
Pattern-Guided Data Anonymization and
Clustering

Robert Bredereck1,?, André Nichterlein1, Rolf Niedermeier1,
Geevarghese Philip2

1Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
2The Institute of Mathematical Sciences, Chennai, India

{robert.bredereck,andre.nichterlein,rolf.niedermeier}@tu-berlin.de
gphilip@imsc.res.in

Abstract. A matrix M over a fixed alphabet is k-anonymous if every
row in M has at least k − 1 identical copies in M . Making a matrix k-
anonymous by replacing a minimum number of entries with an additional
?-symbol (called “suppressing entries”) is known to be NP-hard. This task
arises in the context of privacy-preserving publishing. We propose and
analyze the computational complexity of an enhanced anonymization
model where the user of the k-anonymized data may additionally “guide”
the selection of the candidate matrix entries to be suppressed. The basic
idea is to express this by means of “pattern vectors” which are part of
the input. This can also be interpreted as a sort of clustering process.
It is motivated by the observation that the “value” of matrix entries
may significantly differ, and losing one (by suppression) may be more
harmful than losing the other, which again may very much depend on
the intended use of the anonymized data. We show that already very
basic special cases of our new model lead to NP-hard problems while
others allow for (fixed-parameter) tractability results.

1 Introduction

The notion of k-anonymity is a basic concept in privacy-preserving data pub-
lishing [9]. An n×m-matrix M—called “table” in database theory—over a fixed
alphabet is called k-anonymous if for every row r in M there are at least k − 1
further rows in M that are identical with r. The intuitive idea motivating this
notion is that if each row in M contains data about a distinct person, and if
M is k-anonymous, then it is hard to identify the data row corresponding to
some specific individual [14]. Clearly matrices are, in general, not k-anonymous
for any k ≥ 2. It is NP-hard to make a given matrix k-anonymous by sup-
pressing a minimum number of entries [2,11], that is, by replacing a minimum
number of matrix entries with the ?-symbol. However, in the classical scenario
it remains unspecified whether certain entries are less harmful to suppress than

? Supported by the DFG, research project PAWS, NI 369/10.

To appear in the Proceedings of the 36th International Symposium on Math-
ematical Foundations of Computer Science (MFCS), Warsaw, Poland, Au-
gust 2011, Lecture Notes in Computer Science. c© Springer

others.1 Here, we present a simple combinatorial model that allows the user of
the anonymized data to specify, as part of the input, which row entries (respec-
tively, which combinations of row entries) may be suppressed in order to achieve
k-anonymity. Studying the computational complexity, we identify both tractable
and intractable cases of the underlying combinatorial problem which allows for
user-specified “anonymization patterns”.

Sweeney [13], who pioneered the notion of k-anonymity, pointed out that
in the context of k-anonymization it is desirable to guide the process of entry
suppression. We convert this idea into a formal model where the end-user of
anonymized data specifies a number of pattern vectors from {�, ?}m, where m
is the number of columns of the underlying matrix. A pattern vector v ∈ {�, ?}m
is associated with a set of matrix rows fulfilling the following condition: If the
ith pattern vector entry is a �-symbol, then all rows associated with this pattern
must have identical symbols at this position; they may differ in other positions.
The corresponding minimization problem, which we refer to as Pattern Clus-
tering, is to find a mapping of matrix rows to pattern vectors such that san-
itizing2 the rows according to their mapped pattern vectors makes the matrix
k-anonymous with a minimum number of suppressions. Refer to Section 2 for
the formal model and a simple example.

Related Work. Data anonymization is an active area of research with a consid-
erable amount of published work. See, for example, the recent survey by Fung et
al. [9]. Note that there are some weaknesses of the k-anonymity concept and it is
well-known that it does not always assure privacy [7,9]. Typically, k-anonymity
is most useful where there is a single release of data from a single publisher.
However, k-anonymity provides a basic, clear, and easy to handle mathemati-
cal concept of privacy and related topics. Our research perhaps is most closely
related to the recent work of Aggarwal et al. [1] who proposed a new model of
data anonymization based on clustering. While developing several polynomial-
time approximation algorithms, their modeling idea roughly is to cluster the
matrix rows and then to publish the “cluster centers”; importantly, it is required
that each cluster contains at least k rows, which corresponds to the k-anonymity
concept. The fundamental difference to our model is that we allow to prespec-
ify cluster centers by the user of anonymized data whereas in Aggarwal et al.’s
model the end-user of the anonymized data has no influence on selecting which
entries to suppress. Indeed, our Pattern Clustering model may be inter-
preted as a form of clustering via anonymization whereas Aggarwal et al. perform
anonymization via clustering.

1 For instance, suppose thatM contains data about patients used in medical research,
where each row corresponds to a patient and each column is an attribute of the
patient. Then an attribute like blood pressure is—typically, but not always—more
useful to preserve than, say, hair color.

2 That is, suppressing all row positions where the corresponding pattern vector has a
?-symbol.

2

Table 1. The computational complexity of Pattern Clustering with respect to
various parameters.

k m n |Σ| s t p

NP-hard NP-hard FPT NP-hard XP FPT XP
for k = 1 for m = 4 for |Σ| = 2

(|Σ| = 2, s =∞) (k = 1, s =∞)

Our Results. We formally define a simple model of user-specified data anonymiza-
tion based on the concepts of k-anonymity and pattern vectors. The central
combinatorial problem is called Pattern Clustering and it is shown to be
NP-hard for every k ≥ 1 and matrix alphabet size |Σ| = 2. It is also shown to be
NP-hard for matrices containing only four columns. In contrast, Pattern Clus-
tering is fixed-parameter tractable (FPT) for the parameters n (the number of
matrix rows) and t (the number of different matrix rows). Moreover, it can be
solved in polynomial time for a constant number p of given pattern vectors (in
other words, Pattern Clustering is in the parameterized complexity class XP
for the parameter p). Membership in XP also holds for the parameter number s
of suppressions. See Table 1 for a list of our results with respect to single pa-
rameterizations. Clearly, several of our findings in Table 1 suggest investigations
in the spirit of multivariate algorithmics [8,12], that is, the study of combined
parameters. Here, the following results are known: Pattern Clustering is
fixed-parameter tractable for the combined parameters (m, |Σ|), and (s, p) (due
to upper bound arguments using t) whereas the parameterized complexity status
is open for the combined parameters (m, p) and (m, k).

Due to the lack of space some proofs and some further details are deferred
to a full version of this paper.

2 Preliminaries and Basic Model

As mentioned in the introductory section, the main motivation for our new
model is—in contrast to standard k-anonymization models—to let the end-user
influence the data sanitization process by selecting—to some extent—how matrix
entries may be suppressed. We now formally define a model that captures this
intuitive notion. To this end, it is helpful to interpret a matrix simply as a
multiset of rows, as we do in the next definition.

Definition 1. Let M ∈ Σn×m be a matrix over the finite alphabet Σ. Then
R(M) is the multiset of all the rows in M .

The heart of our pattern-guided anonymization model lies in a function that
“consistently” maps input matrix rows to some given pattern vectors. This is
described in the following definition, where we use v[i] and x[i] to refer to the
ith vector and row entry, respectively.

Definition 2. Let Σ be a finite alphabet and letM ∈ Σn×m and P ∈ {�, ?}p×m
be two matrices. A function ϕ : R(M) → R(P) is consistent if for all x, y ∈
R(M) with v := ϕ(x) = ϕ(y), and for all 1 ≤ i ≤ m: v[i] = �⇒ x[i] = y[i].

3

Our cost measure that shall be minimized is the number of suppressed matrix
entries. First, we define the cost of a pattern vector in the natural way.

Definition 3. The cost c(v) of vector v ∈ {�, ?}m is the number of its ?-symbols.

We now define the cost of a mapping.

Definition 4. Let M ∈ Σn×m and P ∈ {�, ?}p×m be two matrices and let ϕ :
R(M)→ R(P) be a mapping from the rows of M to the pattern vectors of P . Let
#(v) := |{x : x ∈ R(M) ∧ ϕ(x) = v}|. Then, the cost of ϕ is

∑
v∈P c(v) ·#(v).

Next we define the concept of k-anonymity for functions.

Definition 5. A function f : A → B is k-anonymous if for each a ∈ A
with f(a) = b it holds that |{x : x ∈ A ∧ f(x) = b}| ≥ k.
Finally we are ready to define the central computational problem (formulated
in its decision version) of this work.

Pattern Clustering
Input: A matrix M ∈ Σn×m, a “pattern mask” P ∈ {�, ?}p×m, and two

positive integers s and k.
Question: Is there a consistent and k-anonymous function ϕ mapping the rows

of M to the pattern vectors of P , with cost at most s?
Figure 1 provides a simple example to illustrate and further motivate our above
definition of Pattern Clustering.

We use the following notation in the rest of the paper. The mapping ϕ (see
Definition 4) plays a central role in the definition of Pattern Clustering. We
often talk about it implicitly when saying that a row is mapped to a pattern
vector. Moreover, we speak about assigning a �-symbol of a pattern vector v to
a symbol x which means that every row mapped to v has an x at the position
of the �-symbol.

3 Intractability Results

In this section, we show that Pattern Clustering is NP-complete even in
very restricted cases. The membership in NP is easy to see: Guessing a map-
ping ϕ of the rows from M to pattern vectors from P , it is easy to verify in
polynomial time that ϕ is consistent, k-anonymous, and has cost at most s. In
the following, we provide two polynomial-time many-one reductions: One from
CNF-Satisfiability to show NP-hardness for the unweighted variant (that
is, s =∞) with k = 1 and |Σ| = 2; and a second reduction from Set Cover to
show NP-hardness for m = 4.

Before doing the reductions we show how to get rid of big alphabets. The
structural properties of Pattern Clustering allow us to replace any alphabet
with a binary alphabet, by encoding the alphabet in binary.3

3 As consequence of the binarization, the question whether Pattern Clustering is
fixed-parameter tractable with respect to the combined parameter (p, |Σ|) is equiv-
alent to the question whether Pattern Clustering is fixed-parameter tractable
with respect to p alone.

4

name hair color disease age

Alice blond asthma 40-60
Bob blond asthma 40-60
Clara blond laziness 20-30
Doris brown laziness 20-30
Emil blond asthma 20-30
Frank brown laziness 20-30
George blond asthma 40-60

standard k-anonymity, k = 2, minimize s:
blond asthma 40-60
blond ? 20-30
brown laziness 20-30

Alice, Bob, George
Emil, Clara
Doris, Frank

Pattern Clustering, k = 2, minimize s:
(?,�,�)
(?,�,�)
(?,�, ?)

? asthma 40-60
? laziness 20-30
? asthma ?

Alice, Bob
Clara, Doris, Frank
George, Emil

Fig. 1. Comparing Pattern Clustering with standard k-anonymization. Consider
an extract from a medical database (table on the left). For privacy reasons, one only
wants to publish k-anonymous data for k ≥ 2. Clearly, the first step is to remove
the identifier column “name”. Using standard k-anonymity, one may end up with the
database on the top right. Indeed, this is the 2-anonymous database with the fewest
suppressions, requiring only two suppressions. Unfortunately, researchers cannot use it
to deduce a correlation between age and disease, because the disease of Emil and Clara
is suppressed. In our new model, researchers may specify their particular interests by
providing the three shown pattern vectors—in this example they specify that they
do not care about hair color. Thus, using Pattern Clustering one may get the
database down right. It is one of the databases with fewest suppressions which, at the
same time, “respects the interests of the scientists”. In contrast to the result for classical
k-anonymity, the scientists can see that only young people have the disease “laziness”.

Lemma 1. Let I = (M,P, s, k) be an instance of Pattern Clustering with
M being a matrix over the alphabet Σ. Then there is an equivalent instance I ′ =
(M ′, P ′, s′, k) such thatM ′ is a matrix over a binary alphabet Σ′ and the number
of columns m′ of M ′ is dlog(|Σ|)e times the number of columns m of M .

Proof. Given the instance I = (M,P, s, k), construct I ′ = (M ′, P ′, s′, k) as fol-
lows. Assign to each symbol in Σ a unique integer from {0, 1, . . . , |Σ| − 1}. Each
column will be replaced with dlog(|Σ|)e columns. The corresponding columns
are used to binary encode (filling up with zeros on the left) the identifier of the
original symbol. The pattern vectors are extended analogously: Each ?- (respec-
tively �-) symbol is replaced by dlog(|Σ|)e many consecutive ?- (respectively
�-) symbols. The new cost-bound s′ is dlog(|Σ|)e times the old cost-bound s. It
is not hard to see that the new instance is equivalent to the original one. ut

In both reductions to follow we need unique entries in the input matrix M . For
ease of notation we introduce the 4-symbol with an unusual semantics. Each
occurrence of a4-symbol stands for a different unique symbol in the alphabet Σ.
One could informally state this as “4 6= 4”.

Now we present our first NP-hardness result.

Theorem 1. Pattern Clustering is NP-complete, even if k = 1, |Σ| = 2,
and s =∞.

Proof (Sketch). We provide a polynomial-time many-to-one reduction from the
NP-complete CNF-Satisfiability. In the following, let (X,C) be a CNF-
Satisfiability instance with X := {x1, . . . , xn} being the set of variables and

5

matrix:
1 1 4
0 1 4
4 0 0
1 0 1
1 0 0
0 0 0

(x1 ∨ x2)
(¬x1 ∨ x2)
(¬x2 ∨ ¬x3)
(x1 ∨ ¬x2 ∨ x3)
(x1 ∨ ¬x2 ∨ ¬x3)
(¬x1 ∨ ¬x2 ∨ ¬x3)

pattern vectors:
(�, ?, ?)
(?,�, ?)
(?, ?,�)

Fig. 2. Example for the reduction from CNF-Satisfiability to Pattern Cluster-
ing. Given is the following formula: (x1∨x2)∧(¬x1∨x2)∧(¬x2∨x3)∧(x1∨¬x2∨x3)∧
(x1∨¬x2∨¬x3)∧(¬x1∨¬x2∨¬x3). Applying the reduction, we get a Pattern Clus-
tering instance as illustrated. Note that each row in the table represents n + 1 rows
differing only in the 4-positions. It is quite easy to see that every solution, e.g. map-
ping 1 0 1 and 1 0 0 to (1, ?, ?), 1 1 4 and 0 1 4 to (?, 1, ?), and 4 0 0 and
0 0 0 to (?, ?, 0), corresponds to the satisfying assignment x1 = 1, x2 = 1, x3 = 0.

C := {c1, . . . , cm} being the set of clauses. We construct an equivalent Pattern
Clustering instance (M,P, s, k) with k = 1 and s = ∞ as described in the
following (see Figure 2 for an example).

The columns of the input matrix M correspond to the variables. Blocks of
rows of M correspond to the clauses: For each clause we have n + 1 rows. The
alphabet Σ contains 1, 0, and the unique symbols 4. Summarizing, M is an
m(n+ 1)× n matrix over an alphabet with at most m · (n+ 1) · n symbols.

In the following we describe the rows of M . Recall that there are n+ 1 rows
for each clause. Let ei,j [z] denote the entry in the zth column of the jth row for
the ith clause.

– If ci contains variable xz as a positive literal, then ∀1 ≤ j ≤ n+1 : ei,j [z] = 1.
– If ci contains variable xz as a negative literal, then ∀1 ≤ j ≤ n+1 : ei,j [z] = 0.
– Otherwise, ∀1 ≤ j ≤ n+ 1 : ei,j [z] = 4.

For each variable xi ∈ X we have a pattern vector vi where all entries are ?-
symbols aside from the entry in the ith position. The idea is that the assignment
of the �-symbol from the pattern vector vi corresponds to the assignment of the
variable xi.

The theorem now follows from Lemma 1. ut

After proving NP-completeness for constant values of k and |Σ|, we show that
Pattern Clustering is intractable even for a constant number of columns.

Theorem 2. Pattern Clustering is NP-complete, even for m = 4.

Proof (Sketch). We show the hardness by giving a polynomial-time many-one
reduction from the NP-hard Set Cover problem.

Set Cover
Input: A set family F = {F1, . . . , F|F|} over a universe U = {u1, . . . , u|U |},

and a positive integer h.
Question: Is there a set cover F ′ ⊆ F of size at most h such that

⋃
F∈F ′

F = U?

6

We first describe the main idea of the reduction. Each element u ∈ U is
represented by |F| + 1 rows in M . All these |F| + 1 rows corresponding to one
element u can be mapped to one pattern vector v ∈ P . By setting k to |F|,
we allow at most one of these rows to be mapped to another, cheaper pattern
vector. The construction guarantees that if one or more rows are mapped to
any of these cheaper pattern vectors, then the elements represented by these
rows are contained together in at least one F ∈ F . If |U | rows (one row for
each element u ∈ U) can be mapped to h cheaper pattern vectors, then this
assignment denotes a set cover of size h in the given Set Cover-instance and
vice versa.

Next, we describe the construction in detail. Given an instance (F , U, h)
of Set Cover, we construct a Pattern Clustering-instance (M,P, s, k) as
follows.

For each element ui ∈ U add a set RU
i = {rUi,0, . . . , rUi,|F|} of |F| + 1 rows

to the input matrix M and one pattern vector vUi = (?, ?,�, ?) to the pattern
mask P . We call vUi an expensive pattern vector since its cost c(vUi) is three. Set
rUi,0 := 4 4 i 4 . If ui ∈ Fj , 1 ≤ j ≤ |F|, then set rUi,j := j j i 4 , else set rUi,j :=
4 4 i 4 . Further, let RF

i := {rUi,j | ui ∈ Fj}. All rows of RU
i coincide in the

third column, and so they can all be mapped together to the pattern vector vUi .
Intuitively, the first row rUi,0 in RU

i is a dummy row that has to get mapped to
the expensive pattern vector vUi . By setting k := |F|, we ensure that at least
|F| − 1 other rows of RU

i get mapped to the same expensive pattern vector.
Hence, at most one row of RU

i can be mapped to a cheaper pattern vector. The
construction ensures that this one row is an element of RF

i .
Now we specify the cheaper pattern vectors: Add h pattern vectors vF1 , . . . , vFh

of the form (�,�, ?, ?). We call these pattern vectors cheap as they need one
suppression less than the expensive pattern vectors. The idea is that each of
these pattern vectors vFi corresponds to one set in a set cover. Note that there
are |U | rows of RU

1 , . . . , R
U
|U | that can be mapped to the h cheap pattern vectors

(one row of each RU
i). Since all the rows mapped to a pattern vector vFi have

to coincide in the first two columns, the only possible candidates are the rows
belonging to the sets RF

i . If there are |U | rows fulfilling these requirements, then
the h different assigned numbers in the pattern vectors vF1 , . . . , vFh denote the
set cover F ′ in the Set Cover-instance.

To ensure that at least k rows are mapped to each pattern vector from
{vF1 , . . . , vFh }, add for each Fi ∈ F a set RFi = {rFi,1, . . . , rFi,|F|+1} of |F|+1 rows
with rFi,j := i i X X 4, 1 ≤ j ≤ |F| + 1, to the input matrix M . Since not
all these rows can be mapped to some pattern vector in {vF1 , . . . , vFh }, add a
pattern vector vX of the form (?, ?,�,�) to the pattern mask P . The rows rFi,j
can be mapped to vX or to one of vF1 , . . . , vFh . Since all these pattern vectors
are cheap, the only constraint on the mapping of these rows is that each pattern
vector vX , vF1 , . . . , vFh contains at least k rows. We finish the construction by
setting s := 2 · |U |+ 3 · |U | · |F|+ 2 · (|F|+ 1) · |F|. ut
4 Here, we use X as a fixed symbol which is not used in M elsewhere.

7

Dom et al. [6] showed that Set Cover parameterized by (h, |U |) does not admit
a problem kernel of size (|U |+h)O(1) unless an unexpected complexity-theoretic
collapse occurs, namely the polynomial-time hierarchy collapses to the third
level. Given a problem instance I with parameter x, a problem kernel is an
equivalent polynomial-time computable instance I ′ with parameter x′ ≤ x such
that the size of I ′ is upper-bounded by some function g only depending on x
[3,10]; g(x) is called the size of the problem kernel.

Bodlaender et al. [4] introduced a refined concept of parameterized reduction
(called polynomial time and parameter transformation) that allows to transfer
such hardness results to new problems. Indeed, the reduction above is such a
parameterized reduction. The parameters h and |U | are transformed to m and p
as follows: m = 4 and p = h + |U | + 1. Hence Pattern Clustering does not
admit a problem kernel of size (m+ p)O(1).

Corollary 1. Pattern Clustering parameterized by (m, p) has no problem
kernel of polynomial size unless coNP ⊆ NP/poly.

4 Tractable Cases

In the previous section, we showed computational intractability for various spe-
cial cases of Pattern Clustering. Here, we complement these hardness results
by presenting some tractable cases. To this end, we consider several parame-
terizations of Pattern Clustering with respect to natural parameters and
reasonable combinations thereof. Since Pattern Clustering allows the user
to specify pattern vectors to influence the solution structure, the number of pat-
tern vectors p seems to be one of the most natural problem-specific parameters.
It is quite reasonable to assume that there are instances with a small amount
of pattern vectors, for instance, when the user wants a clustering with few but
huge clusters. We start with a general observation on the solution structure of
Pattern Clustering instances. To this end, we introduce the concept of row
types. A row type is a string from Σm. We say that a set of rows in the matrix
has a certain row type if they are identical. In this sense, the number t of dif-
ferent matrix rows is the number of row types. The following lemma says that
without loss of generality one may assume that at most t many pattern vectors
are used in the solution.

Lemma 2. Let (M,P, k, s) be a YES-instance of Pattern Clustering. If M
has t row types, then there exists a mapping ϕ, which is solution for (M,P, k, s),
whose codomain contains at most t elements.

We now take up the question of whether the problem is still intractable (in
form of NP-hardness) when p is a constant.

Parameters p and t. We describe a fixed-parameter algorithm for Pattern
Clustering with respect to the combined parameter (p, t). This algorithm can
be interpreted as an XP-algorithm for Pattern Clustering parameterized
by p, that is, it has polynomial running time for constant values of p.

8

Theorem 3. Pattern Clustering can be solved in O(tmin(t,p) ·2p ·(min(t, p) ·
t ·m+ t3 log(t)) + n ·m) time.

Proof. As preprocessing we have to compute the input row types in O(n·m) time
(by constructing a trie on the rows [5]). Our algorithm works in three phases:
1. For each pattern vector v, determine whether it is used in the solution, that

is, whether v occurs in the codomain of the mapping.
2. For each pattern vector v that is used in the solution determine which input

row types may contain rows that are mapped to v in the solution by guessing
a representative element. In the following we call these input row types
preimage types of the pattern vector v.

3. For each pattern vector v that is used in the solution determine how many
rows from each preimage type are mapped to v in the solution.

Due to Lemma 2, Phase 1 can be realized by branching on all
∑min(t,p)

i=1

(
p
i

)
≤ 2p

possibilities.
Phase 2 is realized by guessing for each pattern vector a prototype, that is, a

row that is mapped to this vector in the solution. Clearly, knowing one preimage
of the mapping for each pattern vector is sufficient to compute which input row
types may contain rows that are mapped to the vector. Guessing the prototypes
and computing the preimage types can be done in O(tp ·m) time.

In Phase 3, we have the following situation. We have t input row types
and p′ ≤ t pattern vectors that are used in the solution. In the following the set
of input row types is represented by Tin := {1, . . . , t} whereas the set of pattern
vectors is represented by Tout := {1, . . . , p′}. For each pair consisting of an input
row type R and a pattern vector v we already know whether rows from R may be
mapped to v in the solution. Let a : Tin×Tout → {0, 1} be a function expressing
this information. Furthermore, let ωi with i ∈ Tout denote the cost of the ith
pattern vector and let nj with j ∈ Tin denote the number of rows in the jth input
row type. A consistent and k-anonymous mapping that has cost at most s and
respects the preimage types (determined in Phase 2) corresponds to a solution
of the Row Assignment [5] problem which is defined as follows.
Row Assignment
Input: Nonnegative integers k, s, ω1, . . . , ωp′ and n1, . . . , nt with∑t

i=1 ni = n, and a function a : Tin × Tout → {0, 1}.
Question: Is there a function g : Tin × Tout → {0, . . . , n} such that

a(i, j) · n ≥ g(i, j) ∀i ∈ Tin,∀j ∈ Tout (1)
t∑

i=1

g(i, j) ≥ k ∀j ∈ Tout (2)

p′∑
j=1

g(i, j) = ni ∀i ∈ Tin (3)

t∑
i=1

p′∑
j=1

g(i, j) · ωj ≤ s (4)

9

The mapping is represented by the function g. Inequality (1) ensures that for
each pattern vector v only rows from its preimage types are mapped to v. In-
equality (2) ensures that the mapping is k-anonymous. Equation (3) ensures that
each row is mapped to one pattern vector. Inequality (4) ensures that the costs
of the mapping are at most s. Row Assignment can be solved in O(t3 · log(t))
time [5, Lemma 2] and computing the function a takes O(min(t, p) · t ·m) time.

ut

We showed fixed-parameter tractability for Pattern Clustering with respect
to the combined parameter (t, p) by an algorithm with polynomial running time
for constant values p. We leave it open whether there also exists an algorithm
where the degree of the polynomial is independent of p, that is, whether Pattern
Clustering is fixed-parameter tractable for parameter p. Next, we develop a
fixed-parameter algorithm for the parameter t. This is mainly a classification
result because its running time is impractical.

Corollary 2. Pattern Clustering is fixed-parameter tractable with respect
to the parameter t as well as with respect to the parameter n.

Proof (Sketch). When p ≤ t, we use the algorithm from Theorem 3 without any
modification. The corresponding running time isO(tt·2t·(p·t·m+t3 log(t))+n·m).
For the other case we show a refined realization of Phase 1 of the algorithm from
Theorem 3.

In Phase 1 we determine a set P ′ of pattern vectors that are used in the
solution, meaning that the codomain of the mapping function is P ′. Due to
Lemma 2 we know that w.l.o.g. |P ′| ≤ t. In Theorem 3 we simply tried all size-
at-most-t subsets of P . Here, we show that for guessing P ′ we only have to take
into account a relatively small subset P ∗ ⊆ P with |P ∗| ≤ g(t) with g being a
function which depends only on t.

Consider a pattern vector v of the unknown P ′. In Phase 2 of the algorithm,
we determine the preimage types, that is, the set of input row types that may
contain rows that are mapped to v in the solution. Assume that the preimage
types for all pattern vectors from P ′ are fixed. To determine which concrete
pattern vector corresponds to a set of preimage types, we only have to take into
account the t cheapest “compatible” pattern vectors, where compatible means
that all rows of these preimage types coincide at the �-symbol positions. By
definition, there exist at most 2t many different sets of preimage types. Thus,
keeping for each set of preimage types the t cheapest pattern vectors and remov-
ing the rest results in a set P ∗ of size 2t · t.

Hence, when p > t, we realize Phase 1 by computing P ∗ as described above
and branch on all subsets P ′ ⊆ P ∗ of size at most t. This can be done in
O
(
2t·t
t

)
≤ O(2t

2

tt) time. As preprocessing we have to compute the input row
types in O(n · m) time. Altogether, we can solve Pattern Clustering in
O(tt · (2t2tt) · (t2 ·m+ t3 log(t))+n ·m) time. Clearly, since t ≤ n, our result also
holds for the parameter n. ut

10

Combined parameters. As a corollary of Theorem 3 we show fixed-parameter
tractability for some interesting combined parameters. All results rely on the
fact that one can bound the number t of input row types from above by a
function only depending on the respective combined parameter.

Corollary 3. Pattern Clustering is fixed-parameter tractable with respect
to the combined parameters (|Σ|,m) and (p, s).

Proof. As for the parameter (|Σ|,m), Σm is an upper bound for the number t
of input row types.

As for the parameter (p, s): in the following, we call rows that are mapped to
pattern vectors with at least one ?-symbol costly rows and their corresponding
row types costly row types. Analogously, rows that are mapped to pattern vectors
without ?-symbols are called costless rows and their row types costless row types.
Clearly, every input row type is costly or costless (or both). There are at most s
costly rows and, hence, at most s costly row types. Furthermore, the number of
pattern vectors without ?-symbols is at most p. Since no two costless rows from
different input row types can be mapped to the same pattern vector, the number
of costless row types is also at most p. Hence, in a YES-instance the number t of
input row types is at most s+ p. ut

Corollary 4. Pattern Clustering is in XP with respect to the parameter s.

Proof. Using the definitions of costly and costless from Corollary 3 we give a
simple algorithm that shows membership in XP. The first step is to guess,
from

∑s
i=0

(
n
i

)
possibilities, the rows which are costly. The second step is to

guess, from
∑s

i=0

(
p
i

)
possibilities, the pattern vectors (that contain ?-symbols)

which are used in the solution. Then, guess the mapping between at most s
rows and at most s pattern vectors and check whether it is consistent and k-
anonymous. In the last step, the costless rows are greedily mapped to pattern
vectors without ?-symbols. ut

5 Conclusion

We initiated the investigation of a new variant of k-anonymity for ensuring “user-
guided data privacy and clustering”. The corresponding NP-hard combinatorial
problem Pattern Clustering has a number of tractable and intractable spe-
cial cases; our results are listed in Table 1 in the introduction. Several open
questions remain. For example, the parameterized complexity of the problem for
the parameters “number s of suppressions” and the combined parameters (m, p)
and (m, k), where m is the number of columns and p is the number of pattern
vectors, are all open. A particularly interesting question is whether Pattern
Clustering for parameter p is fixed-parameter tractable or W[1]-hard. An
equally interesting open question is whether Pattern Clustering becomes
tractable for m = 2—note that we have shown it NP-hard for m = 4 and, based
on some preliminary results, conjecture it to be NP-hard for m = 3. Finally,

11

it seems worth investigating Pattern Clustering also from the viewpoint of
polynomial-time approximation.

Summarizing, we believe that Pattern Clustering is a well-motivated
combinatorial problem relevant for data anonymization and data clustering; it
deserves further investigation.

Acknowledgements. We are grateful to the anonymous referees of the MFCS-
2011 for helping to improve this work by spotting some flaws and providing the
idea behind Corollary 4.

References

1. G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy, D. Thomas, and
A. Zhu. Achieving anonymity via clustering. ACM Trans. Algorithms, 6(3):1–19,
2010.

2. J. Blocki and R. Williams. Resolving the complexity of some data privacy problems.
In Proc. 37th ICALP, volume 6199 of LNCS, pages 393–404. Springer, 2010.

3. H. L. Bodlaender. Kernelization: New upper and lower bound techniques. In Proc.
4th IWPEC, volume 5917 of LNCS, pages 17–37. Springer, 2009.

4. H. L. Bodlaender, S. Thomassé, and A. Yeo. Analysis of data reduction: Transfor-
mations give evidence for non-existence of polynomial kernels. Technical Report
UU-CS-2008-030, Department of Information and Computing Sciences, Utrecht
University, 2008.

5. R. Bredereck, A. Nichterlein, R. Niedermeier, and G. Philip. The effect of homo-
geneity on the complexity of k-anonymity. In Proc. 18th FCT, LNCS. Springer,
2011. To appear.

6. M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through colors and
IDs. In Proc. 36th ICALP, volume 5555 of LNCS, pages 378–389. Springer, 2009.

7. J. Domingo-Ferrer and V. Torra. A critique of k-anonymity and some of its en-
hancements. In Proc. 3rd ARES, pages 990–993. IEEE Computer Society, 2008.

8. M. R. Fellows. Towards fully multivariate algorithmics: Some new results and
directions in parameter ecology. In Proc. 20th IWOCA, volume 5874 of LNCS,
pages 2–10. Springer, 2009.

9. B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data pub-
lishing: A survey of recent developments. ACM Comput. Surv., 42(4):14:1–14:53,
2010.

10. J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization.
ACM SIGACT News, 38(1):31–45, 2007.

11. A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In Proc.
23rd PODS, pages 223–228. ACM, 2004.

12. R. Niedermeier. Reflections on multivariate algorithmics and problem parameter-
ization. In Proc. 27th STACS, volume 5 of LIPIcs, pages 17–32. IBFI Dagstuhl,
2010.

13. L. Sweeney. Achieving k-anonymity privacy protection using generalization and
suppression. IJUFKS, 10(5):571–588, 2002.

14. L. Sweeney. k-anonymity: A model for protecting privacy. IJUFKS, 10(5):557–570,
2002.

12

	Pattern-Guided Data Anonymization and Clustering

