameter tractable with respect to
the combined parameter (k,m). It is solvable in O(m2k(m− 1)2k · 4k · (k2 +n) ·n)
time.

Proof. Let (G,ω, k) be an instance of LocalTSP(m-Swap). Furthermore, let S
be a sequence of at most k m-swaps such that applying S to id results in an
improved Hamiltonian cycle π. By Lemma 2 we can assume that GS is connected.
The algorithm consists of two parts. First, the algorithm guesses the positions
of all swaps in S and, secondly, it finds the correct order of them.
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To describe the first part, for convenience, we assume for all swaps σ(i, j) that
j ∈ {i+ 1, i+ 2, . . . , i+m− 1}. Furthermore, we define an ordering relation ≤
on swaps with σ(i, j) ≤ σ(t, p) iff i < t or i = t ∧ j ≤ p. Let σ1, σ2, . . . , σs with
s ≤ k be the swaps of S sorted with respect to ≤ in ascending order. In the first
part of the algorithm, by branching into all possibilities for the positions of the
swaps, the algorithm guesses all swaps in the order given above. At the beginning,
the algorithm branches into all possibilities to find the position i1 for σ1(i1, j1)
and then into the m− 1 possibilities to find the position j1. Now, suppose we
have already found the swap σt(it, jt), we next describe how to find the swap
σt+1(it+1, jt+1). By the ordering we know that i1 ≤ . . . ≤ it ≤ it+1 and, since all
swaps are m-swaps, for all 1 ≤ p ≤ t with jp > it it holds that jp − it ≤ m− 1.
From this and since GS is connected (Lemma 2), it follows that it − it+1 ≤ m.
Thus, we can guess the position of it+1 by branching into m + 1 possibilities.
Afterwards, by branching into m−1 possibilities we find the position jt+1. Overall,
we can guess the positions of σt+1 by branching into at most m2 possibilities
and thus the positions of all swaps can be guessed in O(m2k−1 · n) time.

In the second part, the algorithm guesses the order of the m-swaps. Clearly,
the trivial way to do that is by trying all permutations of the swaps, resulting in
a total running time of O(m2k−1k! · n). This already shows that the problem is
fixed-parameter tractable for (k,m). We next describe how this can be accelerated
in case that 4m2 < k. To this end, let σ(1), σ(2), . . . , σ(s) be all swaps in S in the
order of their application resulting in π. Clearly, if there are two subsequent swaps
σ(t)(i, j) and σ(t+1)(i′, j′) such that {i, j}∩{i′, j′} = ∅, then reversing their order
in the application of the swaps also results in π. More generally, instead of finding
a total order of the swaps, it is sufficient to find a partial order of the swaps that
defines the order for any pair of swaps σ(i, j) and σ(t, p) where |{i, j}∩{t, p}| = 1.
Clearly, we do not have to define the order of two swaps which are of the same type,
that is, where {i, j} = {t, p}. Thus, for a position i, consider all swaps which affect
position i. Since all these swaps are m-swaps, there can be at most 2m−2 different
types that affect position i. Hence, if there are ki swaps that affect position i, then
there are at most (2m−2)ki different permutations of these swaps. Combining the
number of possibilities of all affected positions, since each swap affects exactly two
positions, it follows that there are at most (2m− 2)2k permutations of all swaps
yielding different Hamiltonian cycles. Once the partial orders at all relevant posi-
tions are determined, we check whether this can be obtained by some total order
of the swaps, and find this order in O(k2) time, by representing the partial orders
by some arcs in a directed graph on the set of swaps and finding a topological or-
der for that graph. Then we apply the swaps in this order in O(k) time and check
whether we obtain an improved Hamiltonian cycle in linear time. Together with
the first part, the whole algorithm runs in O(m2k(m−1)2k ·4k ·(k2+n)·n) time. ut

Since the m-Swap distance is bounded by the m-Reversal distance, the above
theorem implies also the existence of anO(mmk(m−1)mk·2mk·((mk)2+n)·n)-time
permissive algorithm for LocalTSP(m-Reversal), i.e., an algorithm that returns
an improved Hamiltonian cycle whenever there is an improved Hamiltonian
cycle in m-Reversal distance at most k from the given cycle. By modifying the
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algorithm from Theorem 2, we can obtain a strict local search algorithm for
LocalTSP(m-Reversal) with a better running time.

Theorem 3. LocalTSP(m-Reversal) is fixed-parameter tractable with respect
to the combined parameter (k,m). It is solvable in O(2mk ·m2k−1 · (m − 1)k ·
(k2 + n) · n) time.

We remark that, for LocalTSP(λ) with λ ∈ {m-Swap, m-Reversal}, by applying
a standard dynamic programming approach, the algorithms given in the proofs of
Theorems 2 and 3 can be extended such that not only any improved Hamiltonian
cycle is found but also the best improved Hamiltonian cycle within the local
neighborhood.

Further, analyzing the proofs of Theorems 2 and 3, one can show that if there
is an improved Hamiltonian cycle in LocalTSP(m-Swap) or LocalTSP(m-
Reversal), then there is also an improved cycle which differs from the given one
only on vertices vi, vi+1, . . . , vi+mk for some i. Therefore, one can reduce an input
instance to polynomially many instances of the same problem, each having its
size bounded by a polynomial in k and m. Such a self-reduction is known as
polynomial Turing kernelization. In contrast to this, in the next section we show
that, for any of the distance measures λ considered in this work, LocalTSP(λ)
does not admit a polynomial kernel even when restricted to planar graphs.

4 Planar Graphs

In this section we investigate the complexity of LocalTSP on planar graphs.
Note that whether LocalTSP(Edge) on planar graphs parameterized by the
locality parameter k is fixed-parameter tractable or not is the central open
question stated by Marx [15] and it is also mentioned by Fellows et al. [9]. We do
not answer this question; however, we show that on planar graphs LocalTSP(λ)
for λ ∈ {Swap, Edit} is fixed-parameter tractable for parameter k. Before that,
we show that LocalTSP(λ) on planar graphs does not admit a polynomial
kernel for all distance measures λ considered in this work.

Bodlaender et al. [3] have shown that a parameterized problem does not admit
a polynomial-size kernel if its unparameterized variant is NP-hard and if it is
compositional. A parameterized problem is compositional if there is a polynomial
time algorithm that takes as input instances (I1, k), . . . , (It, k) and computes a
new instance (I, k′) where k′ is upper-bounded by a polynomial in k and (I, k′)
is a yes-instance iff (Ij , k) is a yes-instance for some 1 ≤ j ≤ t.

To show that LocalTSP(m-Swap) on planar graphs has no polynomial kernel,
we first consider a more restricted variant, namely LargeLocalTSP(m-Swap),
where it is required that the underlying planar graph has more than 2mk vertices.
We show that LargeLocalTSP(m-Swap) is NP-hard on planar graphs by a
many-to-one reduction from Weighted Antimonotone 2-Sat; by exploiting
the properties implied by the requirement that there are more than 2mk vertices,
we then show that it is compositional. Together with the NP-hardness, this
implies that LargeLocalTSP(m-Swap) does not admit a polynomial kernel,
unless NP ⊆ coNP/poly. Thus, the next theorem follows.
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Theorem 4. Unless NP ⊆ coNP/poly, LocalTSP(m-Swap) on planar graphs
does not admit a polynomial kernel with respect to the parameter k for any m ≥ 2.

Figure 1 depicts the relation between the different distance measures. Since there
is a directed path from the m-Swap measure to every other measure, the m-Swap
measure can be considered as the least powerful measure since all other measures
are bounded by it. We thus claim here that by basically the same argumentation
as for LocalTSP(m-Swap) one can show that on planar graphs LocalTSP(λ)
for λ ∈ {m-Reversal, Swap, Edit, Reversal, Max-Shift, Edge} does not admit a
polynomial kernel with respect to parameter k, unless NP ⊆ coNP/poly.

LocalTSP(Edit) and LocalTSP(Swap) on planar graphs probably do not
allow for polynomial kernels; however they admit a permissive FPT-algorithm. In
the following we sketch the argumentation for LocalTSP(Swap); the result for
the Edit distance can be obtained along the same lines, but it is more technical.
The proof relies on the following two lemmas.

Lemma 3. If a LocalTSP(Swap) instance with parameter k admits an im-
proved Hamiltonian cycle, then it also admits an improved Hamiltonian cycle
which differs from the given one only within the distance-3k neighborhood around
some vertex.

The following lemma shows that, regardless of the distance measure, on planar
graphs it is fixed-parameter tractable to find the best improved Hamiltonian cycle
that differs from the given one only within the neighborhood of one specific vertex.

Lemma 4. For an instance of LocalTSP on planar graphs and a vertex v
one can find in O(2O(k) · n+ n3) time the best Hamiltonian cycle among those
differing from the given one only within distance k from v.

Theorem 5. There is a permissive FPT-algorithm for LocalTSP(λ) on planar
graphs with respect to k for λ ∈ {Swap,Edit}.

Following the same approach as Fellows et al. [9], Theorem 5 can be easily
generalized to any class of graphs with bounded local treewidth. As Lemma 3
does not assume anything about the graph, we only have to modify Lemma 4.
The lemma is true in any class of graphs with bounded local treewidth, but the
corresponding running time depends on the respective class.

5 Conclusion

We left open the central open problem due to Marx [15] whether LocalTSP(Edge)
restricted to planar graphs is fixed-parameter tractable. However, we indicated
(see Section 2) that a permissive FPT-algorithm for LocalTSP(Edge) implies
a permissive FPT-algorithm for LocalTSP(Reversal) and vice versa. Thus,
the question whether the problems are fixed-parameter tractable or not, are
equivalent and this might help to shed new light on this question. To this end, it
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might be beneficial to explore the connections of LocalTSP(Reversal) to the
topic of Sorting by Reversals as studied in bioinformatics [4].

In addition, assuming the Exponential Time Hypothesis [5, 10], we showed

that there is no O(no(
√
k))-time algorithm for LocalTSP(λ) for λ ∈ {Swap,

Edit, Reversal, Edge}. Is there also a matching upper bound or can the lower
bound still be improved?

Finally, our investigations might also be extended by moving from local
neighborhoods for TSP to so-called exponential (but structured) neighborhoods
as undertaken already in a non-parameterized setting [6].
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