
Two-Layer Planarization

Parameterized by Feedback Edge Set∗

Johannes Uhlmann† Mathias Weller‡

December 16, 2013

Abstract

Given an undirected graph G and an integer k ≥ 0, the NP-hard
2-Layer Planarization problem asks whether G can be transformed
into a forest of caterpillar trees by removing at most k edges. 2-Layer

Planarization was known to be fixed-parameter tractable with respect
to the parameter k. The state of the art is an O(3.562k · k + |G|)-time
search tree algorithm and an O(k)-size problem kernel. Since transform-
ing G into a forest of caterpillar trees requires breaking every cycle, the
size f of a minimum feedback edge set is a natural parameter with f ≤ k.
We improve on previous fixed-parameter tractability results with respect
to k by presenting new polynomial-time data reduction rules leading to a
problem kernel with O(f) vertices and edges and a new search-tree based
algorithm. We expect f to be significantly smaller than k for a wide range
of input instances.

1 Introduction

Graphs are an omnipresent concept in all life sciences and it is often important
for humans to understand the structure and information that a graph repre-
sents. This motivates looking at methods to draw graphs in a human readable
form. A possible strategy of drawing graphs in such a way is the “Sugiyama
approach” [18, 23] to multilayered graph drawing [5, 11], an important part of
which is finding good 2-layered drawings of graphs. In this work, we focus on
this problem.

More specifically, we consider an NP-hard graph modification problem that
arises in this context, namely 2-Layer Planarization (2LP). In this problem,
the task is to make a given graph biplanar by a given (small) number of edge

∗A preliminary version appeared in the proceedings of the Annual Conference on Theory
and Applications of Models of Computation (TAMC’10), volume 6108 in Lecture Notes in
Computer Science, pages 431–442, Springer. Major parts of this work were done while both
authors were with Friedrich-Schiller-University of Jena.

†Supported by the DFG, reseach project PABI (NI 369/7).
‡Supported by the DFG, reseach project PABI (NI 369/11).

1

Figure 1: A connected graph that is biplanar and, hence, a caterpillar tree.
White vertices are leaves, gray vertices are non-leaves. Note that no vertex has
more than two non-leaf neighbors.

deletions. Here, a biplanar graph is a graph that can be drawn in two layers
without edge crossings (with edges drawn as straight lines).

It has been shown that biplanar graphs are exactly the graphs that consist
of disjoint caterpillar trees (or caterpillars for short) [5, 18]. A caterpillar is a
tree such that each of its vertices is adjacent to at most two non-leaf vertices,
see Figure 1. This allows us to state the main problem as follows.

2-Layer Planarization (2LP):
Given: An undirected graph G = (V,E) and an integer k ≥ 0.
Question: Is there an edge subset E′ ⊆ E with |E′| ≤ k such
that (V,E \ E′) is a forest of caterpillars?

Apart from being proposed as an alternative method to minimize cross-
ings [18], solving 2LP is important in DNA mapping [24] and global routing
for row-based VLSI layout [17]. It has also been identified as an important spe-
cial case of the problem to transform a binary matrix into a matrix with the
“consecutive ones property” [3] by a minimum number of column removals.

1.1 Previous and Related Work

2-Layer Planarization is NP-hard even in the case that the input graph
is bipartite and in one partition each vertex has degree at most two [7] (Note
that Eades and Whitesides [7] call the problem Maximum Biplanar Sub-

graph). Shahrokhi et al. ([21], Section 6) presented a dynamic programming
based linear-time algorithm solving the problem on trees. Concerning the pa-
rameter k (number of edge deletions), Dujmović et al. [5] showed that 2LP can
be solved in O(k · 6k + |G|) time by devising a search tree algorithm and sev-
eral polynomial-time data reduction rules leading to a problem kernel with O(k)
vertices and edges. Later, Fernau [11] presented a refined search tree for 2LP
leading to a running time of O(k2 · 5.19276k + |G|). Finally, based on a dif-
ferent branching analysis, Suderman [22] developed an O(k · 3.562k + |G|)-time
algorithm.

Dujmović et al. [6] considered a multilayered problem version, where the
task is to transform the input graph into a graph that can be drawn in h layers
without edge crossings. They present a path decomposition based algorithm
that runs in g(h, k) · |V | time (where the function g is not explicitly specified).

2

2-Layer Planarization is a special case of the problem of transforming
a binary matrix into a matrix with so-called “consecutive ones property” by a
minimum number of column removals. More specifically, 2LP coincides with this
problem for matrices without identical columns that have a maximum of two 1s
in each column [3]. Dom et al. [3] showed approximability and fixed-parameter
tractability results for these related submatrix problems.

Finally, observe that a caterpillar tree has pathwidth at most one. Thus, 2LP
is the problem of transforming a given graph into a graph with pathwidth at
most one with edge deletions. Recently, Cygan et al. [2] considered the vertex
deletion version of this problem, which they call Pathwidth One Vertex

Deletion. They present a quadratic-size problem kernel for the parameter
“number of allowed vertex deletions”.

1.2 Our Contribution

In this work, we investigate the parameterized complexity of 2LP with respect
to the structural parameter “feedback edge set number” f , that is, the mini-
mum number of edges whose removal results in an acyclic graph. Note that
the feedback edge set number of a connected n-vertex and m-edge graph G
is f(G) = m − n + 1 and a minimum feedback edge set can be determined by
the computation of a spanning tree in O(n + m) time via depth-first search.
We develop efficient preprocessing rules for 2LP that lead to a problem kernel
with O(f) vertices and edges. Moreover, we present a new search tree algorithm
leading to a total running time of O(6f · f2 + (f + 1) · |G|) for solving 2LP.

Our work is motivated as follows.

1. For 2LP the number of necessary edge deletions is at least the feedback
edge set number, since one has to destroy all cycles to obtain a forest of
caterpillars. In this sense, we improve on the results of Dujmović et al. [5]
by providing fixed-parameter algorithms and kernelizations with about the
same worst-case bounds for a parameter that we expect to be significantly
smaller for a wide range of input instances. For large values of k and small
values of f , our search tree algorithm may in fact outperform the state of
the art O∗(3.652k)-time algorithm by Suderman [22].

2. Dujmović et al. [5] pointed out that “instances of 2-Layer Planariza-

tion for dense graphs are of little interest from a practical point of view”
since the resulting drawings are unreadable anyway. Thus, they expect the
solution size to be small in practice. This is even more plausible for the
feedback edge set number of a graph which is directly linked to the num-
ber of edges, and, hence, the sparseness of the graph. Also note that the
solution size can be arbitrarily large even for trees (the sparsest connected
graphs) while the feedback edge set number of trees is zero. Measuring the
distance from trees by the feedback edge set number can be seen as a pa-
rameterization by “distance from triviality” [14]. In this sense, our results
generalize the linear-time algorithm for trees by Shahrokhi et al. [21].

3

3. The feedback edge set number f is a parameter that can easily be com-
puted in advance and, hence, allows for a meta-algorithm that chooses an
algorithm for a given input by computing an estimation on the running
time prior to running the algorithm for the problem itself. Since the pa-
rameter k (“number of edge deletions”) is NP-hard to compute, such an
algorithm could not efficiently determine the running time of an algorithm
parameterized by k in advance.

4. Fourth, looking for smaller parameters may help to further extend the
range of solvable instances. However, this seems only possible if the new
algorithms have a modest exponential part of the running time. This
should also be seen in the light of the following. One of the most prominent
structural parameters in parameterized algorithmics for graph problems
is the treewidth of the input graph. When parameterized by treewidth,
many graph problems are fixed-parameter tractable, but there are also
problems that are W[1]-hard with respect to treewidth or for which the
computational complexity for bounded treewidth is open. As proposed
by Fellows et al. [8], parameters that are lower-bounded by the treewidth
(the vertex cover number of a graph is an example) have recently been
considered to establish fixed-parameter tractability for such problems [10,
15, 16]. In the spirit of multivariate algorithmics [9, 20], this work initiates
the study of 2-Layer Planarization for new parameterizations.

5. Last but not least, efficient preprocessing or polynomial-time data reduc-
tion seems to be essential to obtain good fixed-parameter algorithms. In-
deed, kernelization has been recognized as one of the key techniques of
parameterized algorithmics [1, 13, 19]. In this context, one of our main
contributions is to provide a set of new polynomial-time data reduction
rules for 2-Layer Planarization.

1.3 Organization of the Paper

This work is organized as follows. After introducing basic notations and defini-
tions in Section 2, we present in Section 3 several polynomial-time data reduc-
tion rules leading to a linear-size problem kernel with respect to f . Based
on this kernelization, we present a search-tree algorithm for 2LP that runs
in O(6f · f2 + (f + 1) · |G|) time in Section 4.

2 Preliminaries.

Let G be a graph. We denote the set of all vertices of G by V (G) and the set
of all edges of G by E(G). We abbreviate |V | + |E| to |G|. For every vertex
set V ′ ⊆ V (G), we denote the subgraph of G that is induced by V ′ by G[V ′] and
we write G − V ′ for G[V (G) \ V ′]. Equivalently, for every edge-set S ⊆ E(G),
consider G−S an abbreviation for (V (G), E(G)\S) and let V (S) denote the set
of endpoints of edges in S. We denote the neighborhood of a vertex v ∈ V (G)

4

in G with NG(v) and the degree of v in G with degG(v). If clear from the
context, we omit the index. Furthermore, let I(G) (isolated vertices) and L(G)
(leaves) denote the set of vertices in G with degree zero and one, respectively.
For a vertex v in G, let L(v) := L(G) ∩ N(v). Following [5], we define the

non-leaf degree d̂egG (v) := |NG(v) \ L(G)| for every vertex v ∈ V (G).
A tree is a caterpillar tree (or caterpillar for short) if each of its vertices

has non-leaf degree at most two. Equivalently, a caterpillar is a tree that does
not contain a 2-claw [7] (see Figure 2a)). Thus, unions of caterpillars have the
following forbidden-subgraph characterization. A graph is a forest of caterpillars
if and only if it is acyclic and does not contain a 2-claw as subgraph. Note
that for a caterpillar tree, the non-leaf degree of a vertex is at most 2. A
leaf v ∈ L(G) is called critical if its only neighboring vertex has non-leaf degree
two. The definition of critical vertices is motivated by the observation that
being a caterpillar is invariant with respect to adding neighbors to non-critical
vertices. In contrast, adding a neighbor to a critical vertex creates a 2-claw.

Informally speaking, G∗ denotes the subgraph of G that contains all edges
that are contained in a cycle or that connect cycles. Formally, set G0 := G
and recursively define Gi+1 := Gi − (L(Gi) ∪ I(Gi)). Finally, let G∗ denote
the graph Gi with minimum i such that Gi = Gi+1. We will call G∗ the
cyclic core of G. Note that G∗ is the empty graph if and only if G is acyclic (a
forest). Moreover, for G being a forest of caterpillar trees, G1 is a forest of paths.
Furthermore, note that G− V (G∗) is acyclic (a forest). For a vertex v ∈ V (G∗)
let T v denote the tree of G− E(G∗) that is rooted at v. The tree T v is called
the pendant tree of v and v is called its connection point. Furthermore, for a
rooted tree T and a vertex x ∈ T let Tx denote the subtree of T rooted at x.

The following special (pendant) trees are of particular interest in this work.
A path p = ({v, w}, {w, x}) is called a P2 with connection point v if deg(v) ≥
2, deg(w) = 2, and deg(x) = 1, see Figure 2b) for an example. Vertex w is
called the middle point and we refer to it as m(p) and vertex x is called the
leaf of p denoted by l(p). For a vertex v let P2(v) denote the set of all P2s
that have v as their connection point. A Y-graph with connection point v
is a subgraph consisting of the adjacent vertices v and w and two P2s with
connection point w. Optionally, w may additionally be adjacent to a leaf (see
Figure 2c)). Herein, w is called the center point of the Y-graph. We refer to w
by c(Y). Let Y(v) denote the set of all Y-graphs that have v as their connection
point.

Our results are in the context of parameterized complexity, which is a two-
dimensional framework for studying computational complexity [4, 12, 19]. One
dimension is the input size n, and the other one is the parameter (usually
a positive integer). A problem is called fixed-parameter tractable (fpt) with
respect to a parameter k if it can be solved in g(k) · nO(1) time, where g is a
computable function only depending on k. A core tool in the development of
fixed-parameter algorithms is polynomial-time preprocessing by data reduction.
Here, the goal is to transform a given problem instance x with parameter k
into an equivalent instance x′ with parameter k′ ≤ k such that the size of x′ is

5

v v
w w

a) c)b)

x

Figure 2: Terminology. a) A 2-claw. The degree-three vertex of a 2-claw is called
its center vertex. Caterpillars can be characterized as graphs containing neither
cycles nor 2-claws. Figure b) shows a P2 pendant with connection point v and
Figure c) shows a Y-graph with connection point v and center point w. In c)
the gray leaf may or may not be present in the Y-graph (formally, there are two
different Y-graphs, one with and one without the gray leaf).

upper-bounded by some function only depending on k. This is usually achieved
by applying data reduction rules. The whole process is called kernelization. We
call a data reduction rule correct if the new instance after an application of this
rule is a yes-instance if and only if the original instance is a yes-instance. An
instance is called reduced with respect to a set of data reduction rules if none
of these data reduction rules can be applied to the instance.

3 Kernelizing 2-Layer Planarization

In this section, we present a kernelization for 2LP parameterized by f , denoting
the size of a minimum feedback edge set of the input graph. We present a number
of polynomial-time executable data reduction rules and show that a graph that
is reduced with respect to these rules cannot contain more than O(f) vertices
and edges. The kernelization consists of two phases. In the first phase, which
we call “tree reduction”, roughly speaking, the goal is to reduce the “acyclic
part” of the input graph. In the second phase, the goal is to reduce the long
non-branching paths in the remaining “cyclic core” G∗, shrinking its size to a
linear function in f . We call the second phase “path reduction”.

3.1 Tree Reduction

Subsequently, we present data reduction rules for repeatedly replacing a pendant
tree T u for some u ∈ V (G∗) with a smaller tree, until its size is a constant
value. For the explanation of the basic idea, consider a 2-claw C in T u that
has “maximal depth”, that is, the sum of distances of the vertices of C to u is
maximal. Clearly, all vertices that are “below” C but not contained in C are
irrelevant because they are not contained in any 2-claw in T u. Moreover, since
there is no 2-claw with larger depth than C, all 2-claws that intersect C share
one of the “highest” edges with C. Hence, it is optimal to destroy C by deleting
one of its “highest” edges. Distinguishing all relevant cases, this thought leads
to the following five data reduction rules (see Figure 3 for an illustration).

6

PSfrag

w1 w2 w3
vvv

vv

www

b)
c)

xx

x

a)

Figure 3: a) An example for the application of Tree Reduction Rule 3. Note
that we must delete one of the edges {v, wi}, i = 1, 2, 3 in order to destroy the
2-claw centered at v. By symmetry, there is an optimal solution that contains
the edge {v, w3}. After deleting {v, w3}, we can delete the gray vertices because
they form an isolated caterpillar. b) An example for the application of Tree
Reduction Rule 4. Note that the edge {w, x} is not contained in any 2-claw and
hence, x can be deleted. c) An example for the application of Tree Reduction
Rule 5. Since the deletion of the edge {x, v} destroys the same 2-claws as the
deletion of any other edge in the tree rooted at x, there is an optimal solution
that contains {x, v}.

Tree Reduction Rule 1. Let v be a vertex with |L(v)| ≥ 2, Then, delete all
but one leaf in L(v).

Tree Reduction Rule 2. Let v be a vertex with |Y(v)| ≥ 1 and |Y(v)| +
|L(v)|+ |P2(v)| ≥ 2. Then, for an arbitrarily chosen Y-graph Y ∈ Y(v), delete
all vertices of Y except for v and decrease k by one.

Tree Reduction Rule 3. Let v be a vertex with |P2(v)| ≥ 3 and let P2(v) =
{p1, p2, . . . , pq}. Then, delete the vertices l(pi) and m(pi) for 3 ≤ i ≤ q and
decrease k by q − 2.

Tree Reduction Rule 4. Let v be a vertex with d̂egG (v) = 2 and let p be a P2

with P2(v) = {p}. Then, delete the vertex l(p).

Tree Reduction Rule 5. Let v be a vertex with degG(v) = 2 and let Y be a
Y-graph such that Y(v) = {Y }. Then, delete all vertices of Y (including v) and
decrease k by one.

The last data reduction rule for the tree reduction phase is obvious.

Tree Reduction Rule 6. Let C be a connected component of G that is a
caterpillar. Then, delete all vertices of C.

Lemma 1. Tree Reduction Rules 1–6 are correct. An instance reduced with
respect to Tree Reduction Rules 1–6 can be computed in O(|G|) time.

Proof. First, we prove the correctness of the tree reduction rules except Tree
Reduction Rules 1 and 6 (Tree Reduction Rule 1 is proven in [5], Tree Reduction
Rule 6 is obvious), then the claimed running time.

7

Tree Reduction Rule 2 is correct. First, note that we can assume that, if
a solution contains any edge from Y , then it contains the edge e := {v, c(Y)}
(since its deletion destroys also all the 2-claws that can be destroyed by any
other edge in Y). We show that an optimal solution that contains e exists.
Let S be an optimal solution with e 6∈ S. Clearly, this solution must contain all
edges incident to v except for the edge {v, c(Y)}. Since L(v) 6= ∅ or P2(v) 6= ∅

or |Y(v)| ≥ 2, solution S must contain an edge e′ that is incident to a leaf, to
the middle point of a P2, or to the center point of a Y-graph other than Y .
Thus, S \ {e′} ∪ {e} clearly is a solution of same size containing e.

Tree Reduction Rule 3 is correct. To destroy all the 2-claws in the subgraph
induced by the vertices of the P2s in P2(v) we must delete q − 2 edges. Since,
for a p ∈ P2(v), it is at least as good to delete edge {v,m(p)} as to delete
edge {m(p), l(p)}, by symmetry one can choose the edges {v,m(pi)}, 3 ≤ i ≤ l.

Tree Reduction Rule 4 is correct. Let G′ denote the instance that is reduced
with respect to Tree Reduction Rule 4. Since d̂egG′ (v) = 1, we know that for
every solution S′ for G′, the vertex m(p) is non-critical in G′−S′. Consequently,
all solutions for G′ are also solutions for G.

Tree Reduction Rule 5 is correct. Let x denote the single vertex in N(v)−
c(Y). Note that the Y-graph Y together with x forms a graph containing a
single 2-claw. Clearly, this 2-claw is best destroyed by deleting the edge {x, v}
since this also destroys all the 2-claws that can be destroyed by deleting any
other edge in Y .

To apply the tree reduction rules efficiently, we proceed as follows. First, in a
depth-first traversal of the graph, we determine the vertices in G∗. Moreover, for
every vertex, we remember its parent in the spanning tree corresponding to the
depth-first traversal. Then, we consider the vertices in a postorder. Doing so,
for every vertex, we maintain three lists, L(v), P2(v), and Y(v). If we consider
a leaf x, we add x to L(p), where p is the parent of x. If we consider an inner
vertex x, we can assume that all children have already been considered because
we traverse the instance bottom-up. Thus, the lists L(x), P2(x), and Y(x) have
already been determined and we have all information at hand to decide whether
one of the tree reduction rules can be applied to x. After applying the tree
reduction rules to x, we have the following situation. If we decide that the
edge from x to its parent is deleted (Tree Reduction Rules 4 and 5), then x
does not have any effect on its parent. Otherwise, if neither Tree Reduction
Rule 4 nor Tree Reduction Rule 5 applies to x, then we have to consider the
following cases. If x is a leaf, we add x to the list L of its parent. Otherwise,
if x has a single child that is a leaf, we add x to the list P2 of the parent of x.
Note that one of these cases must apply to x. Thus, for a vertex v, all changes
can be made in O(d(v)) time, where d(v) denotes the number of neighbors of v
in V \ V (G∗). Hence, the presented tree reduction rules can be exhaustively
applied in O(|G|) +O(

∑
v∈V d(v)) = O(|G|) time.

The structure of an instance reduced with respect to these reduction rules
is described by the following lemma, which concludes the presentation of the
“tree reduction”.

8

vvvvvv

a)

b) c) d) e)

f)

Figure 4: In a reduced instance, the pendant tree T v of a vertex v ∈ V (G∗) is
isomorphic to one of the trees shown in a) to f). Note that the tree shown in f)
is exactly the Y-graph as defined in Figure 2b).

Lemma 2. In an instance that is reduced with respect to the tree reduction
rules, for each vertex v ∈ V (G∗), its pendant tree T v is either a singleton or
isomorphic to one of the trees shown in Figure 4.

Proof. To prove the lemma, we consider the height of the pendant tree T v.
If T v has height one, then all children of v are leaves and since the instance

is reduced with respect to Tree Reduction Rule 1, v has exactly one child. That
is, T v is isomorphic to the tree shown in Figure 4a).

If T v has height two, then, since the instance is reduced with respect to
Tree Reduction Rule 1, every non-leaf child of v has degree two and v has
at most one leaf child. Moreover, v has at most two non-leaf children since
otherwise |P2(v)| ≥ 3 and we could apply Tree Reduction Rule 3. Moreover,
since |L(v)| ≤ 1, the pendant tree T v is isomorphic to one of the trees shown in
Figure 4b–e).

To prove the remaining case, we need the following observation. Let v′ ∈
V (T v) − {v} be a vertex such that the height of T v

v′ (the subtree of T v rooted
at v′) is two. Since the height of T v is neither one nor two, v′ exists. We show
that v′ is the center of a Y-graph with connection point v. Since the height
of T v

v′ is two, it is isomorphic to either d) or e). First, note that if v′ had more
than two non-leaf children, then, with the same argument as in the second case
above, we could apply Tree Reduction Rule 3. Moreover, if v′ had exactly one

non-leaf child, then d̂egG (v′) = 1 and we could apply Tree Reduction Rule 4.
Thus, v′ has exactly two non-leaf children and at most one leaf child.

If T v has height three, then let W denote the set of children of v such
that the tree T v

w has height two for every w ∈ W . By the above observation,
we know that for every w ∈ W the tree T v

w together with v forms a Y-graph.
Thus, |W | = 1, since otherwise we could apply Tree Reduction Rule 2. Moreover,
we know that v cannot have other children, since otherwise we could apply Tree
Reduction Rule 2. Hence, T v is a Y-graph.

Finally, we show by contradiction that the height of T v is at most three.
Assume that the height of tree T v is at least four and let w be some vertex
in T v such that T v

w has height three. With the same argument as in the previous
case, we can assume that T v

w is a Y-graph and w has exactly one child. Then,
however, the degree of w is two and we can apply Tree Reduction Rule 5.

9

3.2 Path Replacement

The tree reduction rules presented in the previous subsection are not sufficient
to yield a problem kernel for our parameterization. For example, if the input
graph G is a simple cycle, then none of the above data reduction rules applies.
Recall the notions of G∗ (also called the “cyclic core” of G) and pendant trees.
The purpose of the data reduction rules presented in this subsection is to reduce
non-branching paths of G∗ (hence, they are called “path reduction rules”). The
first two reduction rules take care of paths containing Y-graphs as pendant
trees. Then, we introduce the notion of “tokens” which allows us to handle the
remaining cases in a unified manner.

In the following, we assume the input to be reduced with respect to all tree
reduction rules (see previous subsection). Consider vertices u,w ∈ V (G∗) that
may be identical. We denote a path Pu,w = (u = v0, v1, . . . , vℓ, vℓ+1 = w)
between u and w as degree-2 path if degG∗(vi) = 2 for all 1 ≤ i ≤ l. Its
length is ℓ + 2. We refer to the vertices vi, 1 ≤ i ≤ l, as inner path vertices.
Furthermore, denote the edges {vi−1, vi} by ei for all 1 ≤ i ≤ ℓ+1. Throughout
this subsection, let P be some degree-2 path in the given graph G and let vi be
some inner path vertex of P . In this context, let TP := G[

⋃l

i=1 V (T vi)∪{u,w}]
and for 1 ≤ i ≤ j ≤ l, let Ti,j denote the subtree of TP containing all vertices
reachable from vi in TP − {ei, ej+1}. Note that Ti,i = T vi .

The first two path reduction rules handle all Y-graphs that have a vertex on
a degree-2 path as their connection point. For their presentation, we need two
additional tools. First, observe that for any Y-graph Y with connection point v,
deleting the edge of Y that is incident to v is at least as good as deleting
any combination of edges of Y . This allows us to assume optimal solutions to
contain either this edge or all other edges incident to v. Furthermore, since
pendant trees do not overlap, we can assume this for all vertices v.

Observation 1. There is an optimal solution S for G such that for each Y-
graph Y with connection point v, it holds that S ∩ E(Y) ⊆ {{v, c(Y)}}.

Second, observe that we can assume certain vertices to be non-critical in the
target caterpillar-forest corresponding to an optimal solution.

Lemma 3. Let v be a degree-2 vertex in G∗ such that T v is neither a singleton
nor a Y-graph. Then, there is an optimal solution S for G such that v is non-
critical in G− S.

Proof. Let S denote an optimal solution for G such that v is critical in G − S.
We show that there is a solution S′ with |S′| = |S| such that v is non-critical
in G − S′. Since v is critical in G − S, by definition, v is a leaf in G − S
and adjacent to a vertex x with non-leaf degree two in G − S. Since T v is
not a Y-graph, Lemma 2 implies that every vertex in V (T v) (except for v)
has non-leaf degree at most one in G and, hence, also in G − S. This implies
that x 6∈ V (T v). Let F := E(G) ∩ {{v, z} | z ∈ V (T v)}. Since v is a leaf
adjacent to x in G − S, we have F ⊆ S and since T v is not a singleton, we
know that |F | ≥ 1. Observe that deleting {v, x} from G− S renders v isolated.

10

a) b)

Figure 5: Path Reduction Rules 1 and 2: a) shows an application of case 1 of
Path Reduction Rule 1 while b) shows an application of case 2 of Path Reduction
Rule 2. Gray subgraphs are deleted by the reduction rules.

Thus, subsequently undoing the edge deletions in F does not create a cycle or
2-claw. Hence, S′ := (S \ F) ∪ {{v, x}} is also a solution for G. Finally, note
that G−S′ contains T v as a connected component. Since T v is not a Y-graph, v
is non-critical in G− S′.

In the proof of Lemma 3, the only pendent tree affected by the modifications
in S is T v, which, by assumption, is not a Y-graph. Hence, we can apply
Lemma 3 and Observation 1 independently. We use such an optimal solution
to prove the correctness of the next reduction rule.

The first path reduction rule describes Y-graphs Y with connection point vi
for which it is optimal to delete the edge {vi, c(Y)} (see also Figure 5).

Path Reduction Rule 1. Let P denote a degree-2 path and let both vi and vi+1

be inner path vertices of P such that Y := T vi is a Y-graph. If

1. T vi+1 is neither a singleton nor a Y-graph, or

2. vi+2 is an inner path vertex, degG(vi+1) = 2, and T vi+2 is either a sin-
gleton or a Y-graph,

then delete {vi, c(Y)} and decrease k by one.

Lemma 4. Path Reduction Rule 1 is correct.

Proof. For the correctness, we show that if Path Reduction Rule 1 applies to vi,
then there is an optimal solution for G that contains {vi, c(Y)} and hence, it is
safe to remove edge {vi, c(Y)}. In the following, let eY := {vi, c(Y)} and let S
denote an optimal solution for G as described by Observation 1 and Lemma 3.
That is, S is an optimal solution such that

1. for each Y-graph Y ′ with connection point v′, S ∩ E(Y ′) ⊆ {{v′, c(Y ′)}},
and

2. if T vi+1 is neither a singleton nor a Y-graph, then vi+1 is non-critical in
G− S.

As discussed above, such a solution exists.

11

If S contains eY , then we are done, hence, in the following, we assume
that eY 6∈ S. Then, by Property 1, S does not contain any edge of Y , imply-
ing ei, ei+1 ∈ S. If vi+1 is non-critical in G − S, then S \ {ei+1} ∪ {eY } is an
optimal solution for G containing eY . To show that vi+1 is non-critical in G−S,
assume that vi+1 is critical in G− S. In Case 1 of Path Reduction Rule 1, this
contradicts Property 2. In Case 2 of Path Reduction Rule 1, degG(vi+1) =
2 and T vi+2 is either a singleton or a Y-graph. Since ei+1 ∈ S, the fact
that vi+1 is critical in G − S implies that vi+2 is adjacent to vi+1 in G − S

and d̂egG−S (vi+2) ≥ 2. If T vi+2 is a Y-graph, then, since S does not con-
tain {vi+1, vi+2}, Property 1 implies that S contains the edge {vi+2, c(T

vi+2)}.
Hence, vi+2 has at most two neighbors in G − S, regardless of whether T vi+2

is a Y-graph or a singleton. However, since one of these neighbors is vi+1 (a
leaf), vi+2 has non-leaf degree at most one in G − S, a contradiction to vi+1

being critical in G− S.

The second data reduction rule handles almost all remaining cases where
a Y-graph occurs as the pendant tree of some inner path vertex vi of P by
“bypassing” vi in P .

Path Reduction Rule 2. Let P denote a degree-2 path and let both vi and vi+1

be inner path vertices of P such that Y := T vi is a Y-graph. If

1. T vi+1 is a Y-graph, or

2. vi−1 and vi+1 have degree two, or

3. vi+2 is an inner path vertex, deg(vi+1) = 2, and T vi+2 is neither a sin-
gleton nor a Y-graph,

then remove all vertices of Y from G, insert the edge e = {vi−1, vi+1}, and
decrease k by one.

Lemma 5. Path Reduction Rule 2 is correct.

Proof. Let G′ denote the graph that results from applying Path Reduction
Rule 2 to some vi in G and let eY := {vi, c(Y)}. Let Ĝ denote the result

of contracting ei+1 in G − {eY } and observe that Ĝ is identical to G′ with
the exception of one connected component (containing all vertices of Y but vi)

which is a caterpillar. Consequently, Ĝ and G′ are equivalent in the sense that
a solution for one is also a solution for the other (considering that ei in Ĝ plays
the role of e in G′). In the following, we show that G has a solution S of size at
most k if and only if G′ has a solution S′ of size at most k − 1.

“⇒:” By Observation 1, either eY or both ei and ei+1 are in S. If eY ∈ S,
then, since contracting an edge does not create 2-claws or cycles, S′ := S \ {eY }

is a solution of size at most k − 1 for Ĝ and, thus, for G′. Otherwise, ei, ei+1 ∈
S. However, by construction, G′ − {e} is a subgraph of G − {ei, ei+1} and
thus, S′ := S \ {ei, ei+1} ∪ {e} is a solution for G′ of size at most k − 1.

“⇐:” If a solution S′ for G′ of size at most k − 1 contains e, then the
equivalent solution Ŝ for Ĝ contains ei, and clearly, S := Ŝ∪{ei+1} is a solution

12

of size at most k for G. Thus, in the following, we assume that there is no
solution for G′ of size at most k − 1 that contains e (in particular, e 6∈ S′ and,
thus, vi−1 and vi+1 are neighbors in G′ − S′).

Observe that the subdivision of an edge e′ of a caterpillar can only create
a 2-claw if e′ is incident to a critical vertex. Hence, if vi−1 and vi+1 are both
non-critical in G′ − S′, then we can subdivide e without affecting the solution
and thus, S := S′ ∪ {eY } is a solution of size at most k for G. Hence, in the
following, we assume that vi−1 or vi+1 is critical in G′−S′. Since vi−1 and vi+1

are adjacent in G′ − S′, this implies that one of them has degree at least three
in G′ − S′ while the other is a leaf in G′ − S′. In the following, we consider the
three cases of Path Reduction Rule 2 separately.

Case 1: The first condition of Path Reduction Rule 2 applies.
Then, Y ′ := T vi+1 is a Y-graph. Let eY ′ := {vi+1, c(Y

′)}. By Observation 1,
we can assume that S′ contains either eY ′ or both e and ei+2 (if S′ contains eY ′

and e but not ei+2, then we can exchange eY ′ for ei+2 in S′). However, by
the assumption that e 6∈ S′, it follows that ei+2 6∈ S′ and eY ′ ∈ S′, imply-
ing degG′−S′(vi+1) = 2. Thus, neither vi+1, nor vi−1 is critical in G′ − S′, a
contradiction.

Case 2: The second condition of Path Reduction Rule 2 applies.
Then, degG(vi−1) = degG(vi+1) = 2, implying that neither vi−1 nor vi+1 has
degree at least three in G′ − S′, contradicting the assumption that vi−1 or vi+1

is critical.
Case 3: The third condition of Path Reduction Rule 2 applies.

By Lemma 3 we can assume that vi+2 is non-critical in G′ − S′. Clearly, vi−1

is non-critical in G′ −S′ since degG(vi+1) = 2. Hence, vi+1 is critical in G′ −S′

and thus, S′ ∪ {e} isolates vi+1. Since vi+2 is non-critical in G′ − S′, it follows
that (S′ ∪ {e}) \ {ei+2} is a solution of size at most k for G′ containing e, a
contradiction.

The two path reduction rules presented so far eliminate Y-graphs in all long
degree-2 paths. In the following, consider P to be Y-graph-free, that is, P does
not contain an inner path vertex whose pendant tree is a Y-graph. Consider a
graph that is reduced with respect to Path Reduction Rules 1 and 2. All degree-
2 paths P ′ that are not Y-graph-free contain at most two inner path vertices,
whose pendant trees are a singleton and a Y-graph, respectively. Thus, it is
clear that |V (TP ′)| ≤ 10. In the following, we focus on Y-graph-free degree-2
paths. In this case, we can show that we do not need to consider deleting edges
in pendant trees, thus allowing us to restrict our attention to deleting edges on
the degree-2 path.

Lemma 6. Let P be a Y-graph-free degree-2 path. Then, there is an optimal
solution for G that does not contain any edge of E(TP) \ E(P).

Proof. Consider a solution S for G that contains an edge e ∈ E(TP) \ E(P).
Clearly, we can assume that e is incident to vi ∈ P . If any two edges e and e′

that are incident to vi are in S, then we can exchange e and e′ for ei and ei+1

in S. Otherwise, we show that deleting one of ei, ei+1 destroys all 2-claws

13

that are destroyed by the deletion of e. Assume that this is false. Then, the
deletion of e destroys a 2-claw that does not contain ei and a different 2-claw
that does not contain ei+1. Since P is Y-graph-free, the pendant tree Ti,i with
connection point vi contains two P2s. However, only one of these P2s can be
destroyed by deleting e and, hence, we can exchange e for either ei or ei+1, a
contradiction.

In order to handle the remaining degree-2 paths (recall the definition on
page 10) in a unified manner, we introduce the notion of “tokens” as sets of
consecutive edges on the degree-2 paths. Consider a vertex v on a degree-2
path P that is the center of a 2-claw. Then, Lemma 6 tells us that this 2-claw
must be destroyed by deleting an edge of P . We model this fact by letting v
generate a token containing all edges that may be deleted in order to destroy
this 2-claw. The introduction of this notion is split into three parts. First,
we define tokens, second, we point out how they are generated, and third, we
specify what it means to destroy a token.

In the following, a vertex v in P is called crossable if degG(v) = 2. A token K
of P is a set of at most four consecutive edges of P . Let vi be a vertex in P .
If i ≤ ℓ−1, then the upper token Kup (vi) of vi is {ei+1, ei+2} if vi+1 is crossable
and it is {ei+1}, otherwise. Equivalently, if i ≥ 2, then the lower token K low (vi)
of vi is {ei−1, ei} if vi−1 is crossable and it is {ei} otherwise. In this sense, we say
that tokens can only “span” over crossable vertices. For the vertices u, v1, vℓ,
and w, we need the following auxiliary tokens: K low (u) := Kup (w) := {⋄},
K low (v1) := {⋄, e1}, and Kup (vℓ) := {eℓ+1, ⋄}.

Each inner path vertex vi of P for which P2(vi) 6= ∅ generates tokens in the
following way: If |P2(vi)| = 1 (in this case T vi is isomorphic to one of the trees
shown in Figure 4 b) and c)), then vi generates one token Kup (vi) ∪K low (vi).
If |P2(vi)| = 2 (in this case T vi is isomorphic to one of the trees shown in
Figure 4 d) and e)), then vi generates two tokens, Kup (vi) and K low (vi). We
define K(vi) as the set of tokens generated by vi and K(P) as the set of all tokens
generated by inner path vertices of P . See Figure 6 for an illustration. We can
observe that only vertices that are centers of 2-claws generate tokens. Moreover,
all 2-claws centered at inner path vertices are represented in the tokens of K(P),
implying that all 2-claws on P can be destroyed by removing an edge of each
token in K(P).

Observation 2. For each K ∈ K(P), there is a 2-claw C centered at the vertex
that generates K such that E(C) ∩ E(P) = K Furthermore, for each 2-claw C
that is centered at an inner path vertex of P , there is a token K ∈ K(P) such
that K is a subset of all edges that are in both C and P .

A non-auxiliary token (token that does not contain ⋄) K ∈ K(P) is destroyed
by an edge set E′ if K ∩ E′ 6= ∅. Observe that if K contains ⋄, then it either
contains e1 or eℓ. We say that a token containing e1 and ⋄ is destroyed by E′

if either K ∩ E′ 6= ∅ or E′ contains all edges incident to v0 except for e1. An
auxiliary token containing eℓ+1 is destroyed analogously. Informally speaking, a

14

e1 e2 e3 e4 e5 e6 e7

a) b)

Figure 6: a) Illustration of the tokens generated by a degree-2 path.
The tokens are depicted by horizontal bars. That is, the tokens
are {e2, e3, e4}, {e3, e4}, {e5, e6}, and {e5, e6, e7, ⋄}. b) An example of a chained
degree-2 path. The tokens are depicted by horizontal bars. Furthermore, dashed
lines represent auxiliary tokens.

token represents the need to delete an edge. By Lemma 6 it suffices to consider
edges in P . Thus, the task is to destroy all tokens by deleting only few edges.

The following path reduction rules are designed to shrink degree-2 paths
and rely heavily on the notion of tokens. The first data reduction rule reduces
degree-2 paths that do not contain any tokens.

Path Reduction Rule 3. If there is a degree-2 path P with |V (TP)| > 7
and K(P) = ∅, then contract T2,ℓ−1 to a single vertex.

Lemma 7. Path Reduction Rule 3 is correct.

Proof. LetG denote the input graph andG′ the graph that results from applying
Path Reduction Rule 3 to a degree-2 path P in G. We show that for each
solution S for G there is also a solution for G′ of the same size, and vice versa.

By Observation 2, K(P) = ∅ implies that there is no 2-claw centered at an
inner path vertex of P . However, no other 2-claw can intersect T2,ℓ−1 and, thus,
the set of edges that are in 2-claws in G and in G′ are equal, implying that G−S
contains 2-claws if and only if G′ − S does.

Observe that T2,ℓ−1 is a tree and edge contraction cannot create cycles.
Hence, if S does not contain any edge from T2,ℓ−1, then S also breaks all cycles
of G′. Otherwise, there is an edge e in S and in T2,ℓ−1 and we can exchange e
for e0 in S, thereby obtaining a solution S′ for G′.

Finally, observe that |V (TP)| > 7 and K(P) 6= ∅ implies |V (T2,ℓ−1)| > 1.

Next, we focus on degree-2 paths generating tokens. Note that the end ver-
tices u and w of P could be centers of 2-claws containing inner path vertices of P .
To account for this possibility, we define K′(P) := K(P) ∪ {Kup (u) ,K low (w)}.
Note also that tokens are basically edge sets, which may overlap. This behavior
is exploited in the following reduction rules requiring a more formal definition.
We call an inner path vertex vi of P a token separator if there is no token
in K′(P) containing both ei and ei+1. If P does not have a token-separator,
then P is called chained (see Figure 6b)).

In the following, we present a reduction rule that works on degree-2 paths P
containing a token separator v. In particular, this reduction rule splits P at v,

15

Figure 7: The graph that results from applying Path Reduction Rule 4 to the
graph shown in Figure 6a).

duplicating T v. This operation leaves all tokens intact, indicating the correct-
ness of the reduction rule (see Figure 7 for an illustration).

Path Reduction Rule 4. Let P be a degree-2 path with K(P) 6= ∅ and P
is not chained. Let vi be a token separator of P . Then, replace its pendant
tree T vi by two copies of T vi , connect one to vi−1 (by inserting an edge between
its connection point and vi−1), and connect the other to vi+1.

Lemma 8. Path Reduction Rule 4 is correct.

Proof. Let G′ denote the graph that results from applying Path Reduction
Rule 4 to P . In the following, we show for all k that (G, k) is a yes-instance if
and only if (G′, k) is a yes-instance.

“⇒”: By Lemma 6, we know that there is a solution S of size at most k for G
that does not delete edges in T vi . For the sake of contradiction, assume that S
is not a solution for G′. Since all cycles in G′ are cycles in G, there is a 2-claw C
in G′ − S that is not in G − S. If C contains both copies of vi, then there is
a cycle in G that consists entirely of edges of C. Since S is a solution for G,
it is clear that S breaks this cycle, contradicting C being a 2-claw in G′ − S.
If C contains only one of the copies of vi, then we can delete the other copy
from G′ − S without destroying C. The resulting graph is a subgraph of G− S
that contains C, contradicting S being a solution for G.

“⇐”: Let S denote a solution for G′ containing at most k edges. If S
contains any edge e of the copy of T vi connected to vi−1 (as described in Path
Reduction Rule 4), then it is easy to see that S \ {e} ∪ {ei} is also a solution
for G′ that does not contain such an edge. Analogously, we can assume that S
does not contain an edge of the copy of T vi connected to vi+1. In the following,
we show that S is also a solution for G. For the sake of contradiction, assume
that G− S is not a forest of caterpillars.

First, assume that there is a 2-claw C in G− S. Note that both ei and ei+1

are contained in C, since otherwise, C is entirely contained inG′ implying that C
is also a 2-claw in G′ − S.

Case 1: The center of C is vi.
Then, |P2(vi)| ≥ 1 and thus, K(vi) 6= ∅. Since vi is a token separator, |K(vi)| =
2 and thus, |P2(vi)| = 2. However, since both ei and ei+1 are in C, we know
that C only uses one of the two P2s in P2(vi). Since S does not contain any
edge of any copy of T vi, we know that there is another 2-claw C′ in G− S that
contains both P2s of P2(vi) and only one of ei and ei+1. As observed above, C′

is entirely contained in G′ − S, contradicting S being a solution for G′.

16

e

Figure 8: An application of Path Reduction Rule 5 with |K(P)| = 7. In the
example, Mp = {1, 3, 4, 5, 6, 7, 8} and, hence, p = 1, q = 8, and e = {v1, v9}.

Case 2: The center of C is not vi.
Then, since ei and ei+1 are in C, we know that C is centered either at vi−1

or vi+1. Without loss of generality, let vi+1 be the center of C. If vi is crossable
in P , then vi+1 generates a token that spans over vi, contradicting vi being a
token-separator of P . Hence, vi is not crossable and, consequently, its degree
in G is at least three, implying that T vi is not a singleton. Thus, there is also
a 2-claw C′ in G that uses an edge of T vi instead of ei. Since C′ is entirely
contained in G′, the solution S contains an edge of C′ and by the assumption
that S does not contain an edge of any copy of T vi, we know that S contains
an edge of C′ that is also in C, contradicting the existence of C in G− S.

Second, assume that there is a cycle in G − S. Then, it contains vi, since
otherwise, it is also a cycle in G′ − S. By definition, P is a subpath of this
cycle. However, since K(P) 6= ∅, Observation 2 implies that there is a 2-claw C
in G that is centered at a vertex of P . By the argument above, S contains an
edge e′ of C. If e′ is not in P , then for one of the endpoints of P , the solution S
contains all but one of the edges incident to it (this is represented by the ⋄-
symbol). Otherwise, e′ is in P . Both cases contradict the existence of a cycle
with subpath P .

Having dealt with degree-2 paths that contain token separators or no tokens
at all, only chained degree-2 paths remain untouched. In the following, we show
that, if P is such a chained degree-2 path, then P can be reduced. To this end,
we first observe that each edge deletion can only destroy two tokens. This easily
follows from the fact that being crossable and generating tokens is mutually
exclusive.

Observation 3. Let P be a degree-2 path. Then, each edge of P is contained
in at most two tokens.

Next, we use this observation to “contract” P such that the outermost tokens
remain the same (see Figure 8). To this end, recall that Ti,j is the subtree of TP

containing all vertices reachable from vi in TP − {ei, ej+1}. Furthermore, find
an example of a chained degree-2 path in Figure 6b).

Path Reduction Rule 5. Let P be a chained degree-2 path with |K(P)| ≥
3. Let MP := {i ∈ N | K(vi) 6= ∅}, let p := minMP and q := maxMP .
If |K(P)| is even, then delete Tp+1,q−1, insert the edge e := {vp, vq}, and reduce k

17

by (|K(P)| − 2)/2; otherwise delete Tp+1,q, insert the edge e := {vp, vq+1}, and
reduce k by (|K(P)| − 1)/2.

Lemma 9. Path Reduction Rule 5 is correct.

Proof. First, consider the case that |K(P)| is even. Let G′ denote the graph that
results from applying Path Reduction Rule 5 to P , let k′ := k− (|K(P)| − 2)/2,
and let ET := {ep+1, ep+2, . . . , eq}. Since neither vp nor vq is crossable, we know
that |K(P)| − 2 out of all tokens of P are subsets of ET . We show that (G, k)
is a yes-instance if and only if (G′, k′) is a yes-instance.

“⇒”: Let S be a solution of size at most k for G, let ST := S ∩ ET , and
let S′ := S \ ET . Since S destroys all tokens in K(P) and, by Observation 3,
each edge in S can destroy at most two tokens of K(P), we know that |ST | ≥
(|K(P)| − 2)/2. If S′ is a solution for G′, then we are done; otherwise, G′ − S′

contains a cycle or a 2-claw. Assume that G′ − S′ contains a cycle. Then,
sinceG−S is acyclic, this cycle contains all edges of ET . If |ST | > (|K(P)|−2)/2,
then, by definition, |S′| < k′ and, hence, S′ ∪{e} is a solution of size at most k′

for G′ (note that G′ − {e} is a subgraph of G). If |ST | = (|K(P)| − 2)/2,
then ST cannot destroy all tokens in K(P). Hence, there are some edges in S′

that destroy K(vp) or K(vq). It is easy to see that at least one of these edges is
on the cycle in G′ − S′, which is a contradiction.

In the following, we assume that G′ − S′ is acyclic but contains a 2-claw C.
Observe that C contains e, since otherwise, C is also in G − S. If C is not
centered at an inner path vertex of P , then, since vp and vq both generate
tokens (and therefore, have degree at least three in G), Lemma 6 implies that
S′ contains an edge of C. Hence, C is centered at vp or vq. Without loss of
generality, assume that C is centered at vp. Let ei denote an edge in S ∩K(vp)
(which, by Observation 2, exists). Since ei 6∈ S′, we know that ei ∈ ST ∩K(vp).
Then, however, ST destroys at least |K(P)| − 1 tokens of K(P). Since |K(P)|
is even, |ST | ≥ |K(P)|/2 and, thus, |S′| < k′. As a consequence, S′ ∪ {e} is a
solution for G′ containing at most k′ edges.

“⇐”: Let S′ be a solution of size at most k′ for G′ and recall that, by
Observation 2, destroying all tokens in K(P) destroys all 2-claws centered at
inner path vertices. If e 6∈ S′, then it suffices to show that we can extend S′

to a solution S for G by adding k − k′ = (|K(P)| − 2)/2 edges of ET that
destroy |K(P)| − 2 tokens. Since P is chained, this is possible. If e ∈ S′, then
we extend S′ − e to a solution S for G by adding |K(P)|/2 edges of ET that
destroy all tokens in K(P). Again, this is possible because P is chained.

Next, consider the case that |K(P)| is odd. Let G′ denote the graph that re-
sults from applying Path Reduction Rule 5 to P , let k′ := k−(|K(P)|−1)/2, and
let ET := {ep+1, ep+2, . . . , eq+1}. Furthermore, observe that at least |K(P)| − 2
of the tokens of P are subsets of ET . We show that (G, k) is a yes-instace if and
only if (G′, k′) is a yes-instance.

“⇒”: Let S denote a solution of size at most k for G, let ST := S ∩ET , and
let S′ := S \ ET . By the same arguments as in the case that |K(P)| is even, it
follows that |ST | ≥ (|K(P)| − 2)/2 and that G′ − S′ is acyclic, but contains a 2-
claw C that contains e. Clearly, by definition of p and q, if C is not centered at vp,

18

then the center of C is not in P . Then, however, ST destroys |K(P)|+1 tokens
and, by Observation 3, ST contains at least (|K(P)|+1)/2 edges, implying |S′| <
k′. Hence, S′ ∪ {e} is a solution of size at most k′ for G′. In the following, we
assume that C is centered at vp and consider the token K(vq) that is destroyed
by S.

Case 1: (K low (vq) ∪ {eq+1}) ∩ S 6= ∅.
Since K low (vq)∪ {eq+1} ⊆ ET , this means that ST destroys all tokens in K(P).
By Observation 3, |ST | ≥ |K(P)|/2. Since K(P) is odd, |ST | ≥ (|K(P)| + 1)/2
and, thus, S′ ∪ {e} is a solution for G′ containing at most k′ edges.

Case 2: (K low (vq) ∪ {eq+1}) ∩ S = ∅.
Since vq+1 is not a token-separator, vq+1 is either the end-vertex of P or a
degree-two vertex. Then, however, S contains all edges incident to vq+1 except
for eq. Since S \ ET also contains all these edges, it is clear that S′ contains
them and thus, C is destroyed by S′, a contradiction to the assumption above.

“⇐”: Let S′ denote a solution of size at most k′ for G′. If e 6∈ S′, then it
suffices to show that we can extend S′ to a solution S for G by adding k− k′ =
(|K(P)| − 1)/2 edges of ET that destroy |K(P)| − 1 tokens. Since P is chained,
this is possible. If e ∈ S′, then we can analogously extend S′ \ {e} ∪ {eq+1} to
a solution S for G.

With the presented tree- and path reduction rules, we can now upper-bound
the size of the graph that remains after all reduction rules have been applied
exhaustively by a function of the size of a minimum feedback edge set. To this
end, we first show that the number of vertices and edges in each degree-2 path
and its pendant trees is small.

Lemma 10. Let G be reduced with respect to all path reduction rules and let V3

denote the set of vertices with degree at least 3 in G∗. If two vertices u,w ∈
V3 are connected in G by a degree-2 path P , then |V (TP) \ {u,w}| ≤ 10 and
|E(TP)| ≤ 11.

Proof. Let P denote the degree-2 path between u and w.
Case 1: There is some vertex vi in P such that its pendant tree T vi is a

Y-graph.
Then, since G is reduced with respect to Path Reduction Rules 1 and 2, P
contains at most two inner path vertices, one of which has degree 2. All in
all, |V (TP) \ {u,w}| ≤ 8 and |E(TP)| ≤ 9.

Case 2: K(P) = ∅.
SinceG is reduced with respect to Path Reduction Rule 3, we know that |V (TP)\
{u,w}| ≤ 5 and, hence, |E(TP)| ≤ 6.

Case 3: K(P) 6= ∅.
Since G is reduced with respect to Path Reduction Rule 4, P is chained. But G
is also reduced with respect to Path Reduction Rule 5, and, thus, P contains at
most six inner path vertices. At most two of these inner path vertices generate
tokens, all others are crossable (and therefore, have degree two). Let vp and vq
denote these two vertices in P . Then, their pendant trees T vp and T vq are P2s.
Thus, TP \ {u,w} contains at most 10 vertices and at most 11 edges.

19

With the help of Lemma 10, we can now upper-bound the total number of
vertices and edges in graphs that are reduced with respect to all presented data
reduction rules.

Theorem 3.1. 2-Layer Planarization admits a problem kernel containing
at most 44(f −1) vertices and at most 45(f −1) edges, with f > 0 being the size
of a minimum feedback edge set of G. The problem kernel can be constructed
in O((f + 1) · |G|) time.

Proof. Assume that the input G is reduced with respect to all presented data
reduction rules. For the analysis of the kernel size, we need the following no-
tation. Let V3 denote the set of vertices with degree at least 3 in G∗ and
let G∗

3 := (V3, E3) denote the multigraph on V3 that contains an edge for every
maximal degree-2 path in G. More specifically, E3 contains an edge {u,w}
for every edge {u,w} ∈ E with u,w ∈ V3, and, in addition, E3 contains
an edge {u,w} for every maximal degree-2 path of length at least three be-
tween two (not necessarily different) vertices u,w ∈ V3. Thus, G∗

3 may con-
tain loops. Furthermore, let F with |F | = f be a minimum feedback edge
set of G and let F3 be a minimum feedback edge set of G∗

3 (we require that
a feedback edge set of G∗

3 contains all loops and all but at most one edge
between any two vertices). Clearly, |F3| ≤ f and G∗

3 − F3 is a forest and,
thus, |E3| ≤ |V3| + f − 1. Since the minimum degree1 of a vertex in G∗

3 is 3,
we know that

∑
v∈V3

degG∗

3
(v) ≥ 3|V3|, and since the sum on the left hand side

equals 2|E3|, we know that 2(|V3| + f − 1) ≥ 3|V3|, implying |V3| ≤ 2(f − 1)
and |E3| ≤ 3(f − 1).

With G∗

3 bounded, we can use Lemma 10 to bound G. Each edge in G∗

3

corresponds to a degree-2 path in G∗. Each vertex in V3 may additionally be
incident to a pendant tree (see Figure 4). Thus, we can bound the number of
vertices in G by |V (G)| ≤ |E3| · 10 + |V3| · 6 + |V3| ≤ 44(f − 1) and the number
of edges in G by |E(G)| ≤ 45(f − 1).

It remains to show the running time of the kernelization. In the following, we
prove that the path reduction rules can be applied to G in O((f +1) · |G|) time.
Recall that, in the prove of Lemma 1, L(v), P2(v) and Y(v) are constructed
in linear time for all vertices of G. Since both Path Reduction Rule 1 and 2
reduce the number of edges, they can only apply |E| times in total. Each such
application can be performed in constant time. It is easy to see that no degree-2
path is subject to more than one of the Path Reduction Rules 3–5. In the worst
case, the application of such a path reduction rule requires reapplying the tree
reduction rules, which may take O(|G|) time. Since |E(G∗

3)| ≤ O(f), we can
bound the running time by O((f + 1) · |G|).

4 Search Tree Algorithm

In this section, we provide an algorithm that solves the 2-Layer Planariza-

tion problem in O(6f · f2 + (f + 1) · |G|) time. It employs a search tree based

1A loop at vertex v contributes 2 to the degree of v.

20

strategy, branching on different structures in different phases. Herein, each time
the algorithm branches, the feedback edge set shrinks, allowing us to bound the
running time as stated above. The algorithm runs in three phases. First, we
apply a search tree enumerating partial solutions by branching on a certain type
of 2-claw. Second, we branch on small cycles in the remaining graph. In the
third phase, we branch on the tokens (see Section 3.2, page 14) that remain in
the graph. The input graph G considered in each phase is assumed not to be
subject to any previous phase, that is, G does not contain a structure that is
branched on in a previous phase. Furthermore, the input graph of each phase
is assumed to be reduced with respect to the data reduction rules presented in
the previous section. We show that the total number of edge deletions done
by branching in all three phases does not exceed the feedback edge set num-
ber of the input graph G. In the following, we present the three phases of our
algorithm.

First Phase In this paragraph, we describe the phase of the algorithm that
branches on short cycles and 2-claws whose edges are all contained in cycles.
More specifically, we first compute a setEC of all edges ofG that are contained in
cycles. This can be done in O(|G|) time. Then, we consider the subgraph GC :=
(V,EC) of G. By finding a vertex v with degGC

(v) ≥ 3 (which can be done
in O(|GC |) time), we always obtain either a 2-claw all of whose edges are part
of some cycle, or a cycle of length at most four (see Lemma 2 in [5]). In both
cases, we can branch into the at most six possibilities to destroy this object
by edge deletions. Note that in each branch, the minimum feedback edge set
number decreases by one, since we delete an edge without disconnecting the
graph. Clearly, every solution must delete one of these edges and, thus, one
of these cases leads to a partial solution that can be extended to an optimal
solution for G.

The branching is performed as long as GC contains a vertex of degree at
least three. If all vertices in GC have degree at most two, then all cycles in G
are vertex disjoint.

Observation 4. If G = (V,E) is not subject to Phase 1, then all cycles in G
are vertex-disjoint.

Second Phase With the first branching done, the next step is to eliminate
all small cycles in the remaining graph. In this context, “small” means at most
five vertices. We do this to assure that there is a remaining cycle that contains
a token. Since all cycles in G are vertex-disjoint, we can find a cycle of length
at most five in G in O(|G|) time. Then, we can branch on the at most five
possibilities to destroy this cycle by edge deletion. Again, we remove an edge
without disconnecting the graph, therefore decreasing the minimum feedback
edge set number by one in each branch. Again, we know that every solution
must contain one of these edge deletions and, thus, one of these cases leads to
a partial solution that can be extended to an optimal solution for G.

21

Since, in this phase, G is not subject to Phase 1, it is basically a tree of cycles
and singletons. If G contains a cycle, then arbitrarily rooting this tree enables
us to consider a cycle of G that has maximum distance from this root. Clearly,
this cycle contains a vertex u such that Pu,u is a degree-2 path (see Section 3.2,
page 10 for the definition of degree-2 paths). If G is also not subject to Phase 2,
then Pu,u contains at least five inner path vertices. However, since G is reduced
with respect to Path Reduction Rules 1 and 2, we know that Pu,u cannot contain
a vertex whose pendant tree is a Y-graph. Furthermore, since G is reduced
with respect to Path Reduction Rule 3, we also know that K(Pu,u) 6= ∅ (see
Section 3.2, page 14 for the definition of tokens). Finally, if K(Pu,u) contained
only two tokens and both contained ⋄, then both tokens together can only
contain six edges of Pu,u. However, since |E(Pu,u)| ≥ 6, the two tokens do not
overlap, implying that there is a token-separator in Pu,u, which contradicts G
being reduced with respect to Path Reduction Rule 4. Hence, there is a token
in K(Pu,u) that does not contain ⋄.

Observation 5. If G contains a cycle and is neither subject to Phase 1 nor to
Phase 2, then there is a cycle of G that contains a vertex that generates a token
not containing ⋄.

Third Phase In this paragraph, we describe the final part of the algorithm
that branches on the tokens in the remaining cycles. Recall that, if the input
graph is acyclic, then Lemma 2 implies that its size is constant. Hence, we
assumeG to contain a cycle. Then, by Observation 5, some vertex ofG generates
a token K on which we can branch. Since the token of each vertex can be
computed in O(1) time, we can find v in linear time. By definition, K contains
at most four edges and, thus, we can branch on the four possibilities to destroy
this token by deleting one of its edges. Since K does not contain ⋄, all of the
edges of K are edges of Pu,u and hence, they are edges of a cycle, implying
that the minimum feedback edge set number decreases by one in each branch.
Observation 2 and Lemma 6 imply that there is an optimal solution containing
one of these edge deletions and, thus, one of these cases leads to a partial solution
that can be extended to an optimal solution for G.

If we cannot find any further cycles in G, then it is a tree. However, since G
is reduced with respect to the data reduction rules, we know that in this case, G
has constant size (by Lemma 2) and, thus, can be solved in constant time.

Running Time The algorithm presented in the previous paragraphs consists
of three consecutive branching algorithms. In each branching step, the minimum
feedback edge set number of the graph decreases by one. In the three phases,
the algorithm branches into at most six, five, and four cases, respectively. The
running time in each branching step is dominated by the application of the data
reduction rules. All in all, the algorithm runs in O(6f · (f + 1) · |G|) time

Theorem 4.1. 2-Layer Planarization can be solved in O(6f · (f + 1) · |G|)
time.

22

By initially kernelizing the input instance, we can assume |E| to be linear
in f for the branching algorithm.

Corollary 4.2. 2-Layer Planarization can be solved in O(6f ·f2+(f+1)·|G|)
time. Moreover, if |E| ≤ |V | +O(log |V |), then 2-Layer Planarization can
be solved in polynomial time.

Note that, in the spirit of multivariate algorithmics [9, 20], it is possible
to combine both our algorithm and the O(3.562k · k + |G|)-time algorithm by
Suderman [22] to solve the problem in time that is asymptotically equal to the
minimum of both running times.

5 Conclusion

In this work, we presented a linear-size problem kernel and a search tree algo-
rithm for 2-Layer Planarization parameterized by the “feedback edge set
number”, an alternative parameterization upper-bounded by the size of an op-
timal solution.

We conclude with some open questions for future work. First, since 2LP
is an interesting problem in practice, we plan to implement our kernelization
approach and test it on real-world data, especially in comparison with previous
data reduction techniques. Second, in the light of the linear-time algorithm for
edge-weighted 2LP on trees presented by Shahrokhi et al. [21], it is interesting to
investigate whether our kernelization approach also holds for the edge-weighted
case. Moreover, it may be worthwhile to investigate whether the branching
analysis suggested by Suderman [22] can be used to obtain a better search
tree algorithm for the parameter feedback edge set number. Providing efficient
fixed-parameter algorithms (in particular polynomial-size problem kernels) for
parameters upper-bounded by the feedback edge set number is a natural next
step to extend the range of solvable instances. The feedback vertex set number
would be a canonical candidate. Additionally, it may be interesting to investi-
gate the parameter k′ = (k−f) that represents an “above guarantee” parameter
for the problem. Finally, it would be interesting to extend our results to the
multilayered problem versions [6].

Acknowledgments We are grateful to Nadja Betzler, Jiong Guo, and Rolf
Niedermeier for fruitful discussions and helpful comments. We also thank an
anonymous reviewer of Theoretical Computer Science for providing helpful com-
ments.

References

[1] H. L. Bodlaender. Kernelization: New upper and lower bound techniques. In Pro-
ceedings of the 4th International Workshop on Parameterized and Exact Computation
(IWPEC ’09), volume 5917 of Lecture Notes in Computer Science, pages 17–37. Springer,
2009.

23

[2] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. An improved FPT
algorithm and quadratic kernel for pathwidth one vertex deletion. In Proceedings of
the 5th International Symposium on Parameterized and Exact Computation (IPEC’10),
volume 6478 of Lecture Notes in Computer Science, pages 95–106. Springer, 2010. ISBN
978-3-642-17492-6.

[3] M. Dom, J. Guo, and R. Niedermeier. Approximation and fixed-parameter algorithms
for consecutive ones submatrix problems. Journal of Computer and System Sciences, 76
(3-4):204–221, 2010.

[4] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[5] V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. L. C. McCartin, N. Nishimura,
P. Ragde, F. Rosamond, M. Suderman, S. Whitesides, and D. R. Wood. A fixed-
parameter approach to 2-layer planarization. Algorithmica, 45(2):159–182, 2006.

[6] V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. L. C. McCartin, N. Nishimura,
P. Ragde, F. Rosamond, M. Suderman, S. Whitesides, and D. R. Wood. On the param-
eterized complexity of layered graph drawing. Algorithmica, 52(2):267–292, 2008.

[7] P. Eades and S. Whitesides. Drawing graphs in two layers. Theoretical Computer Science,
131(2):361–374, 1994.

[8] M. Fellows, D. Lokshtanov, N. Misra, M. Mnich, F. Rosamond, and S. Saurabh. The com-
plexity ecology of parameters: An illustration using bounded max leaf number. Theory
of Computing Systems, 45(4):822–848, 2009.

[9] M. R. Fellows. Towards fully multivariate algorithmics: Some new results and directions
in parameter ecology. In Proceedings of the The 20th International Workshop on Com-
binatorial Algorithms (IWOCA’09), volume 5874 of Lecture Notes in Computer Science,
pages 2–10. Springer, 2009.

[10] M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, and S. Saurabh. Graph
layout problems parameterized by vertex cover. In Proceedings of the 19th International
Symposium on Algorithms and Computation (ISAAC’08), volume 5369 of Lecture Notes
in Computer Science, pages 294–305. Springer, 2008.

[11] H. Fernau. Two-layer planarization: Improving on parameterized algorithmics. Journal
of Graph Algorithms and Applications, 9(2):205–238, 2005.

[12] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[13] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization. ACM
SIGACT News, 38(1):31–45, 2007.

[14] J. Guo, F. Hüffner, and R. Niedermeier. A structural view on parameterizing problems:
Distance from triviality. In Proceedings of the 1st International Workshop on Parameter-
ized and Exact Computation (IWPEC’04), volume 3162 of Lecture Notes in Computer
Science, pages 162–173. Springer, 2004.

[15] B. M. P. Jansen and H. L. Bodlaender. Vertex cover kernelization revisited: Upper and
lower bounds for a refined parameter. In Proccedings of the 28th International Symposium
on Theoretical Aspects of Computer Science (STACS’11), volume 9 of LIPIcs, pages 177–
188. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011. ISBN 978-3-939897-25-5.

[16] S. Kratsch and P. Schweitzer. Isomorphism for graphs of bounded feedback vertex set
number. In Proceedings of the 12th Scandinavian Symposium and Workshops on Algo-
rithm Theory (SWAT’10), volume 6139 of Lecture Notes in Computer Science, pages
81–92. Springer, 2010.

24

[17] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley &
Sons, Inc., New York, NY, USA, 1990. ISBN 0-471-92838-0.

[18] P. Mutzel. An alternative method to crossing minimization on hierarchical graphs. SIAM
Journal on Optimization, 11(4):1065–1080, 2001.

[19] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Number 31 in Oxford Lecture
Series in Mathematics and Its Applications. Oxford University Press, 2006.

[20] R. Niedermeier. Reflections on multivariate algorithmics and problem parameterization.
In Proceedings of the 27th International Symposium on Theoretical Aspects of Computer
Science (STACS ’10), volume 5 of LIPIcs, pages 17–32. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2010.

[21] F. Shahrokhi, O. Sýkora, L. A. Székely, and I. Vrto. On bipartite drawings and the linear
arrangement problem. SIAM Journal on Computing, 30(6):1773–1789, 2001.

[22] M. Suderman. Layered Graph Drawing. PhD thesis, School of Computer Science, McGill
University Montréal, 2005.

[23] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical
system structures. IEEE Transactions on Systems, Man and Cybernetics, 11(2):109–125,
1981.

[24] M. S. Waterman and J. R. Griggs. Interval graphs and maps of DNA. Bulletin of
Mathematical Biology, 48(2):189–195, 1986.

25

