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Abstract For directed and undirected graphs, we study how to make a dis-
tinguished vertex the unique minimum-(in)degree vertex through deletion of a
minimum number of vertices. The corresponding NP-hard optimization prob-
lems are motivated by applications concerning control in elections and social
network analysis. Continuing previous work for the directed case, we show
that the problem is W[2]-hard when parameterized by the graph’s feedback
arc set number, whereas it becomes fixed-parameter tractable when combin-
ing the parameters “feedback vertex set number” and “number of vertices to
delete”. For the so far unstudied undirected case, we show that the problem
is NP-hard and W([1]-hard when parameterized by the “number of vertices to
delete”. On the positive side, we show fixed-parameter tractability for several
parameterizations measuring tree-likeness. In particular, we provide a dynamic
programming algorithm for graphs of bounded treewidth and a vertex-linear
problem kernel with respect to the parameter “feedback edge set number”.
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On the contrary, we show a non-existence result concerning polynomial-size
problem kernels for the combined parameter “vertex cover number and num-
ber of vertices to delete”, implying corresponding non-existence results when
replacing vertex cover number by treewidth or feedback vertex set number.

1 Introduction

Making a distinguished vertex of minimum degree by vertex deletion leads to
natural and simple though widely unexplored graph problems. We contribute
new insights into the algorithmic complexity of the corresponding computa-
tional problems, providing intractability as well as fixed-parameter tractability
results.

Formally, we study the following two decision problems.

MIN-INDEGREE DELETION (MID)

Given: A directed graph D = (W, A), a distinguished vertex w. € W,
and an integer k > 1.

Question: Is there a subset W/ C W \ {w.} of size at most k& such
that w. becomes the uniquely determined vertex that has minimum
indegree in D[W \ W']?

While MID has been studied in previous work [6], its undirected counterpart
seems completely unexplored.

MIN-DEGREE DELETION (MDD)

Given: An undirected graph G = (V, E), a distinguished vertex w. € V,
and an integer k > 1.

Question: Is there a subset V/ C V' \ {w.} of size at most k such that w,
becomes the uniquely determined vertex that has minimum degree

in GV \ V']?

MID directly emerges from a problem concerning electoral control (by re-
moving candidates) with respect to so-called “Llull voting” [6,16], one of the
well-known voting systems based on pairwise comparison of candidates. As to
motivate MDD, note that in undirected social networks the degree of a ver-
tex relates to its popularity or influence [35, pages 178-180]. Then, making a
distinguished vertex of minimum degree (equivalently, making it of maximum
degree in the complement graph) would correspond to activities or campaigns
where a single agent shall be transformed to the least or most important agent
in its community. Minimum vertex deletion, hence, can be interpreted as mak-
ing “competing agents” disappear at minimum cost.

A problem related to MDD is BOUNDED DEGREE DELETION (BDD) and
its dual problem (considering the complement graph) MAxiMUM k-PLEX. For
BDD the goal is to bound the maximum vertex degree by a prespecified value d
(the case d = 0 is equivalent to the well-known VERTEX COVER problem) using
a minimum number of vertex deletions. Other than MDD, BDD and its dual
MaxiMuM k-PLEX have been studied quite intensively in recent years [2,5,
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18,27,33], partially motivated by their applications in social and biological
network analysis.

Although both MID and MDD are simple and natural graph problems, we
are aware of only one previous publication concerning these problems. MID has
been shown W/[2]-complete for parameter solution size k even when restricted
to tournament graphs and it is polynomial-time solvable on directed acyclic
graphs [6].

MID and MDD turn out to be computationally intractable in general.
Both become polynomial-time solvable on acyclic graphs. Hence, it is natu-
ral to investigate in what quantitative sense their computational complexities
depend on the “tree-likeness” of the input graphs. To this end, we study sev-
eral distance functions (in form of parameters) measuring how close a graph
is to being acyclic. Thus, we initiate a thorough theoretical analysis of MID
and MDD mainly focussing on “tree-likeness parameterizations”, employing
several basic structural parameters measuring the tree-likeness of graphs.

Parameters and their computation. The most famous tree-likeness parameter
is the treewidth tw of the input graph, which comes along with the concept
of tree decompositions of graphs (see Subsection 3.2.1 for the definition) [9,
24]. The feedback vertex set number s, of a graph is the minimum number
of vertices to delete from a graph to make it acyclic. The feedback edge set
number s, and the feedback arc set number s,, respectively, denote the mini-
mum number of edges or arcs to delete from an undirected or directed graph
to make it acyclic. For undirected graphs, it holds that (tw—1) < s, < s..
Analogously, for directed graphs s, < s,. While the computation of tw, s, and
sq leads to NP-hard problems, s. can be quickly determined by a spanning
tree computation.

Note that a small value of s, means that the studied graph is very sparse—
however, there are several sparse social networks [23, 30, 32], motivating param-
eterized complexity studies with respect to the parameter s..

Our contributions. Table 1 summarizes our results. We extend previous re-
sults for MID [6] by showing that MID is W|[2]-hard even when parameterized
by s, whereas it turns fixed-parameter tractable for the combined parameter
(k, sy). Note that this also implies fixed-parameter tractability with respect
to the combined parameter (k,s,) since s, is a weaker parameter than s,
in the sense that s, < s, (refer to a recent survey [25] for a more extensive
discussion on stronger and weaker parameters). As to MDD, we show that
it is NP-complete as well as W[1]-hard with respect to the parameter & by
devising a parameterized many-one reduction from the INDEPENDENT SET
problem. In addition, we show that MDD is fixed-parameter tractable for
each of the tree-likeness parameters treewidth tw, size s}, of a feedback vertex
set not containing the distinguished vertex, and feedback edge set number s..
Herein, our fixed-parameter tractability result for tw comes with the largest
combinatorial explosion. Since one can easily compute a tree decomposition
of width s, + 1, the algorithm can also be used for the parameter s,. We
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Table 1 Overview on the parameterized complexity of MID and MDD. The considered
parameters are “treewidth tw of the input graph” (treewidth of the underlying undirected
graph, respectively), “size s, of a feedback vertex set”, “size s, of a feedback arc set”, “size s,
of a feedback vertex set not containing w.”, “size s. of a feedback edge set”, “number k of
vertices to delete”, and “maximum degree” d. The number of vertices of the input graph is
denoted by n. Entries marked with “{” present results from previous work [6]. The first and
the last entry which use both, the MID and the MDD column, present results that hold for
both problems.

parameter MID MDD
tw O((2t + 4)2t12 . n), no poly kernel
Sv W/2]-hard O((28y + 6)25v+4 . 1), no poly kernel
sy W/2]-hard O((2s% + 4)*v - n), no poly kernel
Sa/Se W/2]-hard O(2%¢ - n3), vertex-linear kernel
k W/2]-completet  W[1]-hard
d FPTT FPTT
(k, sv) O(sy - (k+1)%v - n2), no poly kernel

provide a slightly improved running time bound for the parameter s;. More
specifically, the result relies on dynamic programming and bears a “combi-
natorial explosion” of O((2s* + 4)%v) while the dynamic programming for tw
runs in (2tw +4)2™ 2. poly. For the feedback edge set number we provide a
2se-vertex problem kernel and a size-O(2°¢) search tree. Finally, building on
a recent framework for proving non-existence of polynomial-size problem ker-
nels [7,20], we also show that there is presumably no polynomial-size problem
kernel for MDD for the combined parameter (k, s%), where s’ denotes the size
of a vertex cover not containing the distinguished vertex. This directly im-
plies the non-existence of polynomial-size problem kernels for the parameters
feedback vertex set number and treewidth.

2 Preliminaries

Parameterized complexity is a two-dimensional framework for studying the
computational complexity of problems [15,19,28]. One dimension is the input
size n (as in classical complexity theory), and the other one is the parameter k
(usually a positive integer). A problem is called fized-parameter tractable if
it can be solved in f(k) - n®(") time, where f is a computable function only
depending on k. The computational complexity class consisting of all fixed-
parameter tractable problems is denoted by FPT.

A core tool in the development of fixed-parameter algorithms is polynomial-
time preprocessing by data reduction [10,22,26]. Here, the goal is for a given
problem instance x with parameter k, to transform it into a new instance x’
with parameter k&’ such that the size of 2’ and the new parameter value k' are
upper-bounded by some function only depending on k& and the instance (z, k)
is a yes-instance if and only if (2, k") is a yes-instance. The reduced instance,
which must be computable in polynomial time, is called a problem kernel,
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and the whole process is called reduction to a problem kernel or kernelization.
Usually, the kernelization is achieved by applying (several) polynomial-time
data reduction rules. We call a data reduction rule sound if the new instance
after an application of this rule is a yes-instance if and only if the original
instance is a yes-instance.

Downey and Fellows [15] developed a formal framework for showing fized-
parameter intractability by means of parameterized reductions. A parameter-
ized reduction from a parameterized problem P to another parameterized
problem P’ is a function that, given an instance (z, k), computes in f(k)-n?®
time an instance (2/, k') (with &’ only depending on k) such that (z, k) is a yes-
instance of problem P if and only if (2, k) is a yes-instance of problem P’. The
basic complexity class for fixed-parameter intractability is called W[1]. There
is good reason to believe that W{l]-hard problems are not fixed-parameter
tractable [15,19,28]. In this sense, W/[1]-hardness is the parameterized com-
plexity analog of NP-hardness. The next level of parameterized intractability
is captured by the complexity class W[2] with W[1] C W2].

We assume familiarity with basic graph-theoretic concepts. Let G = (V, E)
be an undirected graph. Unless stated otherwise, let n := V| and m := |E|.
For V' C V we denote the subgraph induced by V' as G[V’]. Furthermore,
we write G — V' for G[V \ V’]. Analogously, we write G — E’ for (V,E \ E').
The open neighborhood of a vertex v is denoted by Ng(v) and the degree of v
in G is degy(v) := |Ng(v)|. We omit the subscript “G” if G is clear from the
context. We use analogous terms for directed graphs and differentiate between
in- and out-(degree, neighborhood, etc.) by a subscript in the notation (e.g.,
degi, (v) denotes the indegree of v).

3 Min-Degree Deletion

In this section, we investigate the parameterized complexity of MIN-DEGREE
DELETION with respect to several parameters. Besides the “standard param-
eter” solution size k (that is, the number of vertices to delete), we focus on
structural graph parameters measuring the tree-likeness. This section is or-
ganized as follows. In Subsection 3.1, we show that MIN-DEGREE DELETION
is W[1]-hard parameterized by solution size. In Subsection 3.2, we provide
fixed-parameter tractability results for the “tree-likeness” parameterizations
of MDD. For example, we show that MDD is fixed-parameter tractable when
parameterized by the treewidth and present a linear-size problem kernel for
parameter feedback edge set number. Finally, based on a plausible complexity-
theoretic assumption, in Subsection 3.3 we refute the existence of polynomial-
size problem kernels for all considered “tree-likeness” parameterizations except
for the feedback edge set number.
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Fig. 1 MIN-DEGREE DELETION-instance obtained from a parameterized reduction from an
n-vertex INDEPENDENT SET-instance. Each star represents a clique with (n — k+ 2) vertices.
Thin lines represent individual edges, bold lines represent n — k edges, and dotted lines
represent individual edges whose existence depends on the original instance.

3.1 Hardness of parameterization by solution size

We investigate the parameterized complexity of MIN-DEGREE DELETION (MDD)
with respect to the standard parameterization by the solution size. Note that
for the directed counterpart of MDD, that is, MIN-INDEGREE DELETION,
it has been shown that the problem is W[2]-complete even when restricted
to tournament graphs, providing a parameterized reduction from the WI2]-
complete DOMINATING SET problem [6]. Here, we show that MDD is NP-
complete and W[1]-hard for the parameter solution size. To this end, we de-
vise a parameterized reduction from the W[l]-complete INDEPENDENT SET
problem. Given an undirected graph and an integer £ > 0, INDEPENDENT SET
asks whether there is a size-k vertex subset V' C V such that there is no edge
between any two vertices from V’. The set V' is called an independent set.

Theorem 1 MIN-DEGREE DELETION is NP-complete and W[1]-hard for the
parameter “number of vertices to delete”.

Proof We devise a parameterized reduction from the NP-complete [21] and
W/[1]-complete [15] INDEPENDENT SET problem, yielding both the NP-hardness
and W/1]-hardness of MDD (containment in NP is trivial).

Let (G* = (V*,E*),k) be an INDEPENDENT SET instance, with V* =
{vi,v3,..., v} and E* = {e},e3,..., €5 }. We construct an undirected graph G
with distinguished vertex w, such that (G,w., k) is a yes-instance of MDD
if and only if (G*, k) is a yes-instance of INDEPENDENT SET. The reduction
is illustrated in Figure 1. The vertex set of G consists of w. and the union of
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the following disjoint vertex sets: V := {v; | ¢ € {1,...,n}}, representing the
set of vertices of G*, and F := {e; | i € {1,...,m}}, representing the set of
edges of G*. In addition, there is a clique C with (n — k + 2) vertices and for
each vertex v; € V, there is an isolated clique C; with (n — k + 2) vertices.
Moreover, there is an edge between v; and e; if and only if v] is incident to
e;. Furthermore, the distinguished vertex w, is adjacent to each vertex in V.
Finally, each vertex from VUE is adjacent to (n—k) arbitrary vertices from C.
This finishes the description of the construction.

The basic idea of the reduction is as follows. Observe that there are at
least (n — k 4+ 2) - n > k vertices with degree exactly n — k + 1. Thus, the
degree of w, in the solution graph is at most n — k. Hence, since only k vertex
deletions are allowed and deg.(w.) = n, a solution of size at most k for the
MDD-instance contains only neighbors of w,.. Moreover, since each vertex in E
has degree n — k + 2, for each e € E at most one of its two neighbors in V' can
be in a solution for the MDD-instance. Thus, a size-k independent set for G*
one-to-one corresponds to a size-k solution for G and vice versa.

More formally, for the correctness we show that (G*, k) is a yes-instance
of INDEPENDENT SET if and only if (G, we, k) is a yes-instance of MDD.
“=7: Let (G*, k) be a yes-instance of INDEPENDENT SET and let V; C V* be a
size-k independent set of G*. Let My := {v; € V | v} € V}. Clearly, |My| = k
and w, has degree n — k in G — My. Each vertex e; with j € {1,...,m} has
degree at least n — k4 1, because V' is an independent set which means that
at most one of the two neighbors of e; in V' is deleted. Since the degree of
all other vertices is at least n — k 4 1, the distinguished vertex w, is the only
vertex of minimum degree in G — My.

“<": Let (G = (V, E),we, k) be a yes-instance of MDD and let My denote a
solution set of size at most k.

First, we show that the distinguished vertex w, has degree n — k in G —
Mg. Assume towards a contradiction that degg_r, (we) # n — k. Observe
that degg_jr,(we) > n — k since degg(we) = n and [My| < k. Hence, by
assumption we have degg_ 5/, (we) > n — k. Since the vertices of the C;’s have
degree n — k + 1, the fact that w. is the only vertex with minimum degree
in G—Mg implies that |, -, ,, Ci € My. Thus, [My| > |U,<,;<,, Ci| > k; a con-
tradiction. In summary, degs_ 57, (w.) = n—k directly implying that |My| = k
and My C V.

Consider the set V; := {v} | v; € My}. Since |My| = k, it holds that
|[VJ| = k. Next, we argue that V) is an independent set for G*. Assume
towards a contradiction that there is an edge e = {v},v;} in G*[V,/]. Thus,
both v, and vy are in My. As a consequence, the vertex e; of G corresponding
to edge e} in G* has degree n — k after deleting v, and v, and, hence, must be
deleted, too; a contradiction to the fact that My C V. Altogether, it follows
that (G*, k) is a yes-instance of INDEPENDENT SET. O
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3.2 Fixed-parameter tractability results

In the following, all structural graph parameters are related to measuring
the tree-likeness of the underlying graph. More specifically, we provide re-
sults for the treewidth tw, the size s} of a feedback vertex set not containing
the distinguished vertex, and the feedback edge set number s.. By definition,
tw —1 < s¥ < s.. Hence, our fixed-parameter tractability result for MDD for
the parameter tw implies fixed-parameter tractability for the parameters s},
and s.. However, for each of these two parameterizations, we subsequently
present specific fixed-parameter algorithms that come with improved running
times.

3.2.1 Parameter treewidth

In this section, we give a linear-time algorithm for MDD when restricted to
graphs of bounded treewidth showing fixed-parameter tractability with re-
spect to the parameter treewidth. We employ a common technique for the
design of algorithms on such graphs, expressing the algorithm as a form of
dynamic programming on a special type of tree decompositions, called nice
tree decompositions.

A nice tree decomposition of a graph G = (V, E) is a pair (T, X), with
T = (I, F) being a rooted binary tree, and X = {X; | ¢ € I} being a family of
subsets of V, called bags, such that the following holds.

— Ui Xi = V.

— For each edge {v,w} € E, there exists an i € I with v,w € X;.

— For each vertex v € V, the tree nodes associated with bags that contain v,
that is, I, = {i € I | v € X,}, form a connected subtree of T'.

— If ¢ € I is a node with two children ji, jo € I in T, then X; = X;, = Xj,;
1 is called a join node.

— If i € I is a node with one child j € I in T, then there exists a vertex v € V'
with either X; = X; U {v} (then ¢ is called an introduce node) or X; =
X; U{v} (then i is called a forget node).

— Ifielisaleafin T, then | X;| = 1; ¢ is called a leaf node.

The width of a nice tree decomposition is max;er{|X;| — 1}. The treewidth of
a graph equals the minimum width of a nice tree decomposition.

Treewidth is usually defined in terms of tree decompositions that do not
need to be nice, but there always is a nice tree decomposition of optimal width.
For each fixed ¢, there is a linear-time algorithm that decides if the treewidth
of a given graph is at most ¢, and if so, finds a nice tree decomposition with
O(n) bags of width at most t: first decide if the treewidth is at most ¢ and if
80, find an arbitrary tree decomposition of width at most ¢ with the algorithm
of Bodlaender [8] and then transform this tree decomposition into a nice one
with the same width, see, e.g., Kloks [24].

Suppose that we are given a graph G = (V, E) and a nice tree decomposi-
tion (T, X) of G. For i € I, let V; be the union of all bags of nodes that are
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descendants of 4, including the bag corresponding to ¢, and let G; = G[V;] be
the subgraph of G induced by V;.

Given a graph G = (V, E), a distinguished vertex w. € V, and a non-
negative integer ¢ € N, we say that a set of vertices W C V'\ {w.} is an ¢-MDD
set if w, has degree at most ¢ in G[V \ W] and all vertices in V' \ (W U {w.})
have degree at least £ + 1 in G[V \ W].

Proposition 1 Let G = (V, E) be a graph of treewidth at most t, let w. be a
distinguished vertex, and let k be a nonnegative integer. A subset W C V\{w,.}

with |W| < k fulfills the property that w. is the unique vertex of minimum
degree in GI[V\W] if and only if W is an (-MDD set for some £ € {0,1,...,t}.

Proof 1t is a well-known fact that a graph of treewidth at most ¢t has a vertex
of degree at most ¢ [11,31]. The proposition now directly follows. a

Theorem 2 Given a graph and a corresponding nice tree decomposition of
width at most t, MIN-DEGREE DELETION can be decided in O(n-t-((t+2)? +
)8 time.

Proof Suppose that we are given as input to the MDD problem a graph G =
(V, E), a distinguished vertex w. € V, and an integer k& > 1. Furthermore,
suppose that we are given a nice tree decomposition (T' = (I, F'), X) of width
at most ¢ for G. Moreover, let r be the root of the corresponding nice tree
decomposition. For the root bag X,, we assume that X, = (. If this is not
the case, then we add an appropriate number of forget nodes above the root
obtaining a new root with empty bag.

Instead of solving MDD directly, we compute for each ¢ € {0,1,...,t}
the minimum size of an ¢-MDD set. By Proposition 1, we then only need to
check whether at least one of these sizes is at most k. Below, we show that
computing the minimum size of an ¢-MDD set for fixed ¢ can be solved in
O(n-((£+2)%+1)"*1) time. The theorem then directly follows. From now on,
we assume /£ to be a given fixed integer between 0 and .

Next, we introduce the used notation and define the dynamic programming
tables. Then, we present the dynamic programming procedure. Consider a
node ¢ € I and a subset V! C V; \ {w.}. We say that V' is an i-¢-MDD set if
both of the following conditions hold:

— V; \ V' contains at most £ neighbors of w, and
— each vertex in V; \ (X; UV'U{w.}) has at least £+ 1 neighbors in V; \ V".

Note that a set is .-MDD if and only if it is 7-/-MDD with r being the root of
the tree decomposition: as X, = (J, we have V. \ (X, UV') =V \ V"
Informally speaking, an i-/-MDD set can be seen as a subset of V; that
can possibly be extended to an /~-MDD set for G; the distinguished vertex has
degree at most £ and every vertex from V;\ (X;UV'U{w,}) (all whose neighbors
are contained in V; by the definition of tree decompositions) has already its
“final” degree which is at least £+ 1. Note that the definition of i-¢-MDD sets
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does not restrict the degree of the vertices in X; since the vertices in X; can
have neighbors in V'\ V;. For our dynamic programming it is decisive to know
the degree of the vertices of X; in G[V; \ V’]. This is captured by the notion
of fingerprints.

The fingerprint of a set V' C V; with respect to 4, denoted f;(V'), is the
pair (f,X; NV"), with f: X; \ V' = {0,1,...,¢+ 1} being the function such
that for all v € X; \ V', f(v) equals the minimum of £+ 1 and the degree of v
in G[V; \ V'].

We now define the value A;(f, Z) for anode ¢ € I, a subset Z C X;\ {w.},
and a function f : X;\ Z — {0,1,...,0+ 1}: A;(f,Z) equals the minimum
size of an i-¢-MDD set V' C V; \ {w.} such that (f, Z) is the fingerprint with
respect to ¢ of V/. The intuition behind A;(f, Z) is the following. Without loss
of generality every solution deletes an i-¢-MDD set. Now, A;(f, Z) gives the
minimum number of vertices we must delete from V; such that we obtain the
following:

— exactly the vertices in Z are deleted from X; and
— f gives for all vertices in X; that are not deleted (including w, if w. € X;)
the minimum of (¢ + 1) and the number of remaining neighbors in G[V;].

For the ease of presentation, we define A;(f,Z) = oo if there is no i-¢-MDD
set with fingerprint (f, Z).

The main step of our algorithm is to compute for each node i € I a table
with all values A;(f,Z), for all subsets Z C X; \ {w.}, and functions f :
X;\Z — {0,1,...,¢ + 1}. This will be done in the decomposition tree in
bottom-up order, that is, we compute the table for a node i after the tables
of the children of ¢ have been computed. We now describe for each of the four
types of nodes (leaf, introduce, forget, join) how the table is computed.

Leaf nodes. Computing the values A;(f, Z) for a leaf node 7 is trivial since
there are at most two subsets of V; \ {w.} as |V;| =1 (by the definition of nice
tree decompositions).

Introduce nodes. Suppose that i is an introduce node with child j, where X; =
X,; U {v}. Notice that V; = V; U {v}.

We first initialize all values A;(f,Z) to co. Now, for each Z C X \ {w.}
and for each f: X;\ Z — {0,1,...,¢+4 1}, we update some table entries for
A;, using the value of A;(f,Z); we consider what fingerprints we can get by
taking a j-¢-MDD set with fingerprint (f, Z). We consider two cases: either v
is deleted (first case) or v is not deleted (second case).

In the first case, we set A;(f, Z U {v}) to A;(f,Z) + 1. Namely, each set
V' C V; with fingerprint (f, ZU{v}) is an i-£-MDD set if and only if V'\ {v} is
a j-¢-MDD set; the fingerprint of V' \ {v} with respect to j equals (f, ZU{v}).

In the second case, we generate a new function g, and possibly update
a table entry A;(g9,Z). For w € X; \ Z, let g(w) := f(w) if {v,w} & E,
and let g(w) := min{l + 1, f(w) + 1} if {v,w} € E. We now set A;(g,2)
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to the minimum of its current value and A;(f, Z), unless w. € X; \ Z and
g(we) = £+ 1, where we do nothing.

The correctness of the second case follows from the following observation.
Let V' be a j-¢-MDD set with fingerprint (f, Z). Observe that V' is also an
i-f-MDD set, unless the degree of w, is too high. The latter can only occur
when {v,w.} € F and w, € V;; thus w, € X; (and we always have w, & 7).
Hence, in this case we check whether the degree of w,., which equals g(w.), is
not too high. Finally, one can verify that g(w) indeed gives the minimum of
£+1 and the degree of the vertex w in G[V;\ V’]. Thus, (g, Z) is the fingerprint
of V' with respect to i.

Forget nodes. Suppose that ¢ is a forget node with child j with X; = X \ {v}.
Notice that V; = V.

Again, we first initialize all values A;(f,Z) to oo. Now, for each Z C
Xi\{we} and f: X;\ Z — {0,1,...,¢ + 1}, we possibly update one table
entry in A;.

If we #v,v & Z, and f(v) # £+ 1, then we just discard the entry. For
each j-¢-MDD set V' that corresponds to (f,Z), v has at most ¢ neighbors
in V;\ V', and v has no neighbors in V'\ V;; the latter is true by the properties
of tree decompositions. So, this entry does not lead to i-¢-MDD sets.

In all other cases, a j-¢-MDD set with fingerprint (f, Z) is also an i-¢-MDD
set. Let g be the restriction of f to X; \ Z. Then such a set has fingerprint
(9, Z N X;) with respect to i. So we set A;(g, Z N X;) to the minimum of its
current value and A;(f, Z).

Join nodes. We now look at the case that i is a join node. Suppose j; and j;
are the children of ¢. Note that V; = V;, UV}, and X; = X;, = X;, =V; NVj,.

For each i-¢-MDD set W C V;\{w.}, WNVj, is a j1-¢-MDD set and WNVj,
is a jo-¢-MDD set. Our procedure thus looks at all pairs of fingerprints of j;-
£-MDD sets and of jo-¢-MDD sets that agree on which vertices in X; belong
to the set, and sees if they can be combined.

As in earlier steps, we first initialize all values A;(f, Z) to co. Now, for each
Z C X;\ {w}, each f1 : X;\ Z — {0,1,...,£+ 1}, and each fy : X;\ Z —
{0,1,...,£+ 1}, we do the following.

We first compute a function g : X; \ Z — {0,1,...,£+ 1} by setting, for
each v € X;\ Z, g(v) to f1(v) + fa(v) — {w € X;\ Z | {v,w} € E}|. Then set
A;(g, Z) to the minimum of its current value and A;, (f1, Z2)+ A;,(f2, Z)—|Z].

We now explain why this step is correct. Suppose that W7 is a j;--MDD
set with fingerprint (f1, Z) and W5 is a jo-¢-MDD set with fingerprint (f2, Z).
Then v € X; \ Z has degree g(v) in G[V; \ (W1 U Ws)]: we add its number
of neighbors in G[V}, \ W1] (which is fi(v)) to its number of neighbors in
G[V;, \W3] (which is f2(v)), and subtract the number of edges that we counted
twice (that is, [{w € X;\Z | {v,w} € E}|.) So, W1 UW5 has fingerprint (g, Z).

If the size of such Wy is A;, (f1,Z) and the size of such Wy is Aj,(f2, 2),
then the size of W1 UWs equals A, (f1, Z)+A;,(f2, Z)—|Z| since WinW, = Z.
Thus, we set the table entry for A;(g, Z) correctly.
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As all pairs are considered, the table entries for A; have their correct values
at the end of the step for a join node.

Final step. In a bottom-up order we compute for all nodes ¢ in the nice tree
decomposition a table with values A;, using the methods described above. The
last of these steps computes the table for the root = of the tree. As X, = (),
all 7-£-MDD sets have the same fingerprint (¥, (), with ¥ the function with
empty domain. As each £-MDD set is an r-¢-MDD set with fingerprint (¥, 0)),
the minimum size of an -MDD set is given by the value A,.(¥,0); we just test
whether this value is at most k.

Running time and space analysis. We first analyze the size of the dynamic
programming table. To this end, we consider the number of entries of A; for a
node i € I that has maximum bag size ¢+ 1. For each of the 2!*! subsets of X,
there are at most (I+2)**! fingerprints. Since [ < t it follows that A; contains
at most 2071 . (¢ 4 2)1T1 = (2t + 4)!T! entries. Regarding the running time,
it is easy to observe that leaf, forget, and introduce nodes can be handled in
time linear in the number of entries of the corresponding table. For the join
nodes one needs to compare all pairs of entries of the two children. This leads
to an overall running time bound of O((2t + 4)?**2 . n) since the nice tree
decomposition has O(n) nodes. O

Corollary 1 For each fizedt, there is a linear-time algorithm for MIN-DEGREE
DELETION on graphs of treewidth at most t.

3.2.2 Parameter distinguished feedback vertexr set number

Next, we investigate the parameter distinguished feedback vertex set number s,
denoting the “size of a feedback vertex set not containing the distinguished
vertex w,”. Since for a graph with treewidth tw it holds that s}, > tw —1, Theo-
rem 2 implies that MDD is fixed-parameter tractable with respect to s}, giving
an upper bound of (2s* 4 6)2% for the exponential part of the running time.
In the following, we improve this bound by providing an algorithm specifically
designed for the parameter s* with running time O((2s* 44)* -n* - deg(w.)?).
There are several efficient approximation [1,3,4] and fixed-parameter algo-
rithms [13,34] for computing small feedback vertex sets whereas this task
seems harder in case of treewidth.

Let (G = (V, E), w,, k) be an MDD-instance and let V; be a feedback vertex
set that does not contain w.. Our algorithm basically branches into all possible
subsets V7 of V; and investigates whether there is a solution containing all
vertices from V{ and not containing any vertex from Vi \ V. Furthermore, the
algorithm iterates over the “final” degree that w, might assume in the graph G
after deleting a set of “solution vertices”. After applying some simple branching
and preprocessing steps, it will remain to solve the following problem.
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Algorithm 1 MDD-solv. The input consists of an MDD-instance (G, we, k)
and a feedback vertex set V. MDD-solv returns “yes” iff (G, w,, k) is a yes-

instance.
L: for each Vi C Vy with \Vf*| <k do > solution vertices from Vy
2: remove V' from G and set k :=k — [V[|

3: for i := max{|N(wc) N Vy|,deg(we) — k} to deg(we) do > fix final degree of w,
4: while there is a vertex v # w. with deg(v) < i do > simple data reduction
5: if v € V; then goto to line 1

6: else remove v from G and set k:=k — 1

7 if £ < 0 then goto line 3

8: if MDD-annotated(G, we, VJ{ =Vi\ Vi k, i) then

9: return “yes”

10: return “no”

ANNOTATED MIN-DEGREE DELETION (AMDD)

Given: An undirected graph G = (V, E), a distinguished vertex w,, a
feedback vertex set Vy of G with Vy € V \ {w.}, and two non-
negative integers k and 1.

Question: Is there a subset M C V'\ (Vy U{w.}) of size at most k such
that, in G — M, deg(w.) = ¢ and every other vertex has degree at
least ¢ 4+ 17

Branching and preprocessing steps. Let (G = (V,E),w., k) be an MDD-
instance and let Vy be a feedback vertex set that does not contain w.. The
overall structure of our algorithm MDD-solv is provided by Algorithm 1. Basi-
cally, the algorithm calls a subroutine solving an annotated version of MDD
after applying the following branching and preprocessing steps. In line 1 of
MDD-solv, one branches over all subsets of V¢ to be part of the solution and
in line 2 the corresponding vertices are deleted and the parameter is decreased
accordingly. In lines 3-9, one tries all possibilities to fix the final degree of w,
to be ¢ and iteratively adds all vertices with degree at most ¢ to the solution. It
remains to solve the AMDD-instance (G, w,, VJﬁ =Vr\ Vi, k,i). It is easy to
verify that MDD-solv takes O(2/V#l - n2 - tyip_ann) time, where typ.ann denotes
the running time of MDD-annotated(G, w,, VJZ =V \ Vi k).

Due to the preprocessing, in the following we can assume that w, has at
most ¢ neighbors in V¢ and every other vertex has degree at least ¢ + 1. Now,
for an AMDD-instance (G = (V, E), we, Vy, k, 1), the algorithm makes use of
the following property of Vg := V'\ (VyU{w,}), the set consisting of all vertices
that can be part of the solution.

Observation 1 Let ny,...,nq denote the neighbors of w. in G — Vy. Then,
in the graph G[Vs], every vertex n,, 1 < x < d, belongs to a connected compo-
nent T'(x) such that T'(x) is a tree not containing any vertex n, with ng # n,.

Observation 1 can be seen as follows. Consider two neighbors n, and n,
of w.. First, assume that there would be a path from n, to n, that does
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not contain w,.. Adding w. to this path would induce a cycle and hence V¥
would not be a feedback vertex set of G. Hence, every connected component
can contain at most one neighbor of w.. Second, a cycle within a connected
component would also violate that Vy is a feedback vertex set. Hence, all
connected components induce trees.!

Now, we take a look at an arbitrary solution set M of our MDD-instance.
Since the final degree of w, is 4, M must contain degq(w.) — ¢ neighbors of
w,. Putting a vertex x € N(w,) \ Vy into the solution may decrease the degree
of other vertices from T'(z) so that they also must be part of the solution.
The set A(x) of affected vertices that need to be deleted when x is deleted
can be computed iteratively as follows. Start with A(x) := {x}. While there is
vertex v with degree at most ¢ in T'(z) — A(z), add v to A(z). Since we have
to put all vertices of A(x) into a solution when choosing z into the solution,
we define the cost of x as cost(z) := |A(x)|. Note that there might be a large
number of vertices that are not affected by any x; for example, a vertex may
not be a neighbor of w, but may have many neighbors in V;. However, such a
vertex clearly can never be in a minimal solution. Formally, this leads to the
following observation.

Observation 2 Let M C V \ (Vy U {w.}) be a minimal solution, that is,
there is no solution M’ C M and, in G — M, deg(w.) = i and Voev\{w,} *
deg(z) > i+ 1. Then,

M\ U A(z) | =0.

€N (we)\Vy

For the graph not containing vertices from the feedback vertex set Vy, a
solution could easily be computed by choosing a set of deg(w,) — ¢ neighbors
of w, such that the sum of the corresponding costs is minimal. The decisive
point is that putting a vertex z into the solution set may also decrease the
degree of vertices from V. By definition, we cannot remove any vertex from V.
Thus, we must ensure that we “keep” enough vertices from Vg such that the
final degree of every vertex from Vy is at least ¢ 4 1. For every vertex v € V7,
we can easily compute the number ngyeq(v) of neighbors which v has “for
sure” in every minimal solution. More specifically, nfixeq(v) is the number of
v’s neighbors in Vy U Vs \ (U,en(w,) A(2)) (see Observation 2).

We introduce some notation measuring how many neighbors of a vertex
from V; must be kept under the assumption that a certain subset V,. C V; is
not part of a solution. More specifically, for a vertex v € Vy, let ny, (v) be the
number of neighbors of v in V.. Then, the number of additional neighbors that
are not allowed to be deleted is defined as s(v,V;.) := i+ 1 — nfixed (v) — 1y, (v).
This can be generalized as follows.

1 Observation 1 does not hold for a feedback vertex set containing the distinguished

vertex. Hence, the following approach does not transfer to this more general case.
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Algorithm 2 MDD-annotated returns “yes” iff there is solution set for given
AMDD-instance (G, w, k, V¢, ). Remain(S’, n,) denotes the remain-tuple ob-
tained from S’ by additionally fixing n, to be not contained in the solution set.

1: for z = 1 to deg(w.) do > Initialization

2: for each S’ € S do

3: D(0,z,5") = 400

4: for each S’ = (8’1,5’2,...,st ‘) € S do

5: if sg. < Nfixed(v;) for any j € {1,...,|V}|} then

6: D(0,0,5") = +o0

7: else

8: D(0,0,5") =0

9: forz=1,...,|N(w:)| do > Table update
10: for z=1,...,z do
11: for each S’ € S do
12: minCostRemove := D(z — 1,z — 1,.5”) + cost(nz)
13: minCostNotRemove := D(z — 1, z, Remain(S’, nz))
14: D(z,z,5") := min(minCostRemove, minCostNotRemove)

15: if D(deg(wc),deg(we) — 4, (0,...,0)) < k then return “yes”
16: else return “no”

Definition 1 For Vy = {v1,..., vy, }, the remain-tuple with respect to V,. C
Vs is S = (s1,..-,8|v;|) Where s; := s(v;, V;), 1 < j <[Vl

Recall that the task is to search for a set N C N(w.) \ Vy of deg(w.) —
1 neighbors of w, with minimum cost such that the degree of every vertex
from V7 is at least i+ 1. Now, let N’ C N(w,)\ V¥ be a subset of w.-neighbors
that are fixed to be not part of a solution. The effect of not deleting N’ to
decide which of the other w.-neighbors may be removed can be described by
a remain-tuple. More specifically, a subset N’ C N(w.) \ V; realizes a remain-
tuple (si,.. .,s(vf‘) when, for every v € Vy, the number of neighbors of v
in J,cn A() is at least 4 + 1 — ngyea(v) — s;. Then, a cost-k set N € N(w.)
containing deg(w.) — ¢ neighbors of w, such that set N(w.) \ N realizes the
remain-tuple (0,...,0) corresponds to a solution.

Dynamic programming table. Based on the previous definitions, the dynamic
programming table D has entries D(x, z, S") with

—x€{l,...,d} where d:=|N(w.) NV,
— z < min{z,d — i}, and
— S CS = (st a8y, ) |0 s) <i+ 1,1 <5 < [V}

The entry D(z,z,S’) contains the minimum cost of deleting a size-z subset
N'"C{n; € N(w.) | i <z} such that N/ := N(w.)\ N’ “realizes” the remain-
tuple S’. Tt follows that D(deg(w.),deg(w.) — ,(0,...,0)) < k if and only if
(G,Vy,we, k, i) is a yes-instance of AMDD. It follows from Proposition 1 that
the size of table D is upper-bounded by deg(w,)? - (s} + 2)°*.
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Dynamic programming algorithm. Consider Algorithm 2. Note that for ev-
ery v € Vy the values of nfyeq(v) can be precomputed in quadratic time. In
the initialization phase, the cost of “removing at least one vertex from an
empty set” is set to infinity (lines 1-3). Furthermore, without fixing any neigh-
bor to be “not contained in the solution set”, it is not possible to realize a
remain-tuple S" := (s},..., Sinl) with % <+ 1 — nfixea(v;) for any j. Hence,
initializing these table values with infinity is correct (lines 4-6). All entries
with a remain-tuple S’ := (sf,..., s?vf‘) with 87 > i+ 1 — nixea(v;) for all j
are always realized with zero costs (lines 4-8). Now, consider the update step.
It is easy to verify that the three loops (lines 9-11) ensure that every value
that is used on the righthandside (lines 12-14) has been computed before.

It remains to prove the correctness of this computation. Consider a table
entry D(z,z,5") containing the minimum costs for removing z vertices from
N’. For the current neighbor n,, either it is part of the solution or not. If
ng is removed, then the minimum costs are exactly the minimum costs for
removing z — 1 vertices from N’ C {n; € N(w.) | i < x — 1} plus cost(n,)
(line 12). Otherwise, the costs are exactly the minimum costs for removing
z vertices from N’ C {n;, € N(w.) | i < & — 1}, while realizing the remain-
tuple S" = (s,. .., sivfl) under the condition that n, is fixed to be not part
of the solution. This is ensured by the Remain-function (line 13) which can be
formally defined as follows.

Remain(S’,n,) = (s7,..., Serl) with s7 1= max{0, s — [Nag,)(v;)]},

where N 4(,,,)(v;) denotes the neighbors of v; in A(n;).

Finally, we analyze the running time and table size: Each of the first two
dimensions of D is bounded from above by deg(w.). The remain-tuple is de-
fined such that each of the |V}| entries has an integer value between 0 and
[V¢| + 1 (see Definition 1). Hence, |S| = (|Vy| + 2)IV7!. Clearly, the remaining
steps can be accomplished in O(n?) time. Hence, together with the running
time for the overall branching into all subsets of a feedback vertex set, one
ends up with the following.

Theorem 3 MIN-DEGREE DELETION can be decided in O((2s% + 4)* - n* -
deg(w.)?) time with s¥ being the size of a feedback vertex set not containing w..

3.2.3 Parameter feedback edge set number

As discussed in the beginning of this section, the feedback edge set number is
the weakest of our parameters measuring the tree-likeness of graphs. Hence,
not surprisingly, we achieve our best running time bounds here, based on
kernelization and simple structural observations.

Our problem kernel result relies on the following “low-degree removal”
procedure. Let G = (V, E) be an undirected graph and let k be a positive
integer. Denote by RLD(G, k) (for “remove low degree”) the graph resulting
from the following data reduction:
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If deleting all or all but one neighbors of w. (and iteratively all further
vertices with degree at most zero or one, respectively) leads to a solution
of size at most k, then return “yes”. Otherwise, iteratively remove every
vertex with degree at most two from G and decrease k accordingly and
return the resulting graph.

If deleting all or all but one neighbors of w. does not lead to a solution,
then w, has degree at least two for every solution. Hence, it is easy to verify
that RLD(G, k) is sound and can be executed in O(n? - k) time. Note that
every vertex different from w, in RLD(G, k) has degree at least three.

Theorem 4 MIN-DEGREE DELETION admits a 2s.-vertex problem kernel which
can be computed in O(n?-k) time, where s, denotes the feedback edge set num-
ber.

Proof Let (G' = (V',E’), k') :== RLD(G, k) and let E4 be a size-s. feedback
edge set for G'. In the following, we argue that |V’| < 2s.. The graph G’ — Ey
is a forest. Let | denote the number of leaves in G’ — Ej. Since each vertex in
G’ has degree at least three, each leaf in G’ — Ej is incident to at least two
edges in Fy4. Thus, since each edge of E; has at most two leaf endpoints, it
follows that [ < s.. Analogously, each degree-two vertex in G’ — Ej is incident
to at least one edge in Ey. Since there are [ leaves in G’ — E4 and there are
at most 2s. vertices that are incident to an edge of Ey, G’ — E; contains at
most 2s, — 21 inner vertices with degree two. Moreover, all remaining vertices
must have degree at least three and a tree with [ leaves can clearly have at
most [ vertices of degree at least three. Altogether, G’ consists of at most
l+2s, — 2l +1 = 2s, vertices. O

A simple brute-force strategy for solving MIN-DEGREE DELETION is to
branch into all possible cases of deleting a subset of the neighbors of the
distinguished vertex and then to iteratively delete all vertices with degree at
most the new degree of the distinguished vertex. We show that this strategy
leads to an algorithm with exponential running time factor 2°¢ since in reduced
instances the degree of the distinguished vertex is bounded by s..

Lemma 1 Let G = (V, E) and let w. denote a distinguished vertex of G.
If deg(v) > 3 for every v € V' \ {w,}, then dega(w.) < s, where s, denotes
the feedback edge set number of G.

Proof First, we argue that there is a minimum-cardinality feedback edge set
that does not contain any edge incident to w.. To this end, consider a spanning
tree that results from a breadth-first search of G starting at w.. Clearly, such a
tree contains all neighbors of w, and, hence, the edges that are not contained
in such a spanning tree form a feedback edge set not containing any edge
incident to w.. With this observation the correctness of the lemma is easy to
verify. Let E; denote such a feedback edge set. With the same arguments as in
the proof of Theorem 4, it follows that there are at most s, leaves in G — Fy.
Clearly, in trees the degree of each vertex is bounded from above by the number
of leaves. Since degg_ g, (w.) = degg(w.) the degree of w, is at most s.. O
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Fig. 2 MDD-instance obtained from a polynomial time and parameter transformation from
a HS-instance (U, S, k') with |U| = d. The star C represents a clique on k’ + 1 vertices. A
bold line labeled by a weight j represents j edges. (Lines from star C' indicate edges from
arbitrarily vertices of the clique.) Moreover, edges between Vi; and Vs are represented by
dotted lines.

Theorem 5 MIN-DEGREE DELETION can be decided in O(2°%¢ - s, +n? - k)
time, where s. is the feedback edge set number.

Proof Let (G,w, k) denote an instance of MIN-DEGREE DELETION. To solve
MIN-DEGREE DELETION proceed as follows. First call RLD(G, k). If RLD(G, k)
does not return “yes”, then let (G’ = (V/, E’), k') := RLD(G, k). Next, sys-
tematically enumerate all subsets of neighbors of w,.. For each subset V" C
N¢r(w,) check whether deleting all vertices of V" from G’ and then iteratively
deleting all vertices whose degree does not exceed the new degree of w, leads
to a solution of size at most k' for G’. The correctness of this solving strategy
is obvious.

Next, we analyze the running time of this strategy. Since each vertex of G’
has degree at least three, Lemma 1 implies that degq/ (we) < s.. Hence, there
are at most 2% subsets of neighbors of w,. Clearly, for each subset all steps can
be applied in O(s?) time, leading to an overall running time bound of O(2%¢ -
53 +n? k). O

3.3 Some non-existence results regarding polynomial-size problem kernels

We show that, unless coNP C NP / poly, there is no polynomial-size problem
kernel for MDD with respect to the parameter s’ :=“size of a vertex cover
that does not contain w.”. Indeed, we prove the even stronger result that it
is unlikely that there is a polynomial-size problem kernel for the combined
parameter (sk, k), where k denotes the solution size. Since the treewidth ¢,
the feedback vertex set number s,, and the distinguished feedback vertex set
number s} of a graph are bounded from above by s}, this non-kernelization
result carries over to all these parameterizations.
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Theorem 6 MIN-DEGREE DELETION does not admit a polynomial kernel
with respect to the combined parameter (sk, k), with s: being the size of a
vertexr cover not containing w. and k being the solution size, unless coNP C
NP /poly.

Proof Our proof relies on a reduction from HITTING SET (HS) defined as fol-
lows. Given a set family S := {S7,...,S},} over a universe U := {u], ..., u}}
and an integer k' > 0, HS asks for a subset U’ C U with |U’| < k" such that
S¥NU" # 0 for every i, 1 < i < m. Herein, U’ is called a hitting set. The
reduction is illustrated by Figure 2.

Dom et al. [14] have shown that HS does not admit a problem kernel
of size (d + k)°, unless coNP C NP/ poly. Since HS and MDD are NP-
complete, it directly follows from a result of Bodlaender et al. [12] that if
there is a polynomial-time reduction from HS to MDD such that (s} + k) <
(d+ & )0(1), then MDD does not admit a polynomial kernel with respect
to (s%, k) unless coNP C NP /poly. In the following, we provide such a reduc-
tion (which is referred to as polynomial time and parameter transformation in
the literature [12]).

Let (S,U, k") be an HS-instance. We construct an undirected graph G =
(V, E) with a distinguished vertex w, as follows. The vertex set V is the disjoint
union of the sets {w.}, Vi, Vs, C, and L. Herein, Viy = {u; | u} € U},
Vs :={s; | S; € S}, C:={c1,...,cp1}, and L := {l1,...,la}. There is an
edge between u; and s; if and only if uj € S7. Moreover, the following edges
are added. First, w. is made adjacent to every vertex in Vi;. Furthermore, C' is
transformed into a clique, and each [;, 1 < ¢ < d, is made adjacent to each
vertex in C'. Finally, each vertex x € Vy UVs is made adjacent to k' arbitrarily
chosen vertices of C. This completes the construction. Note that the degree
of w, is d and, for each other vertex, at least &’ + 1.

Now, observe that each edge of G is incident to a vertex in C' U Vy;. Hence,
G has a vertex cover of size k' + 1 + d which does not contain w.. For the
correctness of the reduction it remains to show that (S, U, k') is a yes—instance
of HS if and only if (G, w,,d — k') is a yes—instance of MDD.

“=7: Let U’ C U with |U’| = kK’ denote a hitting set of S. We show that
M :={u; | uj € U\U'} is a solution for (G, w,,d —k'). First, observe that w,
has degree k' in G — M. Moreover, since U’ is a hitting set, every vertex
in Vs has at least one neighbor in Vi \ M, and, hence, degree at least k' + 1
in G — M. For this reason and since we do not delete vertices from L or
neighbors of vertices from L, each vertex in V'\ {w.} has degree at least k&' + 1.
Hence, (G, w,.,d — k') is a yes-instance of MDD.

“<=’: Let M C V with |[M| < d — k' denote a solution for (G,w.,d — k').
First, we argue that w. has degree k¥’ in G — M. Clearly, w, cannot have
degree smaller than k’. Furthermore, w, cannot have degree greater than k' in
G — M; otherwise, since w, is the only vertex with minimum degree in G — M
and each vertex in L has degree k' + 1, M must contain every vertex in L.
However, |L| = d > d—Fk'. Thus, deg_ s (w.) = k¥’ and, as a consequence, M C
Vuy and | M| =d - k.
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Next, we show that U’ := {u} € U | u; € Vy \ M} is a hitting set of
size k’. By the observation above, |U’| = k’. Assume towards a contradiction
that there is a set 57, 1 < j < m, with 57 N U’ = (. Thus, for each element
uj € S; the corresponding vertex u; is in M. Due to the construction of G,
vertex s; has degree k" in G — M; since degq_;(w.) = k' this contradicts the
fact that w,. is the only vertex with minimum degree. O

Since treewidth, distinguished feedback vertex set size, and feedback vertex
set size of a graph are bounded from above by s, we arrive at the following.

Corollary 2 MIN-DEGREE DELETION has no polynomial problem kernel with
respect to any of the parameters feedback vertex set, distinguished feedback
vertex set, or treewidth, respectively, unless coNP C NP /poly.

4 Min-Indegree Deletion

Complementing previous work [6], we show that MID is W[2]-hard with re-
spect to the parameter feedback arc set number s,. This also implies W[2]-
hardness with respect to the parameter feedback vertex set number s, since
Sq > Sy. We contrast these negative results by showing fixed-parameter tractabil-
ity with respect to the combined parameter s, and number k of vertices to
delete.

To show W][2]-hardness with respect to s,, we provide a parameterized
reduction from the W[2]-complete DOMINATING SET (DS) problem [15]. Given
an undirected graph G = (V, E) and an integer k, DS asks whether there is a
size-k vertex subset V' C V such that every vertex from V'\ V' has a neighbor
in V’. Such a subset V' is called dominating set. Thus, vertex u dominates
vertex v if and only if u = v or {u,v} € E.

Theorem 7 MIN-INDEGREE DELETION is W/2]-hard with respect to the feed-
back arc set number s,.

Proof Given a DS-instance (G* = (V*, E*), k) with V* = {v},v3,...,v}},
we construct a directed graph G = (W, E) with feedback arc set number at
most (k + 1)? such that (G,w.,n — k) is a yes-instance of MID if and only if
(G*, k) is a yes-instance of DS. The construction is illustrated in Figure 3.
The vertex set W of G consists of w, and the union of the following disjoint
vertex sets. The sets V := {v; | v} € V*} and D = {d; | v € V*}, where d;
represents that the corresponding vertex v} has to be dominated and v; rep-
resents that v} can dominate its neighbors (and itself). In addition, there are
four sets of auxiliary vertices, namely a set S containing n vertices and three
sets X, Y, and Z, each containing k + 1 vertices. The arcs of GG are as follows.

— One arc from v; to d; if and only if vj € N[vf].

— One arc from each vertex in V to w,.

— One arc from each vertex in X to each vertex in Y, from each vertex in Y
to each vertex in Z, and from each vertex in Z to each vertex in X.
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One arc from v; to d; < vertices v and v]’f are neighbors in
the DOMINATING SET instance

exactly k + 1 arcs
to each vertex in

{v1,...,on}

exactly k arcs to each ver-
tex in {d1,...,dn}

f

l from arbitrary vertices in Y l

from each vertex in X
one arc to each vertex
One arc from each vertex in X to each in {s1,...,8n}

vertex in Y, one from each vertex in Y’

to each vertex in Z, and one from each A X
vertex in Z to each vertex in X.

Fig. 3 MID-instance obtained by a parameterized reduction from a DS-instance. Stars
represent sets of k 4+ 1 vertices. Thin lines represent individual arcs whereas bold lines
represent multiple arcs. Dotted lines represent individual arcs whose existence depends on
the original instance. More details can be found in the explanation boxes.

— One arc from each of k arbitrarily chosen vertices in Y to each vertex in D.
— One arc from each vertex in Y to each vertex in V.
— One arc from each vertex in X to each vertex in S.

This finishes the description of the construction. From the above construction,
we immediately get that the distinguished vertex w. has indegree n and each
vertex in VU X UY UZ U S has indegree k 4 1. Since each vertex d; has an
ingoing arc from v; and k in-neighbors from Y, the vertices in D have indegree
at least k + 1.

Furthermore, it is easy to verify that (W, E \ (X x Y)) is acyclic (see
Figure 3) and, since there are (k + 1)? arcs between X and Y, the feedback
arc set number s, is at most (k+1)2. Hence, it remains to prove the following.

Claim: (G*,k) is a yes-instance of DS if and only if (G,w.,n — k) is a yes-
instance of MID.

“=": Let V; C V* be a size-k dominating of G*. We show that My := {v; €
V | v} ¢ Vi}is asolution for MID. Since |My| = n —k and w, has indegree n
in G, w, has indegree k in G — M. We show that all other vertices have degree
at least k + 1. By construction, every vertex in GG has indegree at least k + 1.
Since from the vertices in V' there are only arcs to D U {w.}, only vertices
from DU{w.} can have smaller indegrees in G — My than in G. Because V is a
dominating set, every d; has at least one in-neighbor within V'\ M. Moreover,
every d; has k further in-neighbors in Y. Hence, each vertex in D has indegree
at least k + 1. Thus, (G, w.,n — k) is a yes-instance of MID.
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“<”: Consider a yes-instance (G, w.,n — k) of MID with solution M,. We
show that V; := {vf € V* | v; € V'\ My} is a size-k dominating set of G*.

We first prove that V; has cardinality k. To this end, we show by con-
tradiction that the indegree of w, in G — My is k and hence M, contains
only vertices from V. Assume that w, has indegree at least k 4+ 1 in G — My.
Then, every other vertex must have indegree greater than k + 1 in G — My.
Since every vertex in S has indegree k + 1, it follows that S C My and hence
|My| > n; a contradiction. Consequently, |V N My| = n—k and, hence, V has
cardinality k.

It remains to show that V; is a dominating set. Assume that there is a
vertex v; € V* not dominated by any vertex in V. This implies that d; has
no in-neighbor from V' in G — M. Moreover, by construction, d; has only k
in-neighbors in G — V. As argued above, d; is not in My since My contains
only vertices from V. Hence, d; and w, have indegree k in G — My, that is, w,
is not the only vertex with minimum indegree; a contradiction. Altogether, it
follows that V] is a size-k dominating set. O

In the remainder of this section, we show fixed-parameter tractability
for MID with respect to the combined parameter “feedback vertex set num-
ber s, and number k of vertices to delete”. The corresponding branching al-
gorithm relies on the following lemma that bounds the number of neighbors
that w. can have in a yes-instance with the help of the parameter.

Lemma 2 Consider a yes-instance (G = (V, E),w, k) of MID and a corre-
sponding solution S C V \ {w.}. Let i := |S N Nijy(we)|. Then, the indegree
of we in G is at most i + s, where s, denotes the feedback vertex set number

of G.

Proof The proof is by contradiction. Let V; C V' be a feedback vertex set of
size s,. Assume that deg;,(w.) > s, + i. For every subgraph G’ of G obtained
by deleting k vertices from G —{w.}, observe the following. First, since G’ —V
is acyclic, there must be a vertex v with indegree zero in G’ — V. Hence, the
indegree of v in G’ is at most s, (in case that v has one ingoing arc from every
vertex in Vy). Second, since degin(w.) > s, + 4 in G and |S N Niy(we)| = 4,
it follows that degi,(w.) > s, in G’. Consequently, there is no size-k subset S
containing ¢ neighbors of w, such its deletion makes w,. a vertex with minimum
indegree; a contradiction. a

Based on Lemma 2 we obtain a branching algorithm for MID
Theorem 8 MIN-INDEGREE DELETION can be solved in O((k + 1) -k -n?)

time.

Proof The algorithm is displayed in Algorithm 3. Basically, it branches on
all up-to-size-k subsets of the in-neighborhood of w,. and checks whether a
corresponding subset can be extended to a solution.
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Algorithm 3 MID-search. The input consists of a MID-instance (G, we, k).
If (G,we, k) is a yes-instance, MID-search returns a solution, otherwise “no”.

1: for each i := 0 to k do > ¢ represents the number of deleted neighbors of w.
2: if |Nin(we)| < i+ sy then > otherwise there is no solution for this ¢
3: for each size-i subset U C Ny (w:) do > at most (i+is'”)
4: remove D := Nj,(we) \ U from G

5: Mg :=D

6: while there is a vertex d # w. with indegree at most ¢ do

7 remove d from G

8: Mg := MgU {d}

9: if |[M4| < k then
10: return My

11: return “no”

To see the correctness, observe that the condition | Nip(w.)| < i+, (line 2)
directly follows from Lemma 2. The iteration loops in lines 1 and 3 explore all
possible subsets of in-neighbors of w, that can be part of a solution. For each
such subset the final degree of w, is fixed at ¢ and hence all remaining vertices
with indegree at most ¢ must be deleted to obtain a solution (lines 6-8). If this
is possible by deleting at most k vertices in total, then MID-search returns a
corresponding solution set.

It remains to analyze the running time. In the worst case, we execute at
most & times the first loop (line 1). In the second loop (line 3), we try at most

(S”Zk) subsets. Thus, we have

st kY _ (ot k) T (k+d) _ (k1T
k kK- (sy+k—FK) ! - 1

subsets. The third loop (line 6) can be executed in O(n?) time. O

Theorem 7 provides a relative lower bound for the parameterized complex-
ity with respect to the feedback set parameters s, and s,. An upper bound,
namely polynomial-time solvability for constant values of s, (that is, member-
ship in XP), follows from Theorem 8.

5 Conclusion

We introduced the NP-hard vertex deletion problem MIN-DEGREE DELETION
on undirected graphs. For MIN-DEGREE DELETION and its directed counter-
part MIN-INDEGREE DELETION [6] we provided a number of results concerning
their fixed-parameter tractability with respect to the parameter solution size
and several parameters measuring the input graph’s tree-likeness (see Table 1
in the introductory section for an overview). In particular, our fixed-parameter
algorithm for MIN-INDEGREE DELETION for the combined parameter (k, s,)
indicates that electoral control by removing candidates for Llull voting [6,16]
is computationally feasible in interesting special cases. Remarkably, one can
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adapt the algorithm for MIN-DEGREE DELETION on undirected graphs (The-
orem 2) to directed graphs by using the tree decomposition of the underlying
undirected graph.

The aim of this work was to start a systematic parameterized complex-
ity analysis of two so far widely unstudied simple graph problems. There re-
main several open questions for future research. Clearly, it is desirable to spot
further application scenarios for both problems. Concerning algorithmic chal-
lenges, note that regarding the parameters maximum degree and indegree, re-
spectively, fixed-parameter tractability follows easily from a simple branching
strategy [6]. However, it is unclear whether there exist polynomial-size problem
kernels in these cases. Besides further parameterized complexity studies in the
spirit of multivariate algorithmics [17,25,29], it also remains open to pursue
studies concerning the polynomial-time approximability of these problems.

Acknowledgements We are grateful to two anonymous referees of Algorithmica whose
constructive feedback helped to improve the quality of our presentation.
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