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Abstract. Motivated by applications in privacy-preserving data publishing, we study
the problem to make an undirected graph k-anonymous by adding few vertices (together
with incident edges). That is, after adding these “dummy vertices”, for every vertex
degree d in the resulting graph, there shall be at least k vertices with degree d. We
explore three variants of vertex addition (justified by real-world considerations) and
study their (parameterized) computational complexity. We derive mostly (worst-case)
intractability results, even for very restricted cases (including trees or bounded-degree
graphs) but also obtain a few encouraging fixed-parameter tractability results.

1 Introduction

This work is concerned with making an undirected graph k-anonymous, that is,
transforming it (at “low cost”) into a graph where every vertex degree occurs either
zero or at least k times. This graph modification scenario is motivated by data privacy
requests in social networks; it focuses on degree-based attacks on identity disclosure of
network nodes. Liu and Terzi [12] (also see Clarkson et al. [5] for an extended version)
pioneered degree-based identity anonymization in graphs, which recently developed
into a very active research field [1, 2, 3, 4, 10, 14, 18] with theoretical as well as practical
work. So far, the most common models have relied on edge modifications (allowing
either only edge addition or both edge addition and deletion) [2, 5, 10, 14, 12, 18]. We
are aware of one theoretical work [1] that considers vertex deletion as modification
operation; there mostly computational hardness results have been achieved. Chester
et al. [3] started to investigate vertex addition; here we follow this line of research.

There is good reason why vertex addition may be preferred to other graph modifi-
cation operations when aiming at k-anonymity. The central point here is the “utility”
of the anonymized graph. For instance, in the edge addition scenario inserting a
new edge destroys distance properties between vertices and indeed may introduce
undesirable and misleading “fake relations”. Adding new vertices and connecting
them to some of the vertices of the original graph could avoid this problem and gives
at least a better chance to preserve essential graph properties such as connectivity,
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Fig. 1: Example (k = 2): The input graph on the left is not yet 2-anonymous. The graph
in the middle shows a solution for the vertex cloning variant. The two added vertices
(black) are clones of the middle vertex. Note that it is not possible to 2-anonymize
the graph by adding only one clone. The graph on the right shows a solution for the
general variant where the new vertex can be connected arbitrarily.

shortest paths, or diameter. Chester et al. [3] provide a more thorough discussion of
the benefits of vertex addition. The basic decision version of the problem we study is
as follows.

Degree Anonymization (va)
Input: A simple undirected graph G = (V,E) and k, t ∈ N.
Question: Is there a k-anonymous graph G′ = (V ∪ V ′, E ∪E′) such that |V ′| ≤ t

and E′ ⊆ {{u, v} ⊆ V ∪ V ′ | u ∈ V ′ ∨ v ∈ V ′}, where a graph is said to
be k-anonymous if and only if every vertex degree in it appears either
zero or at least k times ?

It is important to note that Chester et al. [3] studied a slightly different model, with
decisive consequences for computational complexity: Their model gets as input a
graph G = (V,E), and integers t and k, and also a vertex subset X ⊆ V , and the task
is to k-anonymize the degree sequence (that is, the vertex degrees sorted in ascending
order) of X ∪ V ′ and the degree sequence of X. On the contrary, we consider the
simpler model where X = V , and we require to k-anonymize only the degree sequence
of X ∪ V ′ (= V ∪ V ′). Consider the following example highlighting this difference:
Let G = (V,E) be an eight-vertex graph containing one star with five leaves plus an
edge (that is, K1,5 ∪ P2 ). Let k = 2 and X = V . Since G contains seven vertices of
degree 1 and one vertex of degree 5, the solution of Chester et al. [3] will give four
as the minimum number of vertices needed to 2-anonymize the degree sequence. In
our model, however, this instance can be solved by adding only one new vertex, and
connecting it to exactly five old vertices of degree 1 (e.g., transforming the K1,5 into
a K2,5). This happens because the new vertex and the old vertex of degree 5 will form
together a 2-anonymized “block”. However, we believe that our results extend to the
model of Chester et al. [3].

Our contributions. Partially answering an open question of Chester et al. [3], we show
that Degree Anonymization (va) is weakly NP-hard for a compact encoding of
the input. Based on this, we provide several (fixed-parameter) tractability results,
exploiting parameterizations by the maximum vertex degree of the input graph, the
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Table 1: Overview of our results: Each column represents a different problem variant,
where VC (respectively Π, VA) stands for Degree Anonymization (vc) (respec-
tively Π-Preserving Degree Anonymization (va), Degree Anonymization
(va)). The first row refers to standard complexity analysis, while the remaining rows
show results with respect to several parameters. Here, ∆ denotes the maximum degree
of the input graph, k is the degree of anonymity, s is the maximum number of added
edges, and t is the maximum number of added vertices.

parameter VC Π VA

- NP-h. [Th. 1] NP-h. [Th. 3] weakly NP-h. [Th. 5]
∆ NP-h., ∆ = 3 [Th. 1] open open
k NP-h.a, k = 2 [Th. 2] NP-h.a, k = 2 [Th. 3] open

s open W[1]-h.b [Th. 4] FPT [Th. 9]
t W[2]-h. [Th. 2] W[2]-h. [Th. 3] XPc [Th. 6]

(∆, k) open open FPT [Th. 8]
(∆, t) open open FPT [Th. 7]
(t, k) W[2]-h. [Th. 2] W[2]-h. [Th. 3] XPc [Th. 6]

a Even on trees.
b Only for Π = Distances.
c Open whether in FPT.

number of added vertices, and the number of (implicitly) added new edges. Moreover,
we also study variants of Degree Anonymization (va) where we only allow “cloned”
vertices to be added (that is, identical copies of existing vertices with exactly the
same neighborhood; this problem variant is denoted by Degree Anonymization
(vc)) or where we explicitly demand the preservation of some desirable features such
as distance properties (this problem variant is denoted by Π-Preserving Degree
Anonymization (va)). For these practically interesting variants we prove computa-
tional hardness already for very restricted cases (for instance even on trees). Table 1
surveys most of our results.

Due to the lack of space, most proofs are deferred to a full version.

2 Preliminaries and Problem Definitions

Preliminaries. We consider simple undirected graphs G = (V,E). We denote by deg(v)
the degree of a vertex v ∈ V and by ∆ := maxv∈V deg(v) the maximum degree of G.
For an integer 0 ≤ i ≤ ∆, we define Bi := {v ∈ V | deg(v) = i}, the block of
degree i. We say that Bi is empty (full) if Bi = ∅ (|Bi| ≥ k). For a full block Bi,
we say that it has z := |Bi − k| many spare vertices. We call a block Bi good if
it is empty or full, otherwise we call it bad (that is, 0 < |Bi| < k). The block
sequence B(G) := {(i, |Bi|) | Bi 6= ∅} of G contains the degrees and sizes of each
non-empty block. We call a block sequence realizable if it is the block sequence of a
graph. For any graph G and for any pair of vertices u and v, we define distG(u, v) to
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be the length of the shortest path between u and v in G (and distG(u, v) =∞ if there
is no path connecting u and v in G). For n ∈ N, we define [n] := {1, 2, . . . , n}.

Problem Definitions. Degree Anonymization (va) allows to add vertices and edges
incident to the new vertices. For a given solution of some yes-instance, we denote the
actual number of new vertices by t′ (obviously, 0 ≤ t′ ≤ t) and the total number of
newly inserted edges by s.

Π-Preserving Degree Anonymization (va) adds some constraints on the
new edges. The idea is to preserve some desirable properties of the input graph. A
general definition reads as follows.

Π-Preserving Degree Anonymization (va)
Input: An undirected graph G = (V,E) and k, t ∈ N.
Question: Is there a k-anonymous graph G′ = (V ∪ V ′, E ∪E′) such that |V ′| ≤ t,

E′ ⊆ {{u, v} ⊆ V ∪ V ′ | u ∈ V ′ ∨ v ∈ V ′}, and Π is preserved?

We now discuss what “Π is preserved” means for three properties we consider here.
First, we say that the connectedness remains unchanged if any pair of disconnected
vertices in G remains disconnected in G′. As introducing vertices and edges cannot
disconnect vertices, this property can be formalized as ∀ u, v ∈ V : distG(u, v) =
∞ ⇐⇒ distG′(u, v) = ∞. Second, we say that the distances remain unchanged
if, for any pair of vertices in G, their distance is the same in G and G′, formally,
∀ u, v ∈ V : distG(u, v) = distG′(u, v). Third, we say that the diameter remains
unchanged if the diameter of G and G′ is the same, formally, maxu,v∈V distG(u, v) =
maxu,v∈V ∪V ′ distG′(u, v). Note that the diameter property also considers paths between
newly added vertices, whereas this is not the case for the first two properties. The
reason for this is that the diameter is naturally defined as a single number, whereas
the other properties store information for each pair of vertices.

A further constrained variant of Degree Anonymization (va) is to use vertex
cloning for modifying the graph. Here, cloning a vertex v means to introduce a new
vertex v′ and make v′ adjacent to all neighbors of v. Formally, we arrive at the following
problem:

Degree Anonymization (vc)
Input: An undirected graph G = (V,E) and k, t ∈ N.
Question: Can G be transformed into a k-anonymous graph by at most t vertex

cloning operations?

We remark that there are different cloning variants: Consider two adjacent vertices u
and v. If both u and v are cloned, then although the clone u′ is adjacent to v and the
clone v′ is adjacent to u, the clones u′ and v′ may or may not be adjacent depending
on the variant. If the clones are inserted simultaneously at the same time, then u′

and v′ are not adjacent. If the clones are inserted one after the other, then u′ and v′

are adjacent (no matter in what order they are inserted). Our results for Degree
Anonymization (vc) (Theorems 1 and 2) hold for both variants.
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Parameterized Complexity. An instance (I, k) of a parameterized problem consists
of the actual instance I and an integer k being the parameter [6, 9, 16]. A param-
eterized problem is called fixed-parameter tractable (FPT) if there is an algorithm
solving it in f(k) · |I|O(1) time, whereas an algorithm with running time O(|I|f(k))
only shows membership in the class XP (clearly, FPT ⊆ XP). One can show that
a parameterized problem L is (presumably) not fixed-parameter tractable with a
parameterized reduction from a W[1]-hard or W[2]-hard problem (such as Clique or
Set Cover parameterized by solution size) to L. A parameterized reduction from a
parameterized problem L to another parameterized problem L′ is a function that, given
an instance (I, k), computes in f(k) · |I|O(1) time an instance (I ′, k′) (with k′ ≤ g(k))
such that (I, k) ∈ L⇔ (I ′, k′) ∈ L′.

3 Constrained Degree Anonymization

Cloning seems a natural and well-motivated modification operation for social net-
works. Unfortunately, we face computational intractability even on very restricted
input graphs with maximum degree three. The corresponding reduction is from
Independent Set.

Theorem 1. Degree Anonymization (vc) is NP-hard, even on graphs with maxi-
mum degree three.

Also from the viewpoint of fixed-parameter algorithms, we have no good news with
respect to the standard parameter “solution size” t, even on trees. The corresponding
reduction is from Set Cover.

Theorem 2. Degree Anonymization (vc) is NP-hard and W[2]-hard with respect
to the number t of clones, even if the degree k of anonymity is two and the graph is a
tree.

We can adjust the reduction from Theorem 2 to also work for Π-Preserving Degree
Anonymization (va).

Theorem 3. For Π ∈ {Distances, Diameter, Connectivity}, Π-Preserving De-
gree Anonymization (va) is NP-hard and also W[2]-hard with respect to the
number t of added vertices, even if k = 2. For Π ∈ {Distances, Connectivity}, this is
also true on trees.

We strengthen (using a reduction from Clique) parts of Theorem 3 by also showing
that the problem remains intractable with respect to the typically larger parameter
number s of added edges. For simplicity, we consider s as part of the input.

Theorem 4. For Π = Distances, Π-Preserving Degree Anonymization (va)
is W[1]-hard with respect to the number s of new edges.
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Fig. 2: Visualization of our knowledge about the
complexity of Degree Anonymization (va) de-
pending on the values of k and t. The NO-cases
follow from Observation 1, the YES-cases are due
to Lemma 1, and the polynomial-time solvable
cases follow from Lemma 2. For values inside the
“?-area”, the complexity is open (but for the number
version, it is weakly NP-hard, see Theorem 5).

4 Plain Degree Anonymization

In this section, we study the general problem Degree Anonymization (va), without
any restrictions on how to connect the new vertices to the input graph. This freedom
might raise hope to find solutions more efficiently. Indeed, settling the computational
complexity of Degree Anonymization (va) turns out to be tricky in that, on the
one hand, we observe that several cases are fairly easy to solve, but we are not aware
of any polynomial-time algorithm solving the problem in general. On the other hand,
we can only prove weak NP-hardness for a number version of the problem.

In terms of fixed-parameter tractability, however, Degree Anonymization (va)
turns out to be more accessible. We obtain some fixed-parameter tractability results
regarding, amongst others, certain (combined) parameters (for example, s, (∆, k),
and (∆, t)), for some of which we proved the cloning and property-preserving problem
variants to be W-hard.

Easy Cases. We start analyzing the complexity of Degree Anonymization (va)
with respect to the two input values k and t. Figure 2 provides a two-dimensional map
indicating those combinations of k and t for which the problem is polynomial-time
solvable or even trivial. In the following, we briefly state the corresponding results,
starting with the following easy observation:

Observation 1. Let I = (G, k, t) be an instance of Degree Anonymization (va)
with G being an n-vertex graph. If k > n+ t, then I is a no-instance.

Next, we identify some yes-instances using the fact that—due to a result by Erdős
and Kelly [7]—it is always possible to construct a regular graph if we are allowed to
add enough, that is, at least n, new vertices.

Lemma 1. Let I = (G, k, t) be an instance of Degree Anonymization (va) with G
being an n-vertex graph. If k ≤ n+ t and t ≥ n, then I is a yes-instance.

We finish with some polynomial-time solvable instances which can be solved using
f -factors [13, Chapter 10].

Lemma 2. Degree Anonymization (va) is polynomial-time solvable for 2k >
(n+ t).
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Proof. Let I = (G = (V,E), k, t) be an instance of Degree Anonymization (va)
with 2k > (n+ t). By Observation 1 and Lemma 1, we can assume that k ≤ n+ t < 2k
and t < n. Observe that in this case any solution (if existing) transforms G into a
regular graph. Hence, the question is whether there is a regular graph H with at
most n+ t vertices containing G as induced subgraph. We solve this problem by using
the polynomial-time solvable f-Factor problem [13, Chapter 10], which is defined as
follows:

f-Factor
Input: A graph G = (V,E) and a function f : V → N0.
Question: Is there an f-factor, that is, a subgraph G′ = (V,E′) of G such

that degG′(v) = f(v) for all v ∈ V ?

Our algorithm is as follows. First, we guess in O(n2) time the number t′ ≤ t of
vertices that we will add and the degree d of the final regular graphH. Second, we create
an f-Factor instance (G′ = (V ′, E′), f) as follows: We define the set V ′ := V ∪X
where X is a set of t′ vertices. We start with an edgeless graph G′ and then add all
edges such that one endpoint is in X, formally, E′ = {{u, v} | u ∈ X, v ∈ V ′}. Finally,
we set f(v) := d− degG(v) for all v ∈ V and f(u) = d for all u ∈ X. This completes
the f-Factor instance I ′. Clearly, I ′ is a yes-instance if and only if there exists a
d-regular graph H with n+ t′ vertices containing G as an induced subgraph. Hence,
our algorithm runs in polynomial time. ut

(Weak) NP-Hardness. In Figure 2, we left open the computational complexity of
Degree Anonymization (va) for instances with 2k ≤ n+ t. We now partially settle
this question claiming that an equivalent number version of the problem is weakly
NP-hard. To this end, notice that since we are not allowed to add any edges between
old vertices, the actual structure of the input graph G becomes negligible and we only
need to store the information of how many vertices of which degree it contains (that
is, its block sequence B(G)):

Observation 2. Let G and G′ be two graphs with identical block sequences, that is,
B(G) = B(G′). Then, for the Degree Anonymization (va) instances I := (G, k, t)
and I ′ := (G′, k, t), it holds that I is a yes-instance if and only if I ′ is a yes-instance.

Based on Observation 2, we can now define an equivalent number version of Degree
Anonymization (va).

Block Sequence Anonymization (va)
Input: A realizable block sequence B and k, t ∈ N.
Question: Is there a graph G with block sequence B such that (G, k, t) is a

yes-instance of Degree Anonymization (va)?

Note that Block Sequence Anonymization (va) is a pure number problem. This
helps us to develop a polynomial-time reduction from a weakly NP-hard version of
the Subset Sum problem. An NP-hard problem is weakly NP-hard if it can be solved
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in polynomial-time provided that the input is encoded in unary. We conclude with
the following theorem:

Theorem 5. Block Sequence Anonymization (va) is weakly NP-hard.

Proof (sketch). The reduction is from the weakly NP-hard Change Making prob-
lem [15]: Given integers a1, . . . , an, m, and b, are there nonnegative integers x1, . . . , xn
such that Σi∈[n]xi ≤ m, and Σi∈[n]xiai = b? We can assume, without loss of generality,
that ∀i, j : |ai − aj | ≥ m3. If this property does not hold, then we simply multiply all
numbers by m3, that is, we set ai := m3 · ai and b := m3 · b. It is easy to verify that
this new instance is a yes-instance if and only if the original instance is a yes-instance.

We now create an equivalent Block Sequence Anonymization (va) instance
(B, k, t), with t := m and k := t(b+n+ 5t+ 1). The realizable block sequence B is the
block sequence of a graph G, which is defined as follows. We introduce several gadgets,
that is, subgraphs of G with distinguished vertices of specific degrees which play an
important role in the correctness proof. In the following, we only specify the degrees of
these proper vertices. To realize these gadgets, we add an appropriate number of degree-
one neighbors. Our construction ensures that, when k-anonymizing G by adding t
vertices, the degree-one vertices will always keep their degree. The construction works
as follows.

Add a b-gadget consisting of 5t base vertices of degree n+ t, b count vertices of
degree n+ 2t− 1, and k− b− 5t b-catch vertices of degree n+ 2t. For each i ∈ [n], add
one ai-gadget consisting of one ai-vertex of degree ai + n+ 4t+ 1 and k − 1 ai-catch
vertices of degree ai + n + 5t + 1. Finally, add a dummy gadget consisting of one
dummy vertex of degree n+ 4t+ 1 and k− 1 dummy catch vertices of degree n+ 5t+ 1.
This completes the construction. ut

Tractability Results. While it remains open whether Degree Anonymization (va)
is NP-hard, the weak NP-hardness result for Block Sequence Anonymization
(va) (Theorem 5) indicates that also the graph problem may be hard to solve. Hence,
a parameterized approach solving Degree Anonymization (va) is reasonable.
Notably we provide several (fixed-parameter) tractability results contrasting the
hardness results for the constrained problem versions considered in Section 3.

A natural parameter to consider is the solution size t. Unfortunately, we do not
know whether Degree Anonymization (va) is fixed-parameter tractable with
respect to t; we only know that Degree Anonymization (va) is polynomial-time
solvable when t is a constant.

Theorem 6. Degree Anonymization (va) parameterized by the maximum num-
ber t of added vertices is in XP.

We can, however, “improve” containment in XP with respect to t to fixed-parameter
tractability with respect to the combined parameter (t,∆). Before proving the theorem,
we introduce some notation and a helpful lemma.
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For a set A of vertices whose addition transforms a graph G = (V,E) into a k-
anonymous graph, we call A an addition set and we write G+A for the k-anonymous
graph. Furthermore, the edges in G+A having at least one endpoint in A (the “added”
edges) are denoted by E(A). Hence, G+A = (V ∪A,E ∪ E(A)).

Clearly, for an addition set A of size t all vertices in G + A, except those in A,
have degree at most ∆+ t where ∆ is the largest degree in G. It may happen that
the degree of some (potentially all) vertices from A in G+A is larger than ∆+ t. In
this case, there are full blocks in G+A of degree larger than ∆+ t consisting only of
vertices from A, implying that t ≥ k. We call blocks corresponding to degrees greater
than ∆+ t large-degree blocks. Lemma 3 shows that we may assume that there are at
most two large-degree blocks which are, in terms of their degree values, not too far
away from each other. This will later allow us to guess their degrees.

Lemma 3. Let (G, k, t) be a yes-instance of Degree Anonymization (va). There
is an addition set A of size at most t such that in G + A there are no large-degree
blocks, or there is only one large-degree block, or there are only two large-degree blocks
whose degrees differ by exactly one.

Theorem 7. Degree Anonymization (va) is fixed-parameter tractable with respect
to the combined parameter (t,∆).

Proof. Our algorithm consists of three phases. First (Phase I), we guess what the
solution looks like, specifically guessing the degrees of the good blocks, and the degrees
of the new vertices, while respecting the guessed degrees of the good blocks. Then
(Phase II), we use a bottom-up lazy method to solve the instance for the old vertices,
but with respecting guessed degrees of the new vertices. Finally (Phase III), we use
integer linear programming to solve the instance for the new vertices. A detailed
description follows.

Phase I: we guess the subgraph induced by the new vertices (in O(2t
2
) time). We

know, from Lemma 3, that the number of possible blocks in the solution is upper-
bounded by ∆+ t+ 2 = O(∆+ t). We guess the degrees of the large-degree blocks (in
O(n) time). Then, we guess, for each block, whether it is empty or full (in O(2∆+t)).
Finally, we guess the degree of each new vertex (in (∆+ t)t time). Phase I runs in

n ·O
(

2t
2 · 2∆+t · (∆+ t)t

)
= n · f1(t,∆) time.

For ease of presentation, we say that we move a vertex up, meaning that we
connect it to some new vertices, thus changing its degree and moving it to a different
block of some desired degree. We can choose which new vertices to use in a round-robin
way, but considering their guessed degrees (that is, each new vertex participates in
the round-robin until it reaches its guessed degree).

Phase II: we perform the following bottom-up lazy method. We start from the
lowest degree block, and work all the way up to the highest degree block. If the current
block Bi is guessed to become empty, then we move its vertices up, to the first block
above it which is guessed to become full (if there is a gap greater than t to such a
block, we halt with a negative answer). Otherwise, if it is guessed to become full, then
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we distinguish between the following two cases: if the number of old vertices in the
block plus the number of new vertices guessed to be in this block is at least k, then
we do nothing, because it means that this block is already anonymized with respect
to the old vertices, and continue to the next block. Otherwise, Bi has a shortage of
some zi many vertices to become full, so we find the maximum j < i such that the
number of old vertices in Bj plus the number of new vertices guessed to be in Bj is
greater than k (specifically, equals to k + zj for some zj spare vertices in Bj ; if the
gap i− j is greater than t, then we halt with a negative answer, because Bi cannot
be k-anonymized). We move min(zi, zj) spare vertices from Bj to Bi. If, after moving
these spare vertices, Bi still needs some more vertices (that is, if zi > zj), then we
repeat this step once more, looking for the maximum j′ < j such that the number
of old vertices in Bj′ plus the number of new vertices guessed to be in Bj′ is greater
than k, until we have enough vertices in the current block. If in the end of this phase,
all of the blocks are anonymized, we continue to the next phase. The overall cost of
Phase II is O(∆+ t)3 = f2(t,∆).

Our approach is lazy for two reasons. The first reason is that we use the spare
vertices from the closest full block below the current one. The second reason is that
we move the minimum number of vertices to make the blocks anonymized with respect
to the old vertices, that is, we only change the bad blocks to become full, but not
overfull.

Phase III: We check if we reached the exact guessed total number s of edges added.
If so, then we halt with a positive answer, as this means that the new vertices reached
their guessed degrees. If we reached a larger number, then we halt with a negative
answer, since Phase II is lazy, it means that we cannot k-anonymize the graph using
the guessed number of edges added. If we reached a smaller number, then we still
have some hope of reaching s, because of the laziness of Phase II, so we try to move
some more vertices, until we reach the guessed total number of edges added, while
not destroying the anonymity of the blocks. To this end, denote the number of spare
vertices in each full block Bi by zi. Notice that we can move any number of up to zi
vertices from this block, to any full block above it, and no other moves are possible.
Now our problem reduces to the following integer linear program:

Input: n′ numbers {z′1, . . . , z′n′}, n′ ×m′ matrix A = aij , and integer Z.
Task: Maximize

∑
i∈[n′]

∑
j∈[m′] aijxij such that

∑
i∈[n′]

∑
j∈[m′] aijxij ≤ Z and

∀j :
∑

i∈[n′] aij ≤ zj .

Specifically, we set n′ and m′ to be the number of full blocks. For each full block, we
set z′i to be zi and ai,j to be the gap between the jth full block and the ith full block.
Fortunately, the number of variables is upper-bounded by the number of full blocks
squared, (therefore, upper-bounded by O((∆+ t)2)). By a famous result of Lenstra
[11], it follows that the running time is exponential only in the number of variables,
therefore the cost of this phase is poly(n) · f3(t,∆).

We now prove the correctness of the algorithm. As the algorithm only performs
permitted operations (that is, adds up to t new vertices and connects up to s edges,
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each incident to at least one new vertex), it follows that if the input is a no-instance,
then the algorithm returns a negative answer. Otherwise, if the input is a yes-instance,
then at least one set of guesses from Phase I will be correct. Any solution must at
least move the vertices that are moved in Phase II, and then the problem reduces to
the ILP presented in Phase III. ut

The question whether fixed-parameter tractability also holds for the parameter t or ∆
alone remains open. Nevertheless, we find that fixed-parameter tractability also holds
for the combined parameter (∆, k).

Theorem 8. Degree Anonymization (va) is fixed-parameter tractable with respect
to the combined parameter (∆, k).

Contrasting the W[1]-hardness of Π-Preserving Degree Anonymization (va)
parameterized by the number s of new edges (Theorem 4), we conclude with fixed-
parameter tractability for Degree Anonymization (va) with respect to s. We again
assume that s is given as part of the input.

Theorem 9. Degree Anonymization (va) is fixed-parameter tractable with respect
to the number s of newly inserted edges.

5 Conclusion

Table 1 in the introductory section overviews most of our results and leaves several
specific open questions. Moreover, it is fair to say that our positive algorithmic results
are basically of classification nature and require further improvement for practical
relevance. Indeed, a more holistic approach in terms of a full-fledged multivariate
complexity analysis [8, 17], perhaps also driven by the analysis of real-world network
data characteristics, may help to derive practically useful algorithmic results. A deeper
investigation of approximation algorithms (cf. [3, 4]) may be beneficial as well. Finally,
typical social network properties such as measured by the clustering coefficient or
the average path length are studied in experimental work [3], but the complexity of
Π-Preserving Degree Anonymization (va) with respect to these properties is
unexplored so far.
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