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Abstract

Given an undirected graph G and an integer d > 0, the NP-hard BOUNDED-
DEGREE VERTEX DELETION problem asks to delete as few vertices as possible
from G such that the resulting graph has maximum vertex degree d. Our main
result is to prove that BOUNDED-DEGREE VERTEX DELETION is W/[1]-hard
with respect to the parameter treewidth. As a side result, we obtain that the
NP-hard VECTOR DOMINATING SET problem is W[1]-hard with respect to the
parameter treewidth. On the positive side, we show that BOUNDED-DEGREE
VERTEX DELETION becomes fixed-parameter tractable when parameterized by
the combined parameter treewidth and number of vertices to delete, and when
parametrized by the feedback edge set number.

Keywords: parameterized complexity, structural parameterization,
tree-likeness, Vector Dominating Set, k-dependent set, co-k-plexes

1. Introduction

This work is mainly concerned with the following graph modification prob-
lem, here stated in its decision version.

BOUNDED-DEGREE VERTEX DELETION (BDD)

Given: An undirected graph G = (V, E), and integers d > 0 and
k>0.

Question: Is there a subset V' C V with |V’| < k whose removal
from G yields a graph in which each vertex has degree at most d?

BDD finds applications in computational biology [16] and its “dual problem”
to find maximum s-plexes has applications in social network analysis [28] 1], 22].
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There is a substantial amount of theoretical work related to its algorithmic
complexity [2} [10] 8l [12], 2], 25 28]. A famous special case of BDD is VERTEX
COVER, where d = 0. Whereas we look at the problem from the viewpoint of
minimizing the number of deleted vertices, Dessmark et al. [I2] rather studied
restrictions to special graph classes of the dual problem to maximize the number
of vertices remaining in the graph and referred to these vertices as k-dependent
sets. Balasundaram et al. [2] referred to this degree-bounded generalization of
independent sets as co-k-plexes and developed constant-factor approximation al-
gorithms for the problem. Finally, related problems for directed and undirected
graphs, which model problems in voting theory and social network analysis.
have been studien in companion work [4, 3]. In this paper, we study how the
treewidth of the underlying graph influences the parameterized computational
complexity of BDD.

Let n denote the number of vertices in the input graph. Dessmark et al. [I2]
Theorem 5.1] stated (using different terminology) that BDD can be solved in
O(n*™ *1) time, where tw denotes the treewidth of the underlying graph. There
are several fixed-parameter tractability results for BDD for constant d and
parameter solution size k [I0) [16l 22 25]. For unbounded values of d, BDD
becomes W[2]-hard for parameter k [16], excluding hope for fixed-parameter
tractability, that is, for an algorithm solving BDD in f(k) - n®™1) time for a
computable function f only depending on k [14] [19] [23]. On the contrary, other
results [25], 16 22] show that BDD is fixed-parameter tractable with respect to
the combined parameter (k,d). We remark that, using Courcelle’s theorem [IT],
it is not hard to see that BDD is fixed-parameter tractable for the combined
parameter (tw, d)E|

Our central contribution is to show that BDD is W[1]-hard when parameter-
ized by the treewidth tw, thus destroying hope for fixed-parameter tractability
with respect to the parameter tw. While BDD is hard for the single param-
eters k and tw, we show that BDD becomes fixed-parameter tractable when
parameterized by the combined parameter (tw, k) and when parameterized by
the “feedback edge set number”, that is, the number of edges to delete from a
graph in order to make it a forest.

Related domination problems. Our results rely on relations between BDD and
two NP-hard variants of the classical DOMINATING SET problem, namely, VEC-
TOR DOMINATING SET and CAPACITATED DOMINATING SET. A dominating
set of an undirected graph G = (V, E) is a subset V/ C V such that every ver-
tex v from V is in V’ or has a neighbor w in V', that is, w dominates v. In the
considered variants, one additionally has as input a nonnegative integer x; for
every v; € V. For a vector dominating set V' it is required that every v; ¢ V'
needs to have at least x; neighbors in V. In contrast, in a capacitated dominat-
ing set, every vertex v; € V' can dominate at most x; of its neighbors. While

3Indeed, this works in analogy to proving the fixed-parameter tractability of the closely
related MINIMUM DEGREE DELETION problem for the parameter treewidth [9].



the corresponding CAPACITATED DOMINATING SET problem has been shown
to be W[1]-hard with respect to the parameter treewidth [I3], to our knowledge
the parameterized complexity of VECTOR DOMINATING SET for the parameter
treewidth has been open so far.

Our main result, the WJ[l]-hardness of BDD with respect to treewidth,
follows by a parameterized reduction from CAPACITATED DOMINATING SET.
Moreover, the positive result that BDD is fixed-parameter tractable with re-
spect to the combined parameter (tw, k) relies on a simple reduction from BDD
to VECTOR DOMINATING SET, for which fixed-parameter tractability for a cor-
responding combined parameter has been shown by Raman et al. [26]. Combin-
ing this parameterized reduction with the W[1]-hardness result for BDD implies
the W[1]-hardness for VECTOR DOMINATING SET with respect to treewidth.

Preliminaries. We work with undirected and simple graphs. For a graph G =
(V,E) and a vertex set X we write G — X as an abbreviation for the induced
subgraph G[V \ X]. Unless stated otherwise, let n := |V| and m := |E|.

A famous parameter measuring the tree-likeness of an undirected graph is
the treewidth [5] [7]. Many NP-complete graph problems become easy when the
input instance is a tree. The notion of treewidth, introduced by Robertson and
Seymour [27], tries to capture the “tree-likeness” of a graph in the sense that
“tree-like” graphs have small treewidth. Many in general NP-hard graph prob-
lems can then be solved in polynomial or even linear time when the underlying
graph has a treewidth bounded by a constant [7] [19] 23].

A tree decomposition of a graph G = (V, E) is a pair ({X; | ¢ € I}, T), where
each X; is a subset of V, called bag, and T = (I, F) is a tree with node set I
and edge set F. The following must hold:

1. Uie[ Xz = V,
2. for every edge {u,v} € E, there is an i € I such that {u,v} C X;;
3. for all 7, 4,1 € I, if j lies on the path between i and [ in T, then X; N X; C

X;.
The width of ({X; | ¢ € I},T) is max{|X;| | i € [} —1. The treewidth of G is the
minimum width over all tree decompositions of G. Trees have treewidth one.

Parameterized complexity is a two-dimensional framework for studying the
computational complexity of problems [I4} 19, [23]. One dimension is the input
size n (as in classical complexity theory), and the other one is the parameter k
(usually a positive integer). A problem is called fized-parameter tractable if
it can be solved in f(k) - n®1) time, where f is a computable function only
depending on k. Notably, a problem can usually be parameterized in several
natural ways, particularly leading to a multivariate complexity analysis where
combined parameters are studied [I5] 24].

Downey and Fellows [14] developed a formal framework for showing fized-
parameter intractability by means of parameterized reductions. A parameterized
reduction from a parameterized problem P to another parameterized problem P’
is a function that, given an instance (z,k), computes in f(k) - n°1) time an
instance (2, k") (with k&’ only depending on k) such that (z, k) is a yes-instance



of problem P if and only if (z/, k') is a yes-instance of problem P’. The basic
complexity class for fixed-parameter intractability is called W/[1], followed by
the next level W2]. There is good reason to believe that Wl]-hard problems
are not fixed-parameter tractable [I4], 19, 23]. In this sense, Wl]-hardness is
the parameterized complexity analog of NP-hardness.

2. Parameter treewidth

The main result of this section is to show that BDD is W[1]-hard when pa-
rameterized by treewidth (Section [2.1)). When treewidth together with solution
size forms a combined parameter, then BDD becomes fixed-parameter tractable

(Section [2.2)).

2.1. Single parameter treewidth

We show W[l]-hardness of BOUNDED-DEGREE VERTEX DELETION with
respect to the parameter treewidth. To this end, we present a parameterized
reduction from CAPACITATED DOMINATING SET, which is defined next.

Let G, = (V, E) be an undirected graph and let cap : V' — N be a capacity
function such that 0 < cap(v) < deg(v), where deg(v) is the degree of vertex v €
V. We call G = (V,E,cap) capacitated graph. For V' C V. a subset map
M C (V\V')x V' maps a vertex x € V\ V' to a vertex y € V' if (z,y) € M.
We denote by sat(M,v) := [{(z,v) € M}| the saturation of a vertex v under
the subset map M, that is, the number of vertices mapped by M to v. We
call S C V a capacitated dominating set if there exists a subset map M for S
mapping every vertex from (V' \ S) to one of its neighbors from S such that
sat(M,s) < cap(s) for all s € S. Herein, M is called feasible subset map for S.

CAPACITATED DOMINATING SET

Given: A capacitated graph G = (V, F, cap) and a positive integer k.

Question: Is there a capacitated dominating set for G containing at
most k vertices?

CAPACITATED DOMINATING SET is W[1]-hard with respect to the combined
parameter (tw,k) [I3]. In the following, we describe a parameterized reduction
to BOUNDED DEGREE DELETION such that the treewidth of the BDD graph
only depends on the treewidth of the CAPACITATED DOMINATING SET graph.

Let (G,k) be an instance of CAPACITATED DOMINATING SET with a ca-
pacitated graph G = (V, E,cap). Let ¢* be the sum over all capacities. Let
V = {v1,...,v,}, that is, |[V| = n. We construct an undirected graph G’
that can be transformed into a graph with maximum degree n by deleting at
most n + ¢* vertices if and only if (G, k) is a yes-instance of CAPACITATED
DOMINATING SET.

The graph G’ is displayed in Figure The vertex set V' of G’ consists
of the disjoint union of the vertex sets provided in Table Furthermore, let

H = Ulgign Hi7 A= Ulgign Ai7 and B := Ulgign Bz



Figure 1: The graph G’ obtained from the parameterized reduction from CAPACITATED DoOM-
INATING SET to BOUNDED-DEGREE VERTEX DELETION. The desired degree bound in the BDD
instance is n, the number of vertices in the CAPACITATED DOMINATING SET instance. For
vertices of degree greater than n the minimum number of neighbors that need to be deleted to
reach degree at most n is displayed in the lower parts of the splitted circles. Here, ¢; := cap(v;).
The structure of the original graph G is reflected in the lowest three layers.

Table 1: Vertices of the BOUNDED-DEGREE VERTEX DELETION graph G’.

S:={s;|i=1,...,n}, dominating set selection
X ={x;|i=1,...,n},

Yi={y;|i=1,...,n}, match check
E':={e;j,ej; | {vi,vj} € E}, subset map selection

{a,b,u},

H; = {hi,la ey hi,cap(vi)} for i € {1, . 7’I’L}7
A; = {au, . ,ai,cap(vi)} for i € {1, . ,n},
B; = {bi71, ceey bi,cap(vi)} for i € {17 . ,n},

further degree-one vertices.



Table 2: Edges and vertex degrees in the constructed graph G’. Unless stated otherwise, i,j
e{1,...,n}.

edges between vertex degree in G’

e;; and x; a n+c*—(n—k)
e;,; and y; b n+(n—k)

s; and y; Y. H n+1

s; and uy, ..., uk u n+k

x; and a; j for j =1,..., cap(i) s; €S2, € X n+cap(v;)

s; and a; ; for j =1,..., cap(i) all remaining < n

hiJ‘ and Qj, 5

hi,j and bi,j

a and every vertex from A
b and every vertex from B

The basic idea of the construction is as follows. There are two types of
selection gadgets. The first one selects k vertices corresponding to a capacitated
dominating set in G (realized by the set S, that is, s; € S is in the solution
if v; is in a capacitated dominating set in G). The second type of selection
gadget selects n — k elements of a subset map of the capacitated dominating
set (realized by E’). Moreover, there is a match gadget checking whether the
selected subset map elements belong to a capacitated dominating set built by
the selected vertices (realized by Y'). Finally, a third type of gadget (realized
by A and X)) ensures that there are at most cap(v;) mapping edges selected for
every selected vertex v;. In addition, there are several sets of auxiliary vertices
that, for example, ensure that the number of selected vertices is correct. In
particular, the sets H, B, {a,b} are needed to ensure that exactly ¢* — (n — k)
vertices from A are in any size-(¢* + n) solution. Note that this could be also
achieved by introducing ¢* 4+ n new vertices adjacent to every vertex from A,
but this would increase the treewidth of the graph.

The edges are defined in Table [2[ (left). Moreover, we introduce additional
degree-one vertices in order to end up with the degrees given by Table [2| (right).
Note that if there is a solution containing a degree-one vertex, then there is also
a solution of the same size without this vertex. Moreover, adding degree-one
vertices does not affect the treewidth.

Lemma 1. (G, k) is a yes-instance of CAPACITATED DOMINATING SET if and
only if (G',¢* +n,n) is a yes-instance of BOUNDED-DEGREE VERTEX DELE-
TION.

Proof. We start with the proof of the equivalence from left to right. Let (G, k) be
a yes-instance of CAPACITATED DOMINATING SET with the capacitated graph
G := (V, E, cap). Furthermore, let D be a size-k capacitated dominating set for
G, and let M be a feasible subset map for D. We construct a solution set L



for the BDD instance (G’, ¢* + n,n). For every (v;,v;) € M, we add e, ; to L.
Since M maps every vertex from V \ D to one of its neighbors in D, at this
point one has |L| = n — k. Furthermore, for every v; € D, we add s; as well
as bj 1,y bjsat(M,v;) A0 @ sat(Mov;) 415 - -+ Qjcap(v;) 10 L. Finally, for every
vj € V\ D, we add a;1,...,0jcap(v;) to L. That is, we further add cap(v;)
vertices from AU B for every i € {1,...,n} and k vertices from S. Thus, finally
the cardinality of L is ¢* + n.

It remains to show that every vertex in G’ — L has degree at most n. We
start with @ and b. Since the total saturation of the vertices in D is n — k and
bjts-- s bjsat(M,v;) € L for v; € D, L contains n — k neighbors of b. Similarly,
one can verify that there are ¢* — (n — k) neighbors of a in L.

Vertex u is adjacent to all vertices in S and |L N S| = k. Hence, k neighbors
of u are deleted and the final degree of u is n. The vertices in Y have degree n
in G’ — L because for each y; € Y exactly one neighbor from FUS is in L: Either
s;i € Lors; ¢ L. In the latter case e; ; must be in L for j with (v;,vj) € M.
Since for each h; € H either a; € L or b; € L, every vertex from H has degree n
in G’ — L. Every vertex s; € S is either in L (in the case of v; € D) or all cap(v;)
neighbors from A; are in L (in the case of v; € (V' \ D)). Hence, every vertex
in S has degree n in G’ — L. Finally, consider a vertex z; € X. We distinguish
two cases:

e v; € D: Then, sat(M,v;) many vertices from E are in L because D is a
capacitated dominating set and M maps sat(M,v;) many vertices to v;.
Furthermore, cap(v;) — sat(M, v;) many vertices from A; are in L. Thus,
x; has degree n in G’ — L.

e v; € (V\D): Then, cap(v;) many vertices from A; are in L. Thus, z; has
degree n in G’ — L.

Since all remaining vertices have degree at most n in G, it follows that
(G’,¢* 4+ n,n) is a yes-instance of BDD.

Now, we show the other direction of the equivalence. Let (G’ := (V', E'), c*+
n,n) be a yes-instance of BDD. Furthermore, let L C V' be a size-(c* + n)
solution, that is, every vertex in G’ — L has degree at most n. We start with
proving two claims to show which types of vertices must belong to L.

Claim 1. For every solution L, |[LNA| =c¢*—(n—k) and |LNB| = (n—k).

Proof of Claim 1. We first show that any size-(n + ¢*) solution L contains
at most ¢* vertices from AU B U H U {a,b}. Assume towards a contradiction
that |[LN (AU BUH U{a,b})| > ¢* and, hence, |L\ (AU BUH U {a,b})| <
n — 1. Note that there are n vertices in Y and for each vertex y; € Y either y;
or a neighbor of y; must be deleted. Since the neighborhoods for any two
vertices in Y are disjoint and no vertex in Y is adjacent to any vertex from
(AUBUH U{a,b}), it follows that |L\ (AUBUH U{a,b})| > n: a contradiction.

Now, since |H| = ¢*, every vertex from H has degree n + 1, and since any
two vertices from H do not have a common neighbor, at least ¢* vertices from



AU B U H must belong to L. This implies that a and b cannot be in L and
one hence must delete exactly n — k vertices from B and ¢* — (n — k) vertices

from A to ensure that a and b end up with degree n. This finishes the proof of
Claim 1.

Claim 2. For every solution L, [ILNS| =k and |[LNE'| =n—k.

Proof of Claim 2. Since |Y| = n, every vertex from Y has degree n + 1, and
since no pair of vertices from Y has a common neighbor, at least n vertices
from E/ UY U .S must belong to L. Due to Claim [I| exactly ¢* solution vertices
belong to A U B, implying that all n remaining solution vertices must belong
to B'UY US. Moreover, at least ) .y cap(z;) = ¢* neighbors of X must
belong to L. Since |[L N A| = ¢* — (n — k), the total amount of deleted vertices
from A that have a neighbor in X is ¢* — (n — k). Thus, at least n — k vertices
from E’ must be deleted. Moreover, there must be at least k vertices from S in
the solution to ensure that u has degree n. This finishes the proof of Claim 2.

Now, due to Claims [l| and [2} we know that L consists of ¢* — (n — k) vertices
from A, k vertices from S, and n — k vertices from E’. It remains to show
that the selected k vertices from S correspond to a capacitated dominating set
in G and the selected vertices from E’ to a corresponding feasible subset map.
Consider D’ := {v; | s; € L} and M’ := {(v;,v;) | €;; € L}. We show the
following claim.

Claim 3. The vertex set D' is a capacitated dominating set of size at most k
and M’ is a feasible subset map for D' in G.

Proof of Claim[3. We first show by contradiction that every vertex z; € X with
x; ¢ L has deg(z;) = n in G’ — L (we refer to this as Observation 1). Assume
that there is an z; in X with degree less than n. Then, L must contain at least
¢* 4+ 1 neighbors of X. However, since each x; has only neighbors in A U E’,
it follows from Claims [I] and [2] that there are at most ¢* neighbors of X in the
solution, a contradiction.

Now, we show that for every “non-solution vertex”, there is a selected edge
adjacent to a “dominator vertex”, that is,

Vo, € (V\D'):3v; € D" : (v;,v5) € M.

For every y; € Y, there must be a neighbor in L. Due to Claims [l] and [2| such a
neighbor can either be s; or e; ; for a j. Since |SNL| = k, for the n — k vertices
with s; ¢ L there must be a j such that e;; € L. It remains to show that if
e;; € L, then s; must be in L as well. If e; ; € L, then there must be a vertex
from A; that is not in L since, otherwise, x; would have degree less than n in
G’ — L (contradicting Observation 1). Thus, there are more than n neighbors
of s; in G’ — L and s; must be in L.

We have shown that D’ is a size-k dominating set and M’ is a corresponding
subset map. It remains to show that M’ is feasible, that is, sat(M’, v) < cap(v)
for every v € D’. To this end, assume that sat(M’,v;) > cap(v;). Then, z; has



more than cap(v;) neighbors in L and, therefore, z; has degree less than n in
G’ — L, a contradiction to Observation 1.

Altogether, it follows that D’ is a capacitated dominating set for G’ and M’
is a feasible subset map for D’. O

It remains to ensure that the treewidth of G’ is bounded by a function of
the treewidth of G.

Lemma 2. Let (G, k) be an instance of CAPACITATED DOMINATING SET and
let (G',c* +n,d) be the corresponding instance of BOUNDED-DEGREE VERTEX
DELETION. Let tw be the treewidth of G. It holds that G’ has treewidth at most
tw? +3 - tw.

Proof. Let T be a tree decomposition of G with maximum bag size tw +1. Let
V = {v1,...,v,} denote the vertices of G and let E be the set of edges of G.
We modify 7 such that it is a tree decomposition of G':

1. For every bag containing two vertices v;,v; € V with {v;,v;} € E add e, ;
and e;; to the bag. One adds at most tw? new vertices per bag.

2. For every bag containing v; € V replace v; by the three vertices z;, s;,

and y;. This contributes with 3 - tw to the treewidth.

Add a, b, and u to every bag. The treewidth is further increased by 3.

4. Adding the vertices from H, A, and B can be done with bags of size seven:
For each h; ; € H create a new bag B; ; containing h; j, a;;, b j, x;, si,
a, and b. Add B;; as a new leaf to a bag containing x; and s; to the
decomposition tree.

©w

Clearly, the degree-one vertices can be added without further increasing the
treewidth. Moreover, it is easy to check that the constructed tree decomposition
is a correct tree decomposition for G'. O

Combining Lemma [I] and Lemma [2] we arrive at our main theorem.

Theorem 1. BOUNDED-DEGREE VERTEX DELETION is W/1/-hard with respect
to the parameter “treewidth of the input graph”.

2.2. Combined parameter treewidth and solution size

Whereas BDD is W[2]-hard with respect to the parameter solution size [16]
and W([1]-hard with respect to the parameter treewidth (Theorem [I]), next we
show that it becomes fixed-parameter tractable when combining both parame-
ters. To this end, we employ a close connection to the VECTOR DOMINATING
SET problem.

BDD is a special case of VECTOR DOMINATING SET which is defined as
follows:

VECTOR DOMINATING SET (VDS)

Given: A graph G = (V,E) with V := {v1,...,v,}, an integral
threshold vector I = {i(v1),...,l(v,)}, and a positive integer k.

Question: Is there aset V' C V with |V’| < k such that [N (v)NV'| >
l(v) for allv e V\ V'?



Clearly, if I(v) = max{0,deg(v) — d}, then VDS and BDD coincide. The
parameterized complexity of VDS has been investigated by Raman et al. [26]
for different classes of threshold vectors and special graph classes. In particular,
they showed that VDS can be solved in kO ¥)n0M) time on p-degenerated
graphs. Herein, a graph is p-degenerated if every induced subgraph of G has a
vertex of degree at most p. Note that p < tw (see e.g. Bodlaender [B]).

As stated above, one can transform a BDD instance, consisting of a graph G =
(V,E), a degree bound d, and an integer k, to an equivalent VDS instance by
setting I(v) := max{0, deg(v) — d} for all v € V. However, Raman et al. [20]
required that [(v) > 1. This can be achieved by the following transformation.
Given a VDS instance where [(v) = 0 for some v € V, build an equivalent in-
stance as follows. Let Vj := {v € V | [(v) = 0}. Add two new vertices x and v,
the edges {z, y} and {y, w} for all w € Vj, and set [(v) := 1 for all v € VoU{z, y}.
Observe that the original instance has a solution of size k if and only if the new
instance has a solution of size k + 1. Moreover, by the above transformation
the treewidth and degeneracy increases by at most two. Hence, we arrive at the
following.

Corollary 1.

1. VECTOR DOMINATING SET is W/[1/-hard with respect to the parameter
“treewidth of the input graph”.

2. BOUNDED-DEGREE VERTEX DELETION can be solved in k©
time, hence it is fized-parameter tractable with respect to the combined
parameter (tw, k).

(tw k%), O(1)

3. Parameter Feedback Edge Set

The previous section showed that there is no hope for fixed-parameter tractabil-
ity for BDD with respect to the single parameter treewidth. We contrast this
result by showing that, using the feedback edge set number, which upper-bounds
treewidth, as parameter, one can achieve fixed-parameter tractability. Clearly,
the feedback edge set number can also be considered as a measurement of tree-
likeness. Another interesting parameter in this direction is the “feedback vertex
set number”, that is, the minimum number of vertices to delete to make a graph
a forest. However, the parameterized complexity with respect to the feedback
vertex set number remains open.

We now show that BDD is fixed-parameter tractable with respect to the
parameter feedback edge set number s.. Let (G,d, k) be an instance of BDD
and let E; be a feedback edge set of size s.. Note that £ can be computed in
linear time using depth-first search. For every {z,y} € E;, branch into three
cases. First, if x is in the solution, then delete x and decrease k by one. Second,
if y is in the solution, then delete y and decrease k by one. Third, if neither x
nor y are in the solution, then transform the graph as follows. Remove the
edge {z,y}, add two new vertices a, and a,, and add the edges {a,,z} and
{ay,z}. Moreover, we mark the vertices z,y, a,,a, as unremovable, that is,
they cannot be part of the solution in the considered branching case.
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After exhaustive branching, every edge from E is either deleted or “cut”
into two parts. Hence, it remains to solve the “annotated version” of BDD
with unremovable vertices when restricted to forests. To this end, if there is an
unremovable vertex with more than d unremovable neighbors, then return “no”.
Otherwise, for every single tree a minimum number of vertices that need to be
deleted can be computed as follows. Root the tree arbitrarily and process the
tree according to a bottom-up traversal. Let = be the first node with deg(z) >
d—+1iwith ¢ > 1.

If deg(x) = d + 1 and the parent p of x is “removable”,
then delete p.
Otherwise, if x is removable,
then delete x,
else distinguish two further cases.
If p is removable,
then delete p and ¢ — 1 removable children of x,
else, delete 7 removable children from z.

It is easy to verify that the given case distinction is correct and can be accom-
plished in O(n?) time with n being the number of vertices [9]. Hence, one arrives
at the following.

Theorem 2. BOUNDED-DEGREE VERTEX DELETION can be solved in O(3% -
n?) time with s. being the size of a feedback edge set.

4. Outlook and Open Questions

Having shown that there is presumably no hope for fixed-parameter tractabil-
ity of BOUNDED-DEGREE VERTEX DELETION parameterized by treewidth (as-
suming an unbounded value d for the maximum degree), the following are nat-
ural next steps for future research.

e Combine the treewidth parameter with other parameters. We have seen
that BDD becomes fixed-parameter tractable when parameterized by tree-
width and solution size, and when parameterized by treewidth and degree
bound d (the latter due to its reliance on Courcelle’s theorem, which only
gives a classification result). Besides identifying further parameters that
might be combined with the treewidth, one might try to improve the
corresponding upper bounds of the existing results, perhaps even going
for problem kernel results [0, [20].

e Study the parameterized complexity of BDD with respect to “weaker”
structural parameters than treewidth is. For instance, we already iden-
tified that BDD becomes fixed-parameter tractable when parameterized
by the feedback edge set number of the underlying graph. Clearly the
treewidth of a graph is always upper-bounded by its feedback edge set
number, which means that the feedback edge set number is the weaker

11



parameter in the view of parameterized complexity analysis. An inter-
esting parameter in the middle between feedback edge set number and
treewidth regards the size of a feedback vertex set. We stress that al-
though it directly follows from the construction by Dom et al. [13] that
CAPACITATED DOMINATING SET is W/[1]-hard with respect to the feed-
back vertex number, our W[1]-hardness reduction for BDD only holds for
the parameter treewidth. Hence, the parameterized complexity of BDD
with respect to the feedback vertex set number remains open. Since the
feedback vertex set number can be much smaller than the feedback edge
set number this question seems to be of particular interest.

Moreover, an other interesting parameter that is weaker than treewidth
regards the vertex cover number. See Fellows et al. [I7] and Fiala et al. [I§]
for several problems that parameterized by treewidth are W[1]-hard but
become fixed-parameter tractable when parameterized by the vertex cover
number.

As a general side remark, note that even when a problem turns out to be fixed-
parameter tractable with respect to a single parameter, from a practical point
of view it still may make sense to combine this parameter with other parameters
in order to achieve more efficient algorithms. This is a general theme of multi-
variate algorithmics [I5] [24]. Finally, a completely different issue would be to
provide a missing thorough study concerning the polynomial-time approxima-
bility of BDD also when restricted to special cases such as bounded treewidth
graphs.
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