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Abstract

Computational Social Choice is an interdisciplinary research area involving Economics,
Political Science, and Social Science on the one side, and Mathematics and Computer Sci-
ence (including Artificial Intelligence and Multiagent Systems) on the other side. Typical
computational problems studied in this field include the vulnerability of voting procedures
against attacks, or preference aggregation in multi-agent systems. Parameterized Algorith-
mics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-
specific parameters in order to identify tractable special cases of in general computationally
hard problems. In this paper, we propose nine of our favorite research challenges concerning
the parameterized complexity of problems appearing in this context.

1 Introduction

Computational social choice [28, 39, 40, 4, 5, 58, 91] is a relatively young interdisciplinary
research area that brings together researchers from fields like Artificial Intelligence, Decision
Theory, Discrete Mathematics, Mathematical Economics, Operations Research, Political Sci-
ences, Social Choice, and Theoretical Computer Science. The main objective is to improve our
understanding of social choice mechanisms and of algorithmic decision making. Some concrete
questions belonging to this area are: How should a voter choose between competing political
alternatives? How should this voter rank these competing alternatives? How should a meta-
search engine aggregate many rankings into a single consensus ranking, reflecting an “optimal”
compromise between various alternatives? A long term goal is to improve decision support for
decision makers that are working in a variety of areas like electronic commerce, logistics, rec-
ommender systems, risk assessment, risk management, and that are fighting with massive data
sets, large combinatorial structures, and uncertain information.
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The general topic is addressed by a biennial International Workshop on Computational So-
cial Choice (COMSOC), whose 2012 and 2014 editions have been held in Kraków/Poland and
in Pittsburgh/Pennsylvania/USA, respectively. Furthermore, the topic is covered by a number
of leading conferences in Artificial Intelligence (including AAAI, ECAI, IJCAI ) and by sev-
eral specialized conferences (including AAMAS, ADT, EC, SAGT, WINE ). There are numerous
research journals that address many aspects of computational social choice, including Artifi-
cial Intelligence, ACM Transactions on Economics and Computation, Autonomous Agents and
Multi-Agent Systems, Journal of Artificial Intelligence Research, Mathematical Social Sciences,
Social Choice and Welfare, and many others (including theoretical as well as application-oriented
journals).

Parameterized Complexity is a branch of Theoretical Computer Science that started in
the late 1980s and early 1990s. The main objective is to understand computational problems
with respect to multiple input parameters, and to classify these problems according to their
inherent difficulty. As the complexity of a problem can be measured as a function of a multitude
of input parameters, this approach allows to classify NP-hard problems on a much finer scale than
in classical complexity theory (where the complexity of a problem is only measured with respect
to the number of bits in the input). Parameterized complexity analysis has been successfully
applied in areas as diverse as Algorithm Engineering, Cognitive Sciences, Computational Biology,
Computational Geometry, Geographic Information Systems, Machine Learning, and Psychology,
to name a few. The first systematic work on Parameterized Complexity is the 1999 book [47]
by Downey and Fellows.

This article suggests future research directions and open problems in the intersection area
between computational social choice and parameterized complexity. Parts of this intersection
area have been surveyed in a recent paper on the parameterized complexity analysis of voting
problems [11]. The field holds numerous exciting challenges for researchers on algorithms and
complexity.

2 Preliminaries

We summarize some basic concepts and definitions that will be used throughout this paper.

2.1 Voting

Elections. An election E := (C, V ) consists of a set C of m alternatives c1, c2, . . . , cm and a
list V of n voters v1, v2, . . . , vn. Each voter v has a linear order �v over the set C which we
call a preference order. For example, let C = {c1, c2, c3} be a set of alternatives. The preference
order c1 �v c2 �v c3 of voter v indicates that v likes c1 most (the 1st position), then c2, and c3
least (the 3rd position). For any two distinct alternatives c and c′, we write c �v c

′ if voter v
prefers c over c′. We also use the notation v ∈ V to indicate that a voter v is in the list V . By
|V |, we mean the number of voters in V .

Voting rules. A voting rule R is a function that maps an election to a subset of alternatives,
the set of winners. One prominent voting rule dates back to de Condorcet [43]. It selects
an alternative as a (unique) winner if it beats any other alternative in head-to-head contests.
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Formally speaking, given an election E = (C, V ), an alternative c ∈ C is a Condorcet winner if
any other alternative c′ ∈ C \ {c} satisfies

|{v ∈ V | c �v c
′}| > |{v ∈ V | c′ �v c}|.

It is easy to see that there are elections for which no alternative is a Condorcet winner. However,
if a voting rule guarantees that a Condorcet winner is elected whenever there is one, then we
say that this rule is Condorcet-consistent. (Such rules include, e.g., those of Copeland [68, 25],
of Dodgson [45], of Kemeny [75, 79], and many others.)

Scoring protocols form another well-studied class of voting rules. A scoring protocol for
m alternatives is defined through a vector (α1, . . . , αm) of integers, α1 ≥ · · · ≥ αm ≥ 0. An
alternative receives αi points for each voter that ranks this alternative as ith best. The best
known examples of (families of) scoring rules include the Plurality rule (defined through a
vector (1, 0, . . . , 0)), d-Approval (defined through vectors of d ones followed by zeros), and the
Borda rule (defined through vectors (m− 1,m− 2, . . . , 1, 0)).

2.2 Parameterized Complexity

We assume familiarity with basic Computational Complexity Theory [3, 67] and only provide
some definitions with respect to parameterized complexity analysis [48, 65, 87].

Let Σ be an alphabet. A parameterized problem over Σ is a language L ⊆ Σ∗ × Σ∗. The
second part of the problem is called the parameter. Usually, this parameter is a non-negative
integer or a tuple of non-negative integers. For instance, an obvious parameter in voting is
the number of alternatives. Thus, typically L ⊆ Σ∗ × N, where a combined parameter can be
interpreted as the maximum of its integer components.

In the following, let L be a parameterized problem.

Fixed-parameter tractability. We say that L is fixed-parameter tractable or in FPT if there
is an algorithm that, given an input (I, k), decides in f(k) · |I|O(1) time whether (I, k) ∈ L.
Herein f : N→ N is a computable function depending only on k.

Kernelization is an alternative way of showing fixed-parameter tractability [22, 70, 84]. We
say that L has a problem kernel if there is a polynomial-time algorithm (that is, a kernel-
ization) that given an instance (I, k), computes an equivalent instance (I ′, k′) whose size is
upper-bounded by a function in k, that is,

(i) (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance, and

(ii) |(I ′, k′)| ≤ f(k) with f : N→ N.

Typically, kernelizations are based on data reduction rules executable in polynomial time that
help shrinking the instance size. It is known that L has a problem kernel if and only if L is in
FPT [35]. Further, if the function f in the above kernelization definition is polynomial, then we
also say that L has a polynomial-size problem kernel.

Parameterized intractability. As a central tool for classifying problems, Parameterized
Complexity Theory provides the W-hierarchy consisting of the following classes and interrela-
tions [37, 49]:

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[t] ⊆ . . . ⊆ XP.
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To show W[t]-hardness for any positive integer t, we use the concept of parameterized reduction.
Let L,L′ be two parameterized problems. A parameterized reduction from L to L′ consists of
two functions f : Σ∗ → Σ∗ and g : N→ N such that for any given instance (IL, k) of L, it holds
that

(i) (IL, k) is a yes-instance for L if and only if (f(IL), g(k)) is a yes-instance for L′, and

(ii) f is computable in FPT time for parameter k, that is, in h(k) · |IL|O(1) time.

Problem L′ is W[t]-hard if for any problem L in W[t], there is a parameterized reduction from
L to L′. Typically, to show that some problem L′ is W[t]-hard, we start from some known
W[t]-hard problem L and reduce L to L′.

3 Nine Challenges

In this main section of our paper, we describe nine challenges (indeed, mostly rather problem
areas) that found our specific interest and that shall help to stimulate fruitful research on the
parameterized complexity of computational social choice problems.

3.1 ILP-Based Fixed-Parameter Tractability

Our first challenge relates to a method of establishing fixed-parameter tractability results. Let
us explain this with the help of one of the most obvious parameters in the context of voting—
the number of alternatives. For many contexts (for example, political or committee voting) it
is natural to assume that the number of alternatives is small (particularly when compared to
the number of voters). Hence, it is important to determine the computational complexity of
various voting problems for the case where the input contains only few alternatives. Indeed,
there is a number of fixed-parameter tractability results in terms of the parameter “number m
of alternatives” in the voting context, but many of them rely on a deep result from combinatorial
optimization due to Lenstra [78]. Moreover, since this result (on Integer Linear Programming) is
mainly of theoretical interest, this may render corresponding fixed-parameter tractability results
to be of classification nature only. Fixed-parameter tractability results based on Integer Linear
Programming also tend to give less insight into the structural properties of the problems than
combinatorial algorithms. The challenge we pose relates to improving this situation by replacing
integer linear programs with direct combinatorial fixed-parameter algorithms.

Integer Linear Programming (ILP) is a strong classification tool for showing fixed-parameter
tractability [87]. More specifically, Lenstra’s famous result [78] (see the literature [66, 74] for
some moderate later running time improvements) implies that a problem is fixed-parameter
tractable if it can be solved by an integer linear program where the number of variables is
upper-bounded by a function solely depending on the considered parameter.

Perhaps the first example for such an “ILP-based” fixed-parameter tractability result in the
context of computational social choice was implicitly given by Bartholdi III et al. [9] and later
improved by McCabe-Dansted [86]. They developed an integer linear program to solve the NP-
hard voting problem Dodgson Score and gave a running time bound based on Lenstra’s result.
Without having explicitly stated this in their publication, this result yields fixed-parameter
tractability for Dodgson Score with respect to the parameter number m of alternatives.
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Before coming to their integer linear program formulation for Dodgson Score, we start with
a brief definition of Dodgson voting. The input of Dodgson Score is an election E = (C, V ),
a distinguished alternative c ∈ C, and an integer k. The question is whether one can make c the
Condorcet winner by swapping a total number of at most k pairs of neighboring alternatives in
the voters’ preference orders. Refer to the literature [15, 9, 73] for more on the computational
complexity status of Dodgson Score.

Bartholdi III et al. [9]’s integer linear program for Dodgson Score reads as follows. It com-
putes the Dodgson score of alternative c, which is the minimum number of swaps of neighboring
pairs of alternatives in order to make c the Condorcet winner.

min
∑
i,j

j · xi,j subject to

∀i ∈ Ṽ :
∑
j

xi,j = Ni

∀y ∈ C :
∑
i,j

ei,j,y · xi,j ≥ dy

xi,j ≥ 0

In the above integer linear program, Ṽ denotes the set of preference order types (that is,
the set of different preference orders in the given election), Ni denotes the number of voters of
type i, xi,j denotes the number of voters with preference order of type i for which alternative c
will be moved upwards by j positions, ei,j,y is 1 if the result of moving alternative c by j
positions upward in a preference order of type i is that c gains an additional voter support
against alternative y, and 0 otherwise. Furthermore, dy is the deficit of c with respect to
alternative y, that is, the minimum number of voter supports that c must gain against y to
defeat y in a pairwise comparison. If c already defeats y, then dy = 0. See Bartholdi III et al. [9]
for more details. Altogether, the integer linear program contains at most m ·m! variables xi,j ,
where m denotes the number of alternatives. Thus, the number of variables in the described
integer linear program is upper-bounded by a function in parameter m yielding fixed-parameter
tractability due to Lenstra’s result.

Although solvability by an integer linear program with a bounded number of variables implies
fixed-parameter tractability, there is by far no guarantee for practically efficient algorithms.
Indeed, due to a huge exponential function in the number of variables being part of the running
time bound, the above fixed-parameter tractability result is basically for classification.

There are numerous further results [2, 16, 29, 17, 46, 60] for voting problems with the pa-
rameter number of alternatives where so far only using Lenstra’s result leads to fixed-parameter
tractability. In summary, this gives the following research challenge.

Key question 1: Can the mentioned ILP-based fixed-parameter tractability results
be replaced by direct combinatorial (avoiding ILPs) fixed-parameter algorithms?

Interestingly, the Kemeny Score problem (refer to Section 3.5 for the definition) is known
to be solvable in O(2m ·m2 · n) time due to a dynamic programming algorithm, that is, there is
a direct combinatorial fixed-parameter algorithm [13]. Nonetheless, in practical instances using
an Integer Linear Programming formulation with O(m2) binary variables is much more efficient,
although its theoretical running time is significantly worse [12].
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3.2 Parameterized Complexity of Bribery Problems

Our second challenge regards the parameterized complexity of election bribery problems under
some voting rule R. There are several families of bribery problems but, generally speaking, their
main idea is as follows. We are given some election E = (C, V ), some preferred alternative p,
and some budget B. If we choose to bribe some voter v, then we can modify v’s preference
order, but we have to pay for it (in some variants of the bribery problem the cost depends on
how we change the preference order, whereas in others the cost is fixed irrespective of the extent
to which we modify the preference order). The goal is to compute which voters to bribe—and
how to modify their preference orders—so that p becomes an R-winner and the bribery cost is
at most B.

The study of the computational complexity of election bribery was initiated by Faliszewski
et al. [57] (also refer to the work of Faliszewski and Rothe [62] for a survey). In particular, they
studied the following two problems for some voting rule R:

• In the R-Bribery problem, each voter has the same price (unit cost) for being bribed.
In effect, we ask if it is possible to ensure the preferred alternative’s victory by bribing at
most B voters.

• In the R-$Bribery problem, each voter v has an individual price πv for being bribed.

Note that in both problems the cost of bribing a voter does not depend on how the voter’s
preference order is changed: The briber pays for the ability to change the preference order in
any convenient way.

Later, Elkind et al. [54] introduced another variant of the bribery problem, which they called
R-Swap Bribery, where the cost of bribing a voter depends on the extent to which we modify
this voter’s preference order. Formally, they required that each voter v has a swap-bribery price
function, which for each two alternatives a and b gives the cost of convincing v to swap a and b
in the preference order (provided that a and b are adjacent in this preference order at the time).
To bribe a voter v, we provide a sequence of pairs of alternatives to swap, the voter looks at
these pairs one by one and for each pair swaps the alternatives in the preference order (provided
they are adjacent at the time) and charges us according to the swap-bribery function. Elkind
et al. [54] also defined a simpler variant of Swap Bribery, called Shift Bribery, where all
the swaps have to involve the preferred alternative. While both Swap Bribery and Shift
Bribery tend to be NP-complete for typical voting rules, Shift Bribery is much easier to
solve approximately [52].

For most typical voting rules, these bribery problems are NP-complete. A few polynomial-
time algorithms exist only for the simplest of voting rules, such as Plurality, or d-Approval and
Bucklin, for the case of Shift Bribery. However, from the point of view of parameterized
complexity theory, there is a huge difference between the R-Bribery problems, where each
voter has unit cost for being bribed, and the other flavors of bribery, where each voter has
individually specified price. Indeed, when we use the number of alternatives as the parameter,
for typical voting rules R we have that R-Bribery is in FPT (this is implicit in the work of
Faliszewski et al. [57]), whereas the other types of bribery are in XP [57, 54] and it is not known
if they are in FPT or hard for W[1], W[2], or some further class in the W-hierarchy. Thus, we
have the following challenge.
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Key question 2: For each typical voting rule R: what is the exact parameterized
complexity of problems R-$Bribery, R-Swap Bribery, and R-Shift Bribery
when parameterized by the number of alternatives?

Interestingly, this challenge is very closely related to the previous one. For many typical
voting rules R, the proof that R-Bribery is in FPT uses an ILP-based algorithm. Having such
an algorithm (instead of a combinatorial one) gives very limited insight into the nature of the
problem and, thus, we cannot use the ideas regarding R-Bribery to build algorithms for, say,
R-$Bribery. On the contrary, there is no obvious way to extend the ILP-based algorithms to
the variants of bribery where voters have individual prices. The general idea behind these ILP
algorithms is to consider groups of voters with the same preference orders jointly, but this does
not lead to correct solutions when these voters have differing prices.

Naturally, some authors have already studied parameterized complexity of various types of
bribery problems [46, 30]. However, their results regard either parameters other than the number
of alternatives, or special pricing schemes where voters can be treated as unified groups and ILP
approaches work.

3.3 FPT Approximation Algorithms

In the previous challenge we asked about the exact complexity of various election bribery prob-
lems parameterized by the number of alternatives. However, instead of seeking exact complexity
results it might be easier to find good FPT approximation algorithms (refer to the work of
Marx [85] for a survey). After all, if the bribery problems turn out to be, say, W[1]- or W[2]-
hard, the approximation algorithms would give us some means of solving them. Even if the
problems turned out to be in FPT, it is likely that the approximation algorithms would be much
faster in practice. Further, even though for some of these problems there are good polynomial-
time approximation algorithms (for example, this is the case for Shift Bribery under positional
scoring rules [52]), it might be the case that FPT approximation algorithms would yield better
approximation ratios.

To see that FPT approximation algorithms can indeed outperform polynomial-time ones in
terms of achievable approximation ratios, let us consider the Max Vertex Cover problem
(also known as Partial Vertex Cover). In this problem we are given an undirected graph G
and an integer k. The goal is to pick k vertices that jointly cover as many edges as possible. Note
that a vertex covers all its incident edges. As a generalization of Vertex Cover, the problem is
NP-complete [67], and it is also known to be W[1]-complete when parameterized by k [71]. As far
as we know, the best polynomial-time approximation algorithm for this problem known at the
moment is due to Ageev and Sviridenko [1]. This algorithm achieves approximation ratio 3

4 , that
is, if the optimal solution covers OPT edges, the algorithm of Ageev and Sviridenko guarantees
to cover at least 3

4OPT edges. Marx [85], however, has shown an algorithm that for each positive
number ε finds a solution for Max Vertex Cover that covers at least (1− ε)OPT edges and
runs in FPT time with respect to parameters k and ε. In other words, Marx has given an FPT
approximation scheme for the problem. Recently, this result of Marx was generalized by Skowron
and Faliszewski [94]. Interestingly, the motivation for their work came from a computational
social choice context.
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This discussion motivates the following research challenge:

Key question 3: For which computationally hard election-related problems are
there FPT approximation schemes?

As we have indicated, bribery problems are perhaps the most natural ones to consider here.
Indeed, Bredereck et al. [30] gave a fairly general FPT approximation scheme for Shift Bribery
parameterized by the number of voters, and an FPT approximation scheme for Shift Bribery
parameterized by the number of alternatives, but for a somewhat restrictive model of bribery
costs. The existence of an FPT approximation scheme that does not rely on assumptions about
the pricing model remains open. Schlotter et al. [92] provided an FPT approximation scheme
for yet another bribery problem, called Support Bribery. Interestingly, we are not aware of
any FPT approximation algorithms for the Bribery and $Bribery families of problems.

There are also many other types of election problems one could try to seek FPT approximation
algorithms for. For example, in control problems we are given an election E = (C, V ), a preferred
alternative p, and some means of affecting the structure of the election. For example, we might
have some set of additional alternatives or voters that can be convinced to participate in the
election, or we might have some means to remove some of the alternatives or voters. The task
is to ensure that p is a winner while modifying the election as little as possible. Election control
problems were introduced by Bartholdi III et al. [8] (later Hemaspaandra et al. [72] extended
the definition to include so-called destructive control) and were studied from the parameterized
complexity perspective by several authors [18, 81, 82, 36]. However, at the intuitive level, it
seems that for control problems it might be easier to obtain parameterized inapproximability
results. The reason for that is that often their hardness proofs (parameterized or not) directly
rely on problems that are difficult to approximate.

3.4 Kernelization Complexity of Voting Problems

Kernelization is one of the major tools to prove fixed-parameter tractability results. In the
last decade, parameterized complexity theory witnessed an extremely rapid development of
kernelization results. Many problems turn out to admit polynomial-size problem kernels, most
of them being graph-theoretical problems [70, 22, 84].

With respect to voting problems, although many have been shown to be fixed-parameter
tractable, only very few problems are known to admit polynomial-size problem kernels. The
main reason for this might be that a voting problem usually contains as input an election whose
size essentially is upper-bounded by the number m of alternatives times the number n of voters.
According to the definition of polynomial-size problem kernels, we need to bound both numbers
by polynomial functions in the considered parameter; it already seems difficult to bound one
out of n and m with a function of the other. Next, we use the Constructive Control by
Deleting Voters for d-Approval (CCDV-d-Approval) problem to illustrate this difficulty
and discuss how to cope with it.

Given an election (C, V ) under the d-Approval rule, each voter assigns one point to each of
the alternatives c ranked in the top d positions of his preference order. We say then that this
voter approves c. The score s(c) of an alternative c is the total number of points it gains from all
the voters. The alternative with the highest score wins the election. The CCDV-d-Approval
problem asks for a list of at most k voters whose deletion from V makes a distinguished alter-
native p win the election. CCDV-d-Approval is NP-hard for every constant d ≥ 3 [80].
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It is not hard to show that CCDV-d-Approval is fixed-parameter tractable with respect to
the number k of deleted voters. Observe that the alternatives c with s(c) < s(p) are irrelevant
for control by deleting voters since the voters approving p will never be deleted from V . Let I
denote the set of all irrelevant alternatives, and R := C \ (I ∪ {p}). Since each alternative c
in R satisfies s(c) ≥ s(p), we have to delete at least one voter from V who approves c. By the
definition of d-Approval, deleting k voters can decrease the scores of at most d · k alternatives,
and thus |R| ≤ d · k. Let Vp be the list of voters in V approving p and VR the list of voters
approving at least one alternative in R but not p. Obviously, the voters deleted should be all
from VR. With |R| ≤ d · k, we can partition VR into at most O((d · k)d) many classes, each class
containing the voters in VR which approve the same subset of R. A brute-force algorithm can
then be applied to guess the number of voters to be deleted from each class, resulting in an FPT
running time.

With respect to deriving a polynomial problem kernel for CCDV-d-Approval, we further
need to bound |I| and |V |. Deleting voters who solely approve the alternatives in I do not
help making p win and can be safely “removed” from the voter list V . Thus, we can assume
that the voters in V who approve an irrelevant alternative should also approve p or at least one
alternative from R. This means that V = Vp ∪VR. Therefore, the key is to bound |Vp| and |VR|.
However, although the number of the classes of voters in VR is bounded, the number of voters
in each class can be unbounded. The same holds also for Vp, even if none of the voters in Vp will
be deleted. Due to the relation between the scores of p and of the alternatives in R, we cannot
reduce Vp and VR independently. The kernelization algorithm of Wang et al. [96] performs a
“reconstruction” approach, that is, it keeps only the “essential” part of the instance, which
consists of particular voters in VR, and then constructs a new instance around this essential part
with new irrelevant alternatives and some new voters. The decisive idea behind this approach
is to restore the score difference between s(p) and s(c) for every c ∈ R after the reconstruction;
but s(p) and s(c) are much less than in the original instance and, thus, the number of voters
needed can be bounded by a function of k.

The kernelization algorithm of Wang et al. [96] achieves a polynomial problem kernel for
CCDV-d-Approval with d being a constant; note that, with unbounded d, CCDV-d-Approval
is W[2]-hard with respect to k [96]. It is conceivable that this reconstruction approach could
lead to problem kernels for other fixed-parameter tractable control problems [83]. However,
compared to the diverse general tools for deriving polynomial (even linear) problem kernels for
graph-based problems, the research on kernelization for such two-dimensional problems as voting
problems seems little developed. Only very few problem kernel results for voting problems are
known so far. Thus, to close this gap is a major challenge.

Key question 4: What is the kernelization complexity of fixed-parameter tractable
voting problems with respect to the number m of alternatives, the number n of
voters, or some parameter less than m or n? Can we derive polynomial (or even
linear) problem kernels for some voting problems with the above parameters?

3.5 Partial Problem Kernels

As already discussed in the previous section, the input to a voting problem contains an election
whose size is upper-bounded by the number of alternatives times the number of voters. In
addition, the input can also contain prices per voter or per position for each voter’s preference
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v1 : a1 � a2 � a3 � a4
v2 : a1 � a2 � a4 � a3
v3 : a3 � a2 � a1 � a4

Figure 1: An election with four alternatives and three voters. The unique Kemeny ranking is
a1 � a2 � a3 � a4 with score four.

order. Either the number of alternatives, the number of voters, or the total price are promising as
a parameter for performing a parameterized complexity analysis because there are applications
where either of these parameters is relatively small when compared to the other. For instance, in
aggregating the outcomes of different search engines with the help of a meta-search engine, the
number of voters is (relatively) small but the number of alternatives is large. In political voting,
the situation should typically be the other way round. In terms of developing kernelization
results, however, the current knowledge indicates a certain asymmetry with respect to both
parameters, “the number m of alternatives” and “the number n of voters”. While we have
often positive results when exploiting parameter m, for parameter n fewer positive results are
known [11]. Indeed, this also motivates the concept of “partial problem kernels”.

Formally, a decision problem L with input instance (I, k) is said to admit a partial kernel if
there is a computable function d : Σ∗ → N such that

(i) L is decidable in FPT time for parameter d(I), and

(ii) there is a polynomial-time algorithm that given (I, k), computes an equivalent instance (I ′, k′)
such that k′ ≤ f(k) and d(I ′) ≤ g(k) with f, g : N→ N.

We will discuss this issue using the rank aggregation problem Kemeny Score as a concrete
example.

Informally speaking, Kemeny Score asks, given an election E = (C, V ) and a positive
number k, whether there is a median ranking, that is, a linear order over C whose total number
of inversions with the voters’ preference orders from E is at most k. The score of such a ranking
is the total number of inversions needed. A Kemeny ranking of an election is a median ranking
with minimum score. An example election with four alternatives and three voters is illustrated
in Figure 1. It has only one Kemeny ranking a1 � a2 � a3 � a4 with score four.

Surprisingly, Kemeny Score remains NP-hard when the input election E has only four
voters [50, 51, 19]. In particular, this implies that there is no hope for fixed-parameter tractability
with respect to the parameter “number of voters”. On the contrary, it is straightforward to
observe that a simple brute-force search already yields fixed-parameter tractability with respect
to the number of alternatives [13].

As a matter of fact, there are further natural parameterizations of Kemeny Score [13]. In
particular, one may ask whether Kemeny Score becomes (more) tractable if the preference
orders of the input election are very similar on average, that is, the sum over their pairwise
differences divided by the number of pairs is small. Let us call the smallest integer at least as
large as this value parameter da. Developing a dynamic programming algorithm [13], it has
been shown that Kemeny Score is fixed-parameter tractable for parameter da with running

10



time 16da · poly(n + m) where poly is a polynomial function. Based on this, one immediately
obtains a trivial problem kernel of size O(16da) for parameter da. A natural follow-up question
concerns the existence of a problem kernel of smaller size or even of polynomial size for Kemeny
Score when parameterized by da. We only have partially positive results here. The question
whether we can upper-bound both the number of alternatives and the number of voters by a
polynomial function in da by means of polynomial-time data reduction remains open. It is,
however, possible to upper-bound the number of alternatives by a linear function in da [12, 93].
Since Kemeny Score is decidable in FPT time for m, it admits a partial kernel. This concept
has also been used in other application contexts, some of them outside the field of computational
social choice [14, 10, 30].

Partial problem kernels of polynomial size have been shown to be useful to improve fixed-
parameter tractability results. It is unclear, however, whether or not some of the partial ker-
nelization results mentioned can be replaced by “full kernelization” results. This leads to the
following challenge.

Key question 5: Can the known partial problem kernels be improved to (full)
problem kernels with non-trivial size bounds?

We mention in passing that, focusing on voting problems, it might help to use weights for
voters to obtain (full) problem kernels with non-trivial size bounds; however, this would not be
a “plain” kernelization (where the kernelized instance needs to be of “same type” as the input
instance) in case of unweighted input voters and may hide computational complexity in the
weight functions by modifying the problem.

3.6 Parameterizations of Election Data

Social choice theory is full of (combinatorial and algorithmic) results on voting problems. Many
of these results are centered around general elections, where every ordering of the alternatives
is a feasible preference for any voter and where every combination of alternative orderings
yields a feasible election. For instance, Arrow’s impossibility theorem shows the impossibility
of preference aggregation for general elections under certain axioms (unrestricted domain, non-
dictatorship, Pareto efficiency, and independence of irrelevant alternatives). Another example
is the result of Hemaspaandra et al. [73] that establishes hardness of determining the winner in
Dodgson elections with general elections.

For this reason, one research branch concentrates on the investigation of specially structured
elections, where only certain combinations of alternative orderings are feasible.

• An election is single-peaked if there exists a linear order of the alternatives such that any
voter’s preference along this order is either (i) always strictly increasing, (ii) always strictly
decreasing, or (iii) first strictly increasing and then strictly decreasing. The example in
Figure 2 shows a single-peaked election with five alternatives and three voters.

• An election is single-crossing if there exists a linear order of the voters such that for any
pair of alternatives along this order, either (i) all voters have the same opinion on the
ordering of these two alternatives or (ii) there is a single spot where the voters switch from
preferring one alternative to the other one.
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v1 : a1 � a2 � a3 � a4 � a5
v2 : a3 � a4 � a2 � a1 � a5
v3 : a3 � a2 � a1 � a4 � a5

Figure 2: An election with five alternatives and three voters. It is single-peaked with respect to
the orders a1 � a2 � a3 � a4 � a5 and a4 � a3 � a2 � a1 � a5, and to their reverse orders.

• An election is one-dimensional Euclidean if there exists an embedding of alternatives and
voters into the real numbers, such that every voter prefers the nearer one of each pair of
alternatives.

It is known that Arrow’s impossibility result disappears on single-peaked elections [20], single-
crossing elections [90], and on one-dimensional Euclidean elections (which form a special case
of single-peaked and of single-crossing elections; see also the paper of Elkind, Faliszewski, and
Skowron [53] for some recent discussion of elections that are both single-peaked and single-
crossing). On the algorithmic side, Walsh [95], Brandt et al. [27], and Faliszewski et al. [61]
showed that many electoral bribery, control, and manipulation problems that are NP-hard in
the general case become tractable under single-peaked elections.

The three restrictions allow natural parameterizations. Yang and Guo [97] considered k-
peaked elections as a generalization of single-peaked elections, every preference order can have
at most k peaks (that is, at most k rising streaks that alternate with falling streaks). Similarly, we
can generalize single-crossing elections to k-crossing elections, where for every pair of alternatives
there are at most k spots where the voters switch from preferring one alternative to the other one.
A natural generalization of one-dimensional Euclidean elections are k-dimensional Euclidean
elections, where alternatives and voters are embedded in k-dimensional Euclidean space.

Key question 6: How does the complexity of the standard bribery, manipulation
and control problems in election systems depend on the parameter k for (i) k-peaked,
(ii) k-crossing, (iii) k-dimensional Euclidean elections?

A first step in this direction would be to get a good combinatorial understanding of such
elections. The literature contains forbidden substructure characterizations for single-peaked
elections [7] and for single-crossing elections [32]. Knoblauch [76] discussed the structure of one-
dimensional Euclidean elections. Chen et al. [38] studied minimal the relation between single-
peaked and single-crossing elections and one-dimensional Euclidean elections. Bogomolnaia
and Laslier [24], and Bulteau and Chen [33] investigated the restrictiveness of k-dimensional
Euclidean elections. To our knowledge, the combinatorial structure of the above parameterized
variants has not been investigated so far.

3.7 Distance to Tractable Cases

“Treewidth” is a famous concept in algorithmic graph theory. Informally speaking, it uses a
natural number to express how far a given undirected graph is away from being a tree: a graph
with treewidth one is a tree or a forest, and the smaller the treewidth is, the closer the graph is
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to being a tree [21, 23, 44]. The interest for treewidth stems from the fact that many NP-hard
graph problems can be solved efficiently (say by greedy or dynamic programming algorithms)
when restricted to trees. Hence, it is natural to ask whether such tractability results can be
extended beyond trees. Treewidth is one measure that turned out particularly useful for such a
quest. More specifically, many NP-hard graph problems (including Clique, Independent Set,
Dominating Set) can be solved in linear time on graphs with bounded treewidth (assuming
that a corresponding “tree decomposition” is part of the input) [21, 23, 48, 87]. Put differently,
these problems are fixed-parameter tractable with respect to the parameter “treewidth” of the
input graph.

Also in the context of voting, there exist certain structural properties of inputs that make
some of the otherwise NP-hard problems tractable. For instance, under single-peakedness (as
discussed in Section 3.6) many computationally hard winner determination problems, including
Kemeny Score [27] (as discussed in Section 3.5), turn out to be polynomial-time solvable. In
analogy to the step from actual trees to “nearly” trees (that is, graphs with bounded treewidth),
the computational social choice community has taken the step from actual single-peakedness to
“nearly” single-peakedness, all in the spirit of pushing the borders of tractability. The following
notions of nearly single-peaked elections have been studied in [56, 42, 31, 59, 41].

• Elections that can be made single-peaked by deletion of k voters (also called Maverick
voters).

• Elections that can be made single-peaked by deletion of k alternatives.

• Elections that can be made single-peaked by k swaps in the preferences of every voter.

• Elections that can be made single-peaked by contracting groups of up to k alternatives
into single alternatives (here the alternatives of every contracted group must show up
consecutively in the preferences of every voter).

Each of these notions introduces a distance measure (or width measure) to the tractable case
of single-peakedness. In the same spirit, Elkind et al. [55], Bredereck et al. [31], and Cornaz et
al. [42] introduced distance measures of elections to the tractable case of single-crossingness (as
discussed in Section 3.6) and to the tractable case of group separability (an election is group
separable if the alternatives can be partitioned into two non-empty groups such that every voter
prefers all alternatives of one group to all alternatives of the other group).

Altogether, these approaches lead to natural and meaningful “width-bounded” measures for
preference orders which shall, in the same spirit as treewidth and other width-related parameters
do for graphs, lead to interesting special cases allowing to obtain fixed-parameter tractability
results for social choice problems with respect to these width parameters. Of course, coming
up with natural and meaningful “width-bounded” measures is an ongoing challenging task.
Nonetheless, considering the huge amount and great success of work on width measures for
graphs, there appear to be many research opportunities for working on these measures in the
context of voting and related problems. We remark that, from the viewpoint of parameterized
complexity analysis, such investigations would fall under the category “distance from triviality”-
parameterizations [34, 69]. For applications in computational social choice, this line of research
is still in its infancy with few results [42], leading to the following generic challenge.
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Key question 7: How can natural and meaningful “width-based” parameters be
used to gain (practically useful) fixed-parameter tractability results for NP-hard vot-
ing problems?

3.8 W-Hierarchy and Majority-Based Problems

This theoretical challenge is about creating a framework that could simplify the W-hierarchy
classification of problems using majority-based properties which naturally occur in Computa-
tional Social Choice.

Problems that are presumably not fixed-parameter tractable are usually classified in the
W-hierarchy which is defined via the Weighted Weft-t Depth-d Circuit Satisfiability
(WCS(t,d)) problem [48].

The input of WCS(t,d) is a Boolean circuit (formally, these are vertex-labeled directed
acyclic graphs) of depth d and weft t, and an integer bound k. The question is whether there
is a satisfying assignment of weight k. In this context, Boolean circuits are allowed to contain
NOT gates, small AND and OR gates of fan-in at most two and large AND and OR gates of
arbitrary finite fan-in. The weft of a Boolean circuit is the maximum number of large gates on
a path from an input to the output. The depth is the maximum number of all gates on a path
from an input to the output. The weight of an assignment is the number of variables set to
TRUE.

For any t ≥ 1, W[t] is the class of parameterized problems for which a parameterized reduction
to WCS(t,d) exists for some constant d ≥ 1 (regarding the parameter k).

Classifying a parameterized problem in the W-hierarchy consists of two parts. The first part
is to show W[t]-membership for some integer t. This is often done by providing a parameterized
reduction to WCS(t,d) for some d or to a parameterized problem which is already known to be
in W[t].

The second part is to find a lower bound on the complexity, that is, to find some integer t′

such that the problem is W[t′]-hard. This is usually done by describing a parameterized reduction
from some known W[t′]-hard problem. In the ideal case, where t = t′, one precisely classifies the
problem within the W-hierarchy. It is also possible that one cannot find a t such that the problem
is in W[t], because the problem is W[t′]-hard for all t′ or W[P ]-hard or LOGSNP-hard [89] or
NP-hard for constant parameter values.

Sometimes showing W[t]-membership appears to be more challenging than showing hardness.
This is due to the nature of the investigated problem. For instance, a problem which is based on
some majority properties cannot be easily formulated via Boolean circuits containing only NOT,
AND, and OR gates, because the majority operator cannot be easily simulated via a single large
AND or OR gate.

A concrete example is the Majoritywise Accepted Ballot (MajAB) problem. Its input
is a set P of m proposals, a society of n voters with favorite ballots B1, . . . , Bn ⊆ P, and an
agenda Q+ ⊆ P. The question is whether there is a ballot Q, Q+ ⊆ Q ⊆ P, such that a strict
majority of the voters accepts Q. A voter i accepts ballot Q if |Bi ∩ Q| > |Q|/2. MajAB is
W[2]-hard for the parameter size |Q| of the accepted ballot even if Q+ = ∅ [2]. However, showing
W[2]-membership seems challenging. Note that the unanimous version of this problem, where
one asks for a ballot Q ⊂ P that is accepted by all voters, is W[2]-complete.

Modifying the set of allowed gates in WCS(t,d) dramatically simplifies the task of finding
a membership proof but it may lead to a slightly different W-hierarchy: For instance, we can
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show that MajAB can be reduced to a WCS(2,d) problem variant, where instead of NOT,
AND, or OR gates, majority gates (which output TRUE if the majority of inputs is TRUE)
are used. This version of the problem which we call WCS(t,d)(Maj), and the corresponding
W(Maj)-hierarchy have been studied by Fellows et al. [63]. While W[1] = W[1](Maj), for t ≥ 2, it
is only known that W[t] ⊆W[t](Maj). It would be interesting to know whether W[t](Maj) ⊆W[t]
also holds. If one cannot show this, then it would be nice to have W[t](Maj)-complete problems
to show intractability results.

Key question 8: How does the W(Maj)-hierarchy relate to the classical W-
hierarchy? What are accessible complete problems for the W(Maj)-hierarchy?

Besides majority variants of Set Cover and Hitting Set (see [63, Sec. 7]) promising
natural candidates like MajAB for W[2](Maj)-complete problems may occur in the context
of computational social choice, where majority-based properties such as Condorcet winner fre-
quently occur.

3.9 Cake Cutting

In the cake division problem, n ≥ 2 players want to cut a cake into n pieces so that every
player gets a “fair” share of the cake according to his own private measure. The cake represents
a heterogeneous divisible good, and usually is modeled as the unit-interval C = [0, 1]. Every
player p (1 ≤ p ≤ n) has his own measure µp on the subsets of C. These measures are assumed
to be well-behaved, and to satisfy the following conditions:

• Positivity: µp(X) ≥ 0 for all ∅ 6= X ⊆ C.

• Additivity: µp(X) + µp(X ′) = µp(X ∪X ′) for disjoint subsets X,X ′ ⊆ C.

• Continuity: For every X ⊆ C and for every λ with 0 ≤ λ ≤ 1, there exists a subset X ′ ⊆ X
such that µp(X ′) = λ · µp(X).

• Normalization: µp(C) = 1.

A cake division is proportional if every player receives a piece that he values at least 1/n; the
division is envy-free if every player p gets a piece that he values at least as much as the piece
of any other player; it is equitable if every player p gets a piece that he values exactly 1/n. A
protocol is a procedure that controls the division process of the cake C.

The book [91] by Robertson and Webb provides an excellent summary of the area, and in
particular covers all kinds of algorithmic aspects. There already exists a rich literature on cake
cutting, and various authors have come up with dozens of proportional or envy-free protocols. In
most of the known protocols, the measures µp enter the game as a black box and can be queried
and evaluated for given cake pieces; the standard goal then is to design protocols that minimize
the total number of queries. For getting algorithmic problems in our classical algorithmic sense,
however, we have to fully specify the problem data; in particular, the measures µp must be given
explicitly (and not just as a black box!) and must be represented succinctly. A natural approach
is to represent the measures through piecewise linear value density functions fp : [0, 1]→ R. A
feasible piece of cake then consists of finitely many intervals, and the corresponding measure is
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the integral of fp taken over all these intervals; note that the normalization condition implies
that the integral of fp over the full interval [0, 1] equals 1.

Brams et al. [26] provided a three-player example with piecewise linear value density functions
that has (i) an envy-free division and (ii) an equitable division, but that does not allow a division
that is simultaneously envy-free and equitable. Kurokawa et al. [77] also considered value density
functions that are piecewise linear. They design an envy-free cake cutting protocol which requires
a number of operations that is polynomial in some natural parameters of the given instance.
Aumann et al. [6] considered value density functions that are piecewise constant, and additionally
require that each player ends up with a single subinterval of the cake [0, 1]; in this model it is
NP-hard to find a division that maximizes the utilitarian welfare, that is, the sum of the values
that the n players assign to their respective pieces.

There are some straightforward parameterizations that naturally generalize the models that
we just discussed: The value density function of every player consists of at most α pieces, and
each such function piece is a polynomial function of degree at most β. A feasible division of the
unit-interval cake (for n players) consists of at most γn subintervals altogether, and every player
receives at most δ subintervals. Instead of using the unit-interval, the cake could also be modeled
as the 2-dimensional unit-square, or as some simple d-dimensional object (with the dimension d
as parameter); the subintervals then would translate into simple polyhedral pieces with a small
number of facets (and with a number of additional parameters for measuring simplicity).

Key question 9: How hard is it to find proportional or envy-free or equitable
divisions under the above parameterizations?

Clearly, there is an abundance of other ways for parameterizing the cake-cutting world. As
yet another challenging objective function, we mention the egalitarian welfare, the minimum of
the values that the n players assign to their respective pieces.

4 Conclusion

The purpose of this work is to stimulate more research in a promising application field of com-
putational complexity analysis and algorithmics. Numerous further research challenges can be
found in the very active and steadily growing area of computational social choice. Clearly, our
selection of topics was subjective and could be easily extended. For instance, in voting contexts
it often makes sense (motivated by real-world data) to deal with partial instead of linear orders,
generally making the considered problems harder. Here, one might parameterize on the “degree
of non-linearity”. Additional interesting (broad) research topics would be to further explore on
relations to fields such as scheduling or graph and matching theory. By their very nature, many
problems in computational social choice carry many natural parameterizations, motivating a
thorough multivariate computational complexity analysis [64, 88]. Finally, so far there is little
work in terms of algorithm engineering for empirically validating and improving the performance
of fixed-parameter algorithms for social choice problems.
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[56] G. Erdélyi, M. Lackner, and A. Pfandler. Computational aspects of nearly single-
peaked electorates. In Proceedings of the 27th AAAI Conference on Artificial Intelligence
(AAAI’13), pages 283–289. AAAI Press, 2013. → p. 13.

[57] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. How hard is bribery in elec-
tions? Journal of Artificial Intelligence Research, 35:485–532, 2009. → p. 6.

[58] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. Using complexity to protect
elections. Communications of the ACM, 53(11):74–82, 2010. → p. 1.

[59] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. The complexity of manipulative
attacks in nearly single-peaked electorates. Artificial Intelligence, 207:69–99, 2014. → p. 13.

[60] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Llull and Copeland
voting computationally resist bribery and constructive control. Journal of Artificial Intel-
ligence Research, 35:275–341, 2009. → p. 5.

[61] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. The shield that never
was: Societies with single-peaked preferences are more open to manipulation and control.
Information and Computation, 209(2):89–107, 2011. → p. 12.

[62] P. Faliszewski and J. Rothe. Control and bribery. In F. Brandt, V. Conitzer, U. Endriss,
J. Lang, and A. Procaccia, editors, Handbook of Computational Social Choice. Cambridge
University Press. To appear. → p. 6.

[63] M. R. Fellows, J. Flum, D. Hermelin, M. Müller, and F. A. Rosamond. W-hierarchies
defined by symmetric gates. Theory of Computing Systems, 46(2):311–339, 2010. → p. 15.

[64] M. R. Fellows, B. M. P. Jansen, and F. A. Rosamond. Towards fully multivariate algorith-
mics: Parameter ecology and the deconstruction of computational complexity. European
Journal of Combinatorics, 34(3):541–566, 2013. → p. 16.

[65] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer Verlag, 2006. → p. 3.

[66] A. Frank and É. Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Combinatorica, 7(1):49–65, 1987. → p. 4.

[67] M. R. Garey and D. S. Johnson. Computers and Intractability—A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979. → pp. 3 and 7.

[68] L. A. Goodman. On methods of amalgamation. In R. M. Thrall, C. H. Coombs, and R. L.
Davis, editors, Decision Processes, pages 39–48. John Wiley and Sons, Inc., 1954. → p. 3.
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