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Abstract. We introduce a graph-theoretic dissolution model that applies
to a number of redistribution scenarios such as gerrymandering in political
districting or work balancing in an online situation. The central aspect
of our model is the deletion of certain vertices and the redistribution of
their loads to neighboring vertices in a perfectly balanced way.

We investigate how the underlying graph structure, the pre-knowledge of
which vertices should be deleted, and the relation between old and new
vertex loads influence the computational complexity of the underlying
graph problems. Our results establish a clear borderline between tractable
and intractable cases.

1 Introduction

Motivated by applications in areas like political redistricting, economization, and
distributed systems, we introduce a class of graph modification problems that
we call network-based dissolution. We are given an undirected graph where each
vertex carries a load consisting of discrete entities (e.g. voters, tasks, data). These
loads are balanced : all vertices carry the same load. Now a certain number of
vertices has to be dissolved, that is, they are to be deleted from the graph and
their loads are to be redistributed among their neighbors such that afterwards
all loads are balanced again.

Indeed, our dissolution problem comes in two flavors called Dissolution
and Biased Dissolution. Dissolution is the basic version, as described in
the preceding paragraph. Biased Dissolution is a variant that is motivated
by gerrymandering in the context of political districting. It is centered around a
bipartisan scenario with two types A and B of discrete entities. The goal is to find
a redistribution that maximizes the number of vertices in which the A-entities
form a majority. See Section 2 for a formal definition of these models.

Our main focus lies on analyzing the computational complexity of network-
based dissolution problems, and in getting a good understanding of polynomial-
time solvable and NP-hard cases.

Three application scenarios. We discuss three example scenarios for dissolu-
tion applications in some detail. The first and third example relate to Biased
Dissolution, while the second example is closer to Dissolution.
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Our first example comes from political districting, the process of setting
electoral districts. Let us consider a situation with two political parties (A and B)
and an electorate of voters that each support either A or B. The electorate is
currently divided into n districts, each consisting of precisely s individual voters.
A district is won by the party that receives the majority of votes in this district.
The local government performs an electoral reform that reduces the number of
districts, and the local governor (from party A) is in charge of the redistricting
process. His goal is of course to let party A win as many districts as possible
while dissolving some districts and moving their voters to adjacent districts.
All resulting new districts should have equal sizes snew (where snew > s). In
the network-based dissolution model, the districts and their neighborhoods are
represented by an undirected graph: vertices represent districts and edges indicate
that two districts are adjacent.

Our second example concerns economization in a fairly general form. Let
us consider a company with n employees, each producing s units of a desirable
good during an eight-hour working day; for concreteness, let us say that each
employee proves s theorems per working day. Now, due to the increasing support
of automatic theorem provers, each employee is able to prove snew theorems per
day (snew > s). Hence, without lowering the total number of proved theorems per
day, some employees may be moved to a special task force for improving automatic
theorem provers: this will secure the company’s future competitiveness in proving
theorems, without decreasing the overall theorem output. By company regulations,
all theorem proving employees have to be treated equally and should have identical
workloads. In the network-based dissolution model, employees correspond to
vertices. Employees in the special task force are dissolved and disappear from
the scene of action; their workload is to be taken over by neighboring employees
who are comparable in qualification and research interests.

Our third and last example concerns storage updates in parallel or distributed
systems. Let us consider a distributed storage array consisting of n storage
nodes, each having a capacity of s storage units, of which some space is free.
As the prices on cheap hard disk space are rapidly decreasing, the operators
want to upgrade the storage capacity of some nodes and to deactivate other
nodes for saving energy and cost. As their distributed storage concept takes full
advantage only in case all nodes have equal capacity, they want to upgrade all
(non-deactivated) nodes to the same capacity snew and move capacities from
deactivated nodes to non-deactivated neighboring nodes. In the resulting system,
every non-deactivated node should only use half of its storage capacity.

Related work. We are not aware of any previous work on our network-based
dissolution problem. Our main inspiration comes from the area of political
districting, and in particular from gerrymandering [8, 11, 12] and from supervised
regionalization methods [5]. Of course, graph-theoretic models have been employed
before for political districting; for instance Mehrota et al. [10] draws a connection
to graph partitioning, and Duque [4] and Maravalle and Simeone [9] use graphs
to model geographic information in the regionalization problem. These models
are tailored towards very specific applications and are mainly used for the
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purpose of developing efficient heuristic algorithms, often relying on mathematical
programming techniques. The computational hardness of districting problems
has been known for many years [1].

Remark on nomenclature. For the ease of presentation, throughout the paper
we will adopt a political districting point of view on network-based dissolution:
the words districts and vertices are used interchangeably, and the entities in
districts are referred to as voters or supporters.

Contributions and organization of this paper. We propose two simple
models Dissolution and Biased Dissolution for network-based dissolution
(Section 2). In the main body of the paper, we provide a variety of computational
tractability and intractability results for both models. Furthermore, we investigate
how the structure of the underlying graphs or an in-advance fixing of vertices
to be dissolved influence the computational complexity (mainly in terms of
polynomial-time solvability versus NP-hard cases).

– In Section 3, with network flow techniques we show that Biased Dissolution
is polynomial-time solvable if the set of districts to be dissolved and the set
of districts to be won are both specified as part of the input. The general
version is NP-hard for every fixed s ≥ 3.

– Section 4 presents a complexity dichotomy for Dissolution and Biased
Dissolution with respect to the old district size s and the increase ∆s in
district size (= difference between new and old district size). Dissolution is
polynomial-time solvable for s = ∆s, and Biased Dissolution is polynomial-
time solvable for s = ∆s = 1; all other cases are NP-hard.

– Section 5 analyzes the complexity of Dissolution and Biased Dissolution
for various specially structured graphs, including planar graphs (NP-hard),
cliques (polynomial-time solvable), and graphs of bounded treewidth (linear-
time solvable if s and ∆s are constant).

Due to the lack of space many proofs are only contained in the full version of the
paper, which is available on arXiv (arXiv:1402.2664 [cs.DM]).

2 Formal setting

Let G = (V,E) be an undirected graph representing n districts. Let s,∆s ∈ N+ be
the district size and district size increase, respectively. For a subset V ′ ⊆ V of
districts, let Z(V ′, G) = {(x, y) | x ∈ V ′ ∧ y ∈ V (G) \V ′ ∧{x, y} ∈ E(G)} be the
set of pairs of districts in V ′ and their neighbors that are not in V ′. The central
notion for our studies is that of a dissolution, which basically describes a valid
movement of voters from dissolved districts into remaining districts. The formal
definition is the following:

Definition 1 (Dissolution). Let G = (V,E) be an undirected graph and let
D ⊂ V be a subset of districts to dissolve and z : Z(D,G) → {0, . . . , s} be a
function that describes how many voters shall be moved from one district to its
non-dissolved neighbors. Then, (D, z) is called an (s,∆s)-dissolution for G if
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n = 5

s = 3

∆s = 2

Fig. 1. An illustration of a 1-biased (3, 2)-dissolution (left) and a 2-biased (3, 2)-
dissolution (right). Black circles represent A-supporters while white circles represent
B-supporters. The graph on the top shows a neighborhood graph of five districts, each dis-
trict consisting of three voters. The task is to dissolve two districts such that each remain-
ing district contains five voters. The graphs in the middle show two possible realizations
of dissolutions. The graphs on the bottom show the two corresponding outcomes. The
arrows point from the districts to be dissolved to the “goal districts” and the black/white
circle labels on the arrows indicate which kind of voters are moved along the arrows.

a) no voter remains in any dissolved district:

∀v′ ∈ D :
∑

(v′,v)∈Z(D,G)

z(v′, v) = s, and

b) the size of all remaining (non-dissolved) districts increases by ∆s:

∀v ∈ V \D :
∑

(v′,v)∈Z(D,G)

z(v′, v) = ∆s.

Throughout this work, we use snew := s + ∆s to denote the new district size,
d := |D| = |V | · ∆s/snew to denote the number of dissolved districts, and
r := |V | − d to denote the number of remaining, non-dissolved districts.

We write dissolution instead of (s,∆s)-dissolution when s and ∆s are clear
from the context. By definition, a dissolution only ensures that the numbers of
voters moving between districts fulfill the given constraints on the district sizes,
that is, the size of each remaining district increases by ∆s. Figure 1 gives an
example illustrating two possible (3, 2)-dissolutions for a 5-vertex graph.

Motivated from social choice application scenarios, we additionally assume
that each voter supports one of two parties A and B. We then seek a dissolution
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such that the number of remaining districts won by party A is maximized. Here,
a district is won by the party that is supported by a strict majority of the voters
inside the district. This yields the notion of a biased dissolution, which is defined
as follows:

Definition 2 (Biased dissolution). Let G be an undirected graph and let
α : V (G) → {0, . . . , s} be an A-supporter distribution, where α(v) denotes the
number of A-supporters in district v ∈ V . Let (D, z) be an (s,∆s)-dissolution
for G. Let rα ∈ N be the minimum number of districts that party A shall win
after the dissolution and zα : Z(D,G)→ {0, . . . , s} be an A-supporter movement,
where zα(v′, v) denotes the number of A-supporters moving from district v′ to
district v. Finally, let Rα ⊆ V (G) \ D be a size-rα subset of districts. Then,
(D, z, zα, Rα) is called an rα-biased (s,∆s)-dissolution for (G,α) if and only if

c) a district cannot receive more A-supporters from a dissolved district than the
total number of voters it receives from that district:

∀(v′, v) ∈ Z(D,G) : zα(v′, v) ≤ z(v′, v),

d) no A-supporters remain in any dissolved district:

∀v′ ∈ D :
∑

(v′,v)∈Z(D,G)

zα(v′, v) = α(v′), and

e) each district in Rα has a strict majority of A-supporters:

∀v ∈ Rα : α(v) +
∑

(v′,v)∈Z(D,G)

zα(v′, v) >
s+∆s

2
.

We also say that a district wins if it has a strict majority of A-supporters and
loses otherwise.

Figure 1 shows two biased dissolutions: one with rα = 1 and the other one
with rα = 2. We are now ready to formally state the definitions of the two
dissolution problems that we discuss in this work:

Dissolution
Input: An undirected graph G = (V,E) and positive integers s and ∆s.
Question: Is there an (s,∆s)-dissolution for G?

Biased Dissolution
Input: An undirected graph G = (V,E), positive integers s,∆s, rα, and an

A-supporter distribution α : V → {0, . . . , s}.
Question: Is there an rα-biased (s,∆s)-dissolution for (G,α)?

Note that Dissolution is equivalent to Biased Dissolution with rα = 0.
As we will see later, both Dissolution and Biased Dissolution are NP-hard
in general. In this work, we additionally look into special cases of our dissolution
problems and investigate where the causes of intractability lie.
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3 Complexity for partially known dissolutions

In this section, we discuss some relevant special cases of our (in general) NP-
hard dissolution problems. These include situations where the districts to be
dissolved or to win are fixed in advance. We see that Biased Dissolution is
only polynomial-time solvable if both are fixed, and NP-hard otherwise.

Sometimes, the districts to be dissolved and the districts to win are already
determined beforehand. For this case, we show that Biased Dissolution can
be modeled as a network flow problem which can be solved in polynomial time.

Theorem 1. Let I = (G = (V,E), s,∆s, rα, α) be a Biased Dissolution
instance, and let D,Rα ⊂ V be two disjoint subsets of districts. The problem of
deciding whether (G,α) admits an rα-biased (s,∆s)-dissolution in which D is the
set of dissolved districts and in which all districts in Rα are won can be reduced
in linear time to a maximum flow problem with 2|V |+ 2 nodes, 2|V |+ 3|E| arcs,
and maximum arc capacity max(s,∆s).

With the above flow network construction we can design a polynomial-time
algorithm for Biased Dissolution when the number of districts is a constant.

Corollary 1. Any instance ((V,E), s,∆s, α) of Biased Dissolution can be
solved in time O(3|V | · (max(s,∆s) · |V | · |E|+ |V |3)).

On the contrary, we obtain NP-hardness for Biased Dissolution once one
of the two sets D and Rα is unknown. For the case that only the set D of
dissolved districts is given beforehand, the remaining task is to decide how many
A-supporters are moved to a certain non-dissolved district. However, we will
see in Section 4.2 that in the hardness construction for Theorem 2 it is already
determined which districts are to be dissolved. Furthermore, Dissolution is the
special case of Biased Dissolution with rα = 0 (which implies Rα = ∅) and
Dissolution is NP-hard for the case of s 6= ∆s (Theorem 2).

4 Complexity dichotomy with respect to district sizes

In this section, we study the computational complexity of Dissolution and
Biased Dissolution with respect to the ratio of the two integers: old district
size s and district size increase ∆s. We start by showing some useful structural
observations for dissolutions in Section 4.1 before we come to the results for
Dissolution in Section 4.2 and for Biased Dissolution in Section 4.3.

4.1 Structural properties

Using the flow construction from Theorem 1, we can show the equivalence of
(s,∆s)-dissolutions and star partitions for the cases where s is any multiple of ∆s.

Lemma 1. There exists a (t ·∆s, ∆s)-dissolution for an undirected graph G if
and only if G has a t-star partition.
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We observe a symmetry concerning the district size s and the district size
increase ∆s in the sense that exchanging their values yields an equivalent instance
of Dissolution. Intuitively, the idea behind the following lemma is that the roles
of dissolved and non-dissolved districts in a given (s,∆s)-dissolution can in fact be
exchanged by “reversing” the movement of voters to obtain a (∆s, s)-dissolution.

Lemma 2. There exists an (s,∆s)-dissolution for an undirected graph G if and
only if there exists a (∆s, s)-dissolution for G.

4.2 Complexity dichotomy for Dissolution

In this subsection, we show a P vs. NP dichotomy of Dissolution with respect
to the district size s and the size increase ∆s. Using Lemma 1, we can show that
finding an (s, s)-dissolution essentially corresponds to finding a perfect matching
and can thus be done in polynomial time. If s 6= ∆s, then Dissolution becomes
NP-hard. We use Bézout’s identity to encode the NP-complete Exact Cover
by t-Sets problem into our dissolution problem.

Theorem 2. If s = ∆s, Dissolution is solvable in O(nω) time (where ω is the
matrix multiplication exponent); otherwise the problem is NP-complete.

Proof. Let I = (G, s,∆s) be a Dissolution instance with ∆s = s. Set t :=
s/∆s = 1. Lemma 1 implies that I is a yes-instance if and only if G has a t-star
partition. A t-star partition with t = 1 is indeed a perfect matching, which can
be computed in O(nω) time, where ω is the smallest exponent such that matrix
multiplication can be computed in O(nω) time. Currently, the smallest known
upper bound of ω is 2.3727 [13].

For the case s 6= ∆s, we show that Dissolution is NP-complete if s > ∆s.
Due to Lemma 2, this also transfers to the cases where s < ∆s. First, given
a Dissolution instance (G, s,∆s) and a function z : Z(D,G) → {0, . . . , s}
where D ⊂ V (G), one can check in polynomial time whether (D, z) is an (s,∆s)-
dissolution. Thus, Dissolution is in NP.

To show the NP-hardness result, we give a reduction from the NP-complete
Exact Cover by t-Sets problem [6] for t := (s + ∆s)/g > 2, where g :=
gcd(s,∆s) ≤ ∆s is the greatest common divisor of s and ∆s. Given a finite set X
and a collection C of subsets of X of size t, Exact Cover by t-Sets asks
whether there is a subcollection C′ ⊆ C that partitions X, that is, each element
of X is contained in exactly one subset in C′.

Let (X, C) be an Exact Cover by t-Sets instance. We construct a Dis-
solution instance (G, s,∆s) with a neighborhood graph G = (V,E) defined as
follows: For each element u ∈ X, add a clique Cu of properly chosen size q to G
and let vu denote an arbitrary fixed vertex in Cu. For each subset S ∈ C, add a
clique CS of properly chosen size r ≥ t to G and connect each vu for u ∈ S to a
unique vertex in CS . Figure 2 shows an example of the constructed neighborhood
graph for t = 3.

Next, we explain how to choose the values of q and r. We set q := xq + yq,
where xq ≥ 0 and yq ≥ 0 are integers satisfying xqs− yq∆s = g. Such integers
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v1 v2 v3 v4 v5 v6

CS1 CS2 CS3

Fig. 2. The constructed instance for t = 3.

exist by Bézout’s identity. The intuition behind is as follows: Dissolving xq
districts in Cu and moving the voters to yq districts in Cu creates an overflow of
exactly g voters that have to move out of Cu. Notice that the only way to move
voters into or out of Cu is via district vu. Moreover, in any dissolution, exactly xq
districts in Cu are dissolved because dissolving more districts leads to an overflow
of at least g + s + ∆s > s voters, which is more than vu can move, whereas
dissolving less districts yields a demand of at least s+∆s− g > ∆s voters, which
is more than vu can receive. Thus, vu must be dissolved since there is an overflow
of g voters to move out of Cu and this can only be done via district vu.

The value of r ≥ t is chosen in such a way that, for each S ∈ C and each u ∈ S,
it is possible to move g voters from vu to CS (recall that vu must be dissolved).
In other words, we require CS to be able to receive in total t · g = s+∆s voters
in at least t non-dissolved districts. Thus, we set r := xr + yr, where xr ≥ 0 and
yr ≥ t are integers satisfying xrs− yr∆s = −(s+∆s). Again, since −(s+∆s) is
divisible by g, such integers exist by our preliminary discussion. It is thus possible
to dissolve xr districts in CS moving the voters to the remaining yr districts
in CS such that we end up with a demand of s+∆s voters in CS . Note that the
only other possibility is to dissolve xr + 1 districts in CS in order to end up with
a demand of zero voters. In this case, no voters of any other districts connected
to CS can move to CS . By the construction of Cu above, it is clear that it is
also not possible to move any voters out of CS because no vu can receive voters
in any dissolution. Thus, for any dissolution, it holds that either all or none of
the vu connected to some CS move g voters to CS .

The proof of correctness is as follows. Suppose (X, C) is a yes-instance, that is,
there exists a partition C′ ⊆ C of X. We can thus dissolve xq districts in each Cu
(including vu) and move the voters such that all yq non-dissolved districts receive
exactly ∆s voters. This is always possible since Cu is a clique. If we do so, then,
by construction, g voters have to move out of each vu. Since C′ partitions X,
each u ∈ X is contained in exactly one subset S ∈ C′. We can thus move the
g voters from each vu to CS . Now, for each S ∈ C′, we dissolve any xr districts
that are not adjacent to any vu and for the subsets in C \ C′, we simply dissolve
xr + 1 arbitrary districts in the corresponding cliques. By the above discussion of
the construction, we know that this in fact yields an (s,∆s)-dissolution. Hence,
(G, s,∆s) is a yes-instance.

Now assume that there exists an (s,∆s)-dissolution for (G, s,∆s). As we
have already seen in the above discussion, any (s,∆s)-dissolution generates an
overflow of g voters in each Cu that has to be moved over vu to some district
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in CS . Furthermore, each CS either receives g voters from all its adjacent vu or
no voters at all. Therefore, the subsets S corresponding to cliques CS that receive
t · g voters form a partition of X, showing that (X, C) is a yes-instance. ut

4.3 Complexity of Biased Dissolution

Since Dissolution is a special case of Biased Dissolution, the NP-hardness
results for s 6= ∆s transfer to Biased Dissolution. It remains to see whether Bi-
ased Dissolution remains polynomial-time solvable when s = ∆s. Interestingly,
this is true for s = ∆s = 1.

We introduce a notion called “edge set” for a given dissolution (D, z) of a
given graph G. Let Ez ⊆ E(G) contain all edges {x, y} with (x, y) ∈ Z(D,G)
and z(x, y) > 0. Then, we call Ez the edge set used by the dissolution (D, z).

The following lemma shows that finding an rα-biased (1, 1)-dissolution essen-
tially corresponds to finding a maximum-weight perfect matching.

Lemma 3. Let (G = (V,E), s = 1, ∆s = 1, rα, α) be a Biased Dissolution
instance. There exists an rα-biased (1, 1)-dissolution for (G,α) if and only if
there exists a perfect matching of weight at least rα in (G,w) with w({x, y}) := 1
if α(x) = α(y) = 1 and w({x, y}) := 0 otherwise.

As shown in the proof of Theorem 2, the edge set used by a (1, 1)-dissolution is
a perfect matching. By appropriately setting α and rα we can enforce that the edge
set used by any rα-biased (2, 2)-dissolution only induces cycles of lengths divisible
by four. We end up with a restricted two-factor problem which was already
studied in the literature [7] and can be used to show NP-hardness (Theorem 3).

Lemma 4. Let G = (V,E) be an undirected graph with 4q vertices (q ∈ N).
Then G has a two-factor E′ whose cycle lengths are all multiples of four, if and
only if (G,α) admits a q-biased (2, 2)-dissolution where α(v) = 1 for all v ∈ V .

Theorem 3. Biased Dissolution on graphs G = (V,E) can be solved in
O(|V |(|E|+ |V | log |V |)) time if s = ∆s = 1; otherwise it is NP-complete for any
constant value s = ∆s ≥ 2.

5 Complexity on special graph classes

In a companion paper [3], we have shown that computing star partitions—and
hence by Lemma 1 also Dissolution—remains NP-hard even on subcubic grid
graphs and split graphs. In this section, we discuss the complexity of Biased
Dissolution on special graph classes.

An interesting special case of Biased Dissolution occurs if voters can
move from any district to any other district, that is, the neighborhood graph
is a clique. Then, the existence of an (s,∆s)-dissolution depends only on the
number |V | of districts, the district size s, and the size increase ∆s. Clearly, a
Dissolution instance is a yes-instance if and only if d := |V | ·∆s/(s+∆s) is an
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integer. We show that Biased Dissolution can likewise be solved in polynomial
time if the neighborhood graph is a clique. Yuster [14, Theorem 2.3] showed
that the H-Factor problem is solvable in linear time on graphs of bounded
treewidth when the size of H is constant. This includes the case of finding x-star
partitions, that is, (x, 1)-dissolutions resp. (1, x)-dissolutions when x is constant.
We can show that the more general problem Biased Dissolution is solvable in
linear time on graphs of bounded treewidth when s and ∆s are constants. By a
polynomial-time reduction from the NP-hard Perfect Planar H-Matching
problem [2], we get NP-hardness for Dissolution on planar graphs.

Theorem 4.

(1) Biased Dissolution is solvable in O(|V |2) time on cliques.
(2) Biased Dissolution is solvable in linear time on graphs of bounded treewidth

when s and ∆s are constant.
(3) Dissolution on planar graphs is NP-complete for all s 6= ∆s such that

∆s divides s or s divides ∆s. It is polynomial-time solvable for s = ∆s.

Proof (Sketch for (1)). In fact, we show how to solve the optimization version of
Biased Dissolution, where we maximize the number rα of winning districts.
Intuitively, it appears to be a reasonable approach to dissolve districts pursuing the
following two objectives: Any losing district should contain as few A-supporters
as possible and any winning district should contain exactly the amount that is
required to have a majority. Dissolving districts this way minimizes the number of
“wasted” A-supporters. We now show that this greedy strategy is indeed optimal.

Let G = (V,
(
V
2

)
) be a clique, let α be an A-supporter distribution over V ,

and let s and ∆s be the district size and the district size increase. With G
being complete, we are free to move voters from any dissolved district to any
non-dissolved district. Let µ := b(s + ∆s)/2c + 1 be the minimum number of
A-supporters required to win a district. Thus, a district with less than (µ−∆s)
A-supporters can never win. Denote by L := {v ∈ V | α(v) < µ−∆s} the set of
non-winnable districts.

Our first claim corresponds to the first objective above, that is, the losing
districts should contain a minimal number of A-supporters.

Claim 1 Let v, w ∈ V be two districts with α(v) ≤ α(w). If there exists an rα-
biased dissolution where v is winning and w is losing, then there also exists
an rα-biased dissolution where v is losing and w is winning.

The next claim basically corresponds to the second objective, in the sense that
districts with a large number of A-supporters (possibly more than the required)
should be dissolved in order to distribute the voters more efficiently.

Claim 2 Let v, w ∈ V be two districts with α(v) ≤ α(w). Assume that there
exists an rα-biased dissolution where rα is optimal. If v is dissolved, then the
following holds: (i) If w is losing, then there also exists an rα-biased dissolution
where w is dissolved and v is losing. (ii) If w is winning and v is winnable, that
is, v 6∈ L, then there exists an rα-biased dissolution where w is dissolved and v is
winning.
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Using the two claims above, we now show how to compute an optimal biased
dissolution. In order to find a biased dissolution with the maximum number
of winning districts, we seek a dissolution which loses a minimum number of
remaining districts. Thus, for each ` ∈ {0, . . . , r}, we check whether it is possible
to dissolve d districts such that at most ` of the remaining r districts lose. To this
end, assume that the districts v1, . . . , vn are ordered by increasing number of A-
supporters, that is, α(v1) ≤ α(v2) ≤ . . . ≤ α(vn) and let V` := {v1, . . . , v`}. Now,
if there exists an (r− `)-biased dissolution, then there also exists an (r− `)-biased
dissolution where the losing districts are exactly V`. This follows by repeated
application of the exchange arguments of Claim 1 and Claim 2(i). Hence, given `,
we have to check whether there is a set D ⊆ V \ V` of d districts that can be
dissolved in such a way that all non-dissolved districts in V \ (V` ∪D) win and
the districts in V` lose.

First, note that in order to achieve this, all districts in L \ V` have to be
dissolved because they cannot win in any way. Clearly, if |L \ V`| > d, then
it is simply not possible to lose only ` districts and we can immediately go to
the next iteration with ` := `+ 1. Therefore, we assume that |L \ V`| ≤ d and
let d′ := d−|L\V`| be the number of additional districts to dissolve in V \(L∪V`).
By Claim 2(ii), it follows that we can assume that the d′ districts with the
maximum number of A-supporters are dissolved, that is, V d

′
:= {vn−d′+1, . . . , vn}.

Thus, we set D := L\V` ∪V d
′

and check whether there are enough A-supporters
in D to let all r − ` remaining districts in V \ (V` ∪D) win.

Sorting the districts by the number of A-supporters (as preprocessing) requires
O(n log n) arithmetic operations. For up to n values of `, to check whether the
remaining districts in V \ (V` ∪D) can win requires O(n) arithmetic operations
each. Thus, assuming constant-time arithmetics, we end up with O(n2) time. ut

6 Conclusion

We initiated a graph-theoretic combinatorial approach to concrete redistribution
problems occurring in various application domains. Obviously, the two basic
problems Dissolution and Biased Dissolution concern highly simplified
situations and will not be able to model all interesting aspects of redistribution
scenarios. For instance, our constraint that before and after the dissolution all
vertex loads are perfectly balanced may be too restrictive for many applications.
All in all, we consider our simple (and yet fairly realistic) models as a first step into
a fruitful research direction that might yield a stronger linking of graph-theoretic
concepts with districting methods and other application scenarios.

We end with a few specific challenges for future research. We have left open
whether the P vs. NP dichotomy for general graphs fully carries over to the planar
case: it might be possible that planar graphs allow for some further tractable cases
with respect to the relation between old and new district sizes. Moreover, with
redistricting applications in mind it might be of interest to study special cases of
planar graphs (such as grid-like structures) in quest of finding polynomial-time
solvable special cases of network-based dissolution problems. Having identified
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several NP-hard special cases of Dissolution and Biased Dissolution, it is a
natural endeavor to investigate their polynomial-time approximability and their
parameterized complexity; in the latter case one also needs to identify fruitful
parameterizations.
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factors. SIAM Journal on Discrete Mathematics, 1(4):472–484, 1988.

[8] Z. Landau and F. Su. Fair division and redistricting. Social Choice and
Welfare, 32(3):479–492, 2009.

[9] M. Maravalle and B. Simeone. A spanning tree heuristic for regional clus-
tering. Communications in Statistics—Theory and Methods, 24(3):625–639,
1995.

[10] A. Mehrota, E. L. Johnson, and G. L. Nemhauser. An optimization based
heuristic for political districting. Management Science, 44(8):1100–1114,
1998.
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