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Abstract. The computation of Kemeny rankings is central to many ap-
plications in the context of rank aggregation. Unfortunately, the problem
is NP-hard. We show that the Kemeny score (and a corresponding Ke-
meny ranking) of an election can be computed efficiently whenever the
average pairwise distance between two input votes is not too large. In
other words, Kemeny Score is fixed-parameter tractable with respect to
the parameter “average pairwise Kendall-Tau distance da”. We describe
a fixed-parameter algorithm with running time 16⌈da⌉ · poly. Moreover,
we extend our studies to the parameters “maximum range” and “aver-
age range” of positions a candidate takes in the input votes. Whereas
Kemeny Score remains fixed-parameter tractable with respect to the
parameter “maximum range”, it becomes NP-complete in case of an av-
erage range value of two. This excludes fixed-parameter tractability with
respect to the parameter “average range” unless P=NP.
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1 Introduction

Aggregating inconsistent information has many applications ranging from vot-
ing scenarios to meta search engines and fighting spam [1, 8, 11, 14]. In some
sense, one deals with consensus problems where one wants to find a solution to
various “input demands” such that these demands are met as well as possible.
Naturally, contradicting demands cannot be fulfilled at the same time. Hence,
the consensus solution has to provide a balance between opposing requirements.
The concept of Kemeny consensus (or Kemeny ranking) is among the most im-
portant conflict resolution proposals in this context. In this paper, extending and
improving previous results [3], we study new algorithmic approaches based on
parameterized complexity analysis [13, 17, 21] for efficiently computing optimal
Kemeny consensus solutions in practically relevant special cases. To this end,
we employ the “similarity” between votes by measuring their average pairwise
distance.

Kemeny’s voting scheme can be described as follows. An election (V, C) con-
sists of a set V of n votes and a set C of m candidates. A vote is a preference
list of the candidates, that is, a permutation on C. For instance, in the case
of three candidates a, b, c, the order c > b > a would mean that candidate c
is the best-liked and candidate a is the least-liked for this voter. A “Kemeny
consensus” is a preference list that is “closest” to the preference lists of the vot-
ers. For each pair of votes v, w, the so-called Kendall-Tau distance (KT-distance
for short) between v and w, also known as the inversion distance between two
permutations, is defined as

KT-dist(v, w) =
∑

{c,d}⊆C

dv,w(c, d),

where the sum is taken over all unordered pairs {c, d} of candidates, and dv,w(c, d)
is 0 if v and w rank c and d in the same order, and 1 otherwise. Using divide-and-
conquer, the KT-distance can be computed in O(m·log m) time [20]. The score of
a preference list l with respect to an election (V, C) is defined as

∑

v∈V KT-dist(l, v).
A preference list l with the minimum score is called a Kemeny consensus of (V, C)
and its score

∑

v∈V KT-dist(l, v) is the Kemeny score of (V, C), denoted as K-
score(V, C). The underlying decision problem is as follows:

Kemeny Score

Input: An election (V, C) and an integer k > 0.
Question: Is K-score(V, C) ≤ k?

Known results Bartholdi et al. [2] showed that Kemeny Score is NP-complete,
and it remains so even when restricted to instances with only four votes [14, 15].
Given the computational hardness of Kemeny Score on the one side and its
practical relevance on the other side, polynomial-time approximation algorithms
have been studied. The Kemeny score can be approximated to a factor of 8/5
by a deterministic algorithm [23] and to a factor of 11/7 by a randomized algo-
rithm [1]. Recently, a polynomial-time approximation scheme (PTAS) has been
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developed [19]. However, its running time is completely impractical. Conitzer,
Davenport, and Kalagnanam [11, 8] performed computational studies for the ef-
ficient exact computation of a Kemeny consensus, using heuristic approaches
such as greedy and branch-and-bound. Their experimental results encourage the
search for practically relevant, efficiently solvable special cases. These experimen-
tal investigations focus on computing strong admissible bounds for speeding up
search-based heuristic algorithms. In contrast, our focus is on exact algorithms
with provable asymptotic running time bounds for the developed algorithms.
Hemaspaandra et al. [18] provided further, exact classifications of the classi-
cal computational complexity of Kemeny elections. More specifically, whereas
Kemeny Score is NP-complete, they provided PNP

‖ -completeness results for
other, more general versions of the problem. Very recently, a parameterized com-
plexity study based on various problem parameterizations has been initiated [3].
There, fixed-parameter tractability results for the parameters “Kemeny score”,
“number of candidates” and “maximum KT-distance between two input votes”
are reported.

Finally, it is interesting to note that Conitzer [7] uses a (different) notion
of similarity (which is, furthermore, imposed on candidates rather than voters)
to efficiently compute the closely related Slater rankings. Using the concept of
similar candidates, he identifies efficiently solvable special cases, also yielding a
powerful preprocessing technique for computing Slater rankings.

New results Our main result is that Kemeny Score can be solved in 16⌈da⌉ ·
poly(n, m) time, where da denotes the average KT-distance between the pairs of
input votes. This means a significant improvement over the previous algorithm
for the maximum KT-distance dmax between pairs of input votes, which has run-
ning time (3dmax+1)! ·poly(n, m) [3]. Clearly, da ≤ dmax. In addition, using sim-
ilar ideas, we can show that Kemeny Score can be solved in 32rmax ·poly(n, m)
time, where rmax denotes the maximum range of candidate positions of an elec-
tion (see Section 2 for a formal definition). In contrast, these two fixed-parameter
tractability results are complemented by an NP-completeness result for the case
of an average range of candidate positions of only two, thus destroying hopes for
fixed-parameter tractability with respect to this parameterization.

2 Preliminaries

Let the position of a candidate c in a vote v, denoted by v(c), be the number of
candidates that are better than c in v. That is, the leftmost (and best) candidate
in v has position 0 and the rightmost has position m− 1. For an election (V, C)
and a candidate c ∈ C, the average position pa(c) of c is defined as

pa(c) :=
1

n
·
∑

v∈V

v(c).
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For an election (V, C), the average KT-distance da is defined as3

da :=
1

n(n − 1)
·

∑

u,v∈V,u6=v

KT-dist(u, v).

Note that an equivalent definition is given by

da :=
1

n(n − 1)
·

∑

a,b∈C

#v(a > b) · #v(b > a),

where for two candidates a and b the number of votes in which a is ranked better
than b is denoted by #v(a > b). The latter definition is useful if the input is
provided by the outcomes of the pairwise elections of the candidates including
the margins of victory. Furthermore, we define

d := ⌈da⌉.

Further, for an election (V, C) and for a candidate c ∈ C, the range r(c) of c
is defined as

r(c) := max
v,w∈V

{|v(c) − w(c)|} + 1.

The maximum range rmax of an election is given by rmax := maxc∈C r(c) and
the average range ra is defined as

ra :=
1

m

∑

c∈C

r(c).

Finally, we briefly introduce the relevant notions of parameterized complexity
theory [13, 17, 21]. Parameterized algorithmics aims at a multivariate complexity
analysis of problems. This is done by studying relevant problem parameters and
their influence on the computational complexity of problems. The hope lies in ac-
cepting the seemingly inevitable combinatorial explosion for NP-hard problems,
but confining it to the parameter. Thus, the decisive question is whether a given
parameterized problem is fixed-parameter tractable (FPT) with respect to the
parameter. In other words, for an input instance I together with the parameter k,
we ask for the existence of a solving algorithm with running time f(k) ·poly(|I|)
for some computable function f .

3 On Parameterizations of Kemeny Score

This section discusses the “art” of finding different, practically relevant param-
eterizations of Kemeny Score. Our paper focusses on structural parameteri-
zations, that is, structural properties of input instances that may be exploited

3 To simplify the presentation, the following definition counts the pair (u, v) as well

as the pair (v, u), thus having to divide by n(n − 1) to obtain the correct average
distance value.
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v1 : a > b > c > d > e > f > . . .

...
vi : a > b > c > d > e > f > . . .

vi+1 : b > a > d > c > f > e > . . .

...
v2i : b > a > d > c > f > e > . . .

Fig. 1. Small maximum range but large average KT-distance.

to develop efficient solving algorithms for Kemeny Score. To this end, here
we investigate the realistic scenario (which, to some extent, is also motivated by
previous experimental results [11, 8]) that the given preference lists of the vot-
ers show some form of similarity. More specifically, we consider the parameters
“average KT-distance” between the input votes, “maximum range of candidate
positions”, and “average range of candidate positions”. Clearly, the maximum
value is always an upper bound for the average value. The parameter “average
KT-distance” reflects the situation that in an ideal world all votes would be the
same, and differences occur to some (limited) form of noise which makes the
actual votes different from each other (see [12, 10, 9]). With average KT-distance
as parameter we can affirmatively answer the question whether a consensus list
that is closest to the input votes can efficiently be found. By way of contrast,
the parameterization by position range rather reflects the situation that whereas
voters can be more or less decided concerning groups of candidates (e.g., political
parties), they may be quite undecided and, thus, unpredictable, concerning the
ranking within these groups. If these groups are small this can also imply small
range values, thus making the quest for a fixed-parameter algorithm in terms of
range parameterization attractive.

It is not hard to see, however, that the parameterizations by “average KT-
distance” and by “range of position” can significantly differ. As described in the
following, there are input instances of Kemeny Score that have a small range
value and a large average KT-distance, and vice versa. This justifies separate in-
vestigations for both parameterizations; these are performed in Sections 4 and 5,
respectively. We end this section with some concrete examples that exhibit the
announced differences between our notions of vote similarity, that is, our param-
eters under investigation. First, we provide an example where one can observe a
small maximum candidate range whereas one has large average KT-distance, see
Figure 1. The election in Figure 1 consists of n = 2i votes such that there are two
groups of i identical votes. The votes of the second group are obtained from the
first group by swapping neighboring pairs of candidates. Clearly, the maximum
range of candidates is 2. However, for m candidates the average KT-distance da

is

da =
2 · (n/2)2 · (m/2)

n(n − 1)
> m/4

and, thus, da is unbounded for an unbounded number of candidates.
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v1 : a > b > c > d > e > f > . . .

v2 : b > c > d > e > f > . . . > a

v′
1 : a > b > c > d > e > f > . . .

...

Fig. 2. Small average KT-distance but large maximum range.

Second, we present an example where the average KT-distance is small but
the maximum range of candidates is large, see Figure 2. In the election of Figure 2
all votes are equal except that candidate a is at the last position in the second
vote, but on the first position in all other votes. Thus, the maximum range
equals the range of candidate a which equals the number of candidates, whereas
by adding more copies of the first vote the average KT-distance can be made
smaller than one.

Finally, we have a somewhat more complicated example displaying a case
where one observes small average KT-distance but large average range of can-
didates.4 To this end, we make use of the following construction based on an
election with m candidates. Let Vm be a set of m votes such that every candi-
date is in one of the votes at the first and in one of the votes at the last position;
the remaining positions can be filled arbitrarily. Then, for some N > m3, add N
further votes VN in which all candidates have the same arbitrary order. Then,
the average KT-distance of the constructed election is

da = D(Vm) + D(VN ) + D(VN , Vm),

where D(Vm) (D(VN )) is the average KT-distance within the votes of Vm (VN )
and D(VN , Vm) is the average KT-distance between pairs of votes with one vote
from VN and the other vote from Vm. Since m2 is an upper bound for the pairwise
(and average) KT-distance between any two votes, it holds that D(Vm) ≤ m2,
D(VN ) = 1, and D(VN , Vm) ≤ m2. Further, we have m · (m− 1) ordered pairs of
votes within Vm, N ·m pairs between VN and Vm, and N · (N − 1) pairs within
VN . Since N > m3 it follows that

da ≤
m(m − 1) · m2 + Nm · m2 + N(N − 1) · 1

N(N − 1)
≤ 3.

In contrast, the range of every candidate is m, thus the average range is m.

4 Parameter Average KT-Distance

In this section, we further extend the range of parameterizations studied so far
(see [3]) by giving a fixed-parameter algorithm with respect to the parameter

4 Clearly, this example also exhibits the situation of a large maximum candidate range
with a small average KT-distance. We chose nevertheless to present the example from
Figure 2 because of its simplicity.
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“average KT-distance”. We start with showing how the average KT-distance can
be used to upper-bound the range of positions that a candidate can take in any
optimal Kemeny consensus. Based on this crucial observation, we then state the
algorithm.

4.1 A Crucial Observation

Our fixed-parameter tractability result with respect to the average KT-distance
of the votes is based on the following lemma.

Lemma 1. Let da be the average KT-distance of an election (V, C) and d =
⌈da⌉. Then, in every optimal Kemeny consensus l, for every candidate c ∈ C
with respect to its average position pa(c) we have pa(c) − d < l(c) < pa(c) + d.

Proof. The proof is by contradiction and consists of two claims: First, we show
that we can find a vote with Kemeny score less than d · n, that is, the Kemeny
score of the instance is less than d · n. Second, we show that in every Kemeny
consensus every candidate is in the claimed range. More specifically, we prove
that every consensus in which the position of a candidate is not in a “range d of
its average position” has a Kemeny score greater than d · n, a contradiction to
the first claim.

Claim 1: K-score(V, C) < d · n.

Proof of Claim 1: To prove Claim 1, we show that there is a vote v ∈ V
with

∑

w∈V KT-dist(v, w) < d · n, implying this upper bound for an optimal
Kemeny consensus as well. By definition,

da =
1

n(n − 1)
·

∑

v,w∈V,v 6=w

KT-dist(v, w) (1)

⇒ ∃v ∈ V with da ≥
1

n(n − 1)
· n ·

∑

w∈V,v 6=w

KT-dist(v, w) (2)

=
1

n − 1
·

∑

w∈V,v 6=w

KT-dist(v, w) (3)

⇒ ∃v ∈ V with da · n >
∑

w∈V,v 6=w

KT-dist(v, w). (4)

Since we have d = ⌈da⌉, Claim 1 follows directly from Inequality (4).

The next claim shows the given bound on the range of possible candidates po-
sitions.

Claim 2: In every optimal Kemeny consensus l, every candidate c ∈ C fulfills
pa(c) − d < l(c) < pa(c) + d.

Proof of Claim 2: We start by showing that, for every candidate c ∈ C,
we have
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K-score(V, C) ≥
∑

v∈V

|l(c) − v(c)|. (5)

Note that, for every candidate c ∈ C, for two votes v, w we must have
KT-dist(v, w) ≥ |v(c) − w(c)|. Without loss of generality, assume that v(c) >
w(c). Then, there must be at least v(c) − w(c) candidates that have a smaller
position than c in v and that have a greater position than c in w. Further, each
of these candidates increases the value of KT-dist(v, w) by one. Based on this, In-
equality (5) directly follows as, by definition, K-score(V, C) =

∑

v∈V KT-dist(v, l).
To simplify the proof of Claim 2, in the following, we shift the positions in l

such that l(c) = 0. Accordingly, we shift the positions in all votes in V , that
is, for every v ∈ V and every a ∈ C, we decrease v(a) by the original value
of l(c). Clearly, shifting all positions does not affect the relative differences of
positions between two candidates. Then, let the set of votes in which c has a
nonnegative position be V + and let V − denote the remaining set of votes, that
is, V − := V \V +.

Now, we show that if candidate c is placed outside of the given range in
an optimal Kemeny consensus l, then K-score(V, C) > d · n. The proof is by
contradiction. We distinguish two cases:

Case 1: l(c) ≥ pa(c) + d.
As l(c) = 0, in this case pa(c) becomes negative. Then,

0 ≥ pa(c) + d ⇔ −pa(c) ≥ d.

It follows that |pa(c)| ≥ d. The following shows that Claim 2 holds for this case.

∑

v∈V

|l(c) − v(c)| =
∑

v∈V

|v(c)| (6)

=
∑

v∈V +

|v(c)| +
∑

v∈V −

|v(c)|. (7)

Next, replace the term
∑

v∈V − |v(c)| in (7) by an equivalent term that de-
pends on |pa(c)| and

∑

v∈V + |v(c)|. For this, use the following, derived from the
definition of pa(c):

n · pa(c) =
∑

v∈V +

|v(c)| −
∑

v∈V −

|v(c)|

⇔
∑

v∈V −

|v(c)| = n · (−pa(c)) +
∑

v∈V +

|v(c)|

= n · |pa(c)| +
∑

v∈V +

|v(c)|.

The replacement results in
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∑

v∈V

|l(c) − v(c)| = 2 ·
∑

v∈V +

|v(c)| + n · |pa(c)|

≥ n · |pa(c)| ≥ n · d.

This says that K-score(V, C) ≥ n · d, a contradiction to Claim 1.

Case 2: l(c) ≤ pa(c) − d.

Since l(c) = 0, the condition is equivalent to 0 ≤ pa(c) − d ⇔ d ≤ pa(c), and we
have that pa(c) is nonnegative. Now, we show that Claim 2 also holds for this
case.

∑

v∈V

|l(c) − v(c)| =
∑

v∈V

|v(c)| =
∑

v∈V +

|v(c)| +
∑

v∈V −

|v(c)|

≥
∑

v∈V +

v(c) +
∑

v∈V −

v(c) = pa(c) · n ≥ d · n.

Thus, also in this case, K-score(V, C) ≥ n · d, a contradiction to Claim 1.

Based on Lemma 1, for every position we can define the set of candidates
that can take this position in an optimal Kemeny consensus. The subsequent
definition will be useful for the formulation of the algorithm.

Definition 1. Let (V, C) be an election. For every integer i ∈ {0, . . . , m − 1},
let Pi denote the set of candidates that can assume the position i in an optimal
Kemeny consensus, that is, Pi := {c ∈ C | pa(c) − d < i < pa(c) + d}.

Using Lemma 1, we can easily show the following.

Lemma 2. For every position i, |Pi| ≤ 4d.

Proof. The proof is by contradiction. Assume that there is a position i with
|Pi| > 4d. Due to Lemma 1, for every candidate c ∈ Pi the positions which c
may assume in an optimal Kemeny consensus can differ by at most 2d− 1. This
is true because, otherwise, candidate c could not be in the given range around
its average position. Then, in a Kemeny consensus, each of the at least 4d + 1
candidates must hold a position that differs at most by 2d − 1 from position i.
As there are only 4d − 1 such positions (2d − 1 on the left and 2d − 1 on the
right of i), one obtains a contradiction.

4.2 Basic Idea of the Algorithm

In Subsection 4.4, we will present a dynamic programming algorithm for Ke-

meny Score. It exploits the fact that every candidate can only appear in a fixed
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range of positions in an optimal Kemeny consensus.5 The algorithm “generates”
a Kemeny consensus from the left to the right. It tries out all possibilities for
ordering the candidates locally and then combines these local solutions to yield
an optimal Kemeny consensus.

More specifically, according to Lemma 2, the number of candidates that can
take a position i in an optimal Kemeny consensus for any 0 ≤ i ≤ m − 1 is at
most 4d. Thus, for position i, we can test all possible candidates. Having chosen a
candidate for position i, the remaining candidates that could also assume i must
either be left or right of i in a Kemeny consensus. Thus, we test all possible
two-partitionings of this subset of candidates and compute a “partial” Kemeny
score for every possibility. For the computation of the partial Kemeny scores at
position i we make use of the partial solutions computed for the position i − 1.

4.3 Definitions for the Algorithm

To state the dynamic programming algorithm, we need some further definitions.
For i ∈ {0, . . . , m − 1}, let I(i) denote the set of candidates that could be
“inserted” at position i for the first time, that is,

I(i) := {c ∈ C | c ∈ Pi and c /∈ Pi−1}.

Let F (i) denote the set of candidates that must be “forgotten” at latest at
position i, that is,

F (i) := {c ∈ C | c /∈ Pi and c ∈ Pi−1}.

For our algorithm, it is essential to subdivide the overall Kemeny score into
partial Kemeny scores (pK). More precisely, for a candidate c and a subset R of
candidates with c /∈ R, we set

pK(c, R) :=
∑

c′∈R

∑

v∈V

dR
v (c, c′),

where for c /∈ R and c′ ∈ R we have dR
v (c, c′) := 0 if in v we have c > c′, and

dR
v (c, c′) := 1, otherwise. Intuitively, the partial Kemeny score denotes the score

that is “induced” by candidate c and the candidate subset R if the candidates
of R have greater positions than c in an optimal Kemeny consensus.6 Then, for
a Kemeny consensus l := c0 > c1 > · · · > cm−1, the overall Kemeny score can

5 In contrast, the previous dynamic programming algorithms [3] for the parameters
“maximum range of candidate positions” and “maximum KT-distance” rely on de-
composing the input whereas here we rather have a decomposition of the score into
partial scores. Further, here we obtain a much better running time by using a more
involved dynamic programming approach.

6 By convention and somewhat counterintuitively, we say that a candidate c has a
greater position than a candidate c′ in a vote if c′ > c.
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be expressed by partial Kemeny scores as follows.

K-score(V, C) =

m−2
∑

i=0

m−1
∑

j=i+1

∑

v∈V

dv,l(ci, cj) (8)

=

m−2
∑

i=0

∑

c′∈R

∑

v∈V

dR
v (ci, c

′) for R := {cj | i < j < m} (9)

=

m−2
∑

i=0

pK(ci, {cj | i < j < m}). (10)

Next, consider the corresponding three-dimensional dynamic programming
table T . Roughly speaking, define an entry for every position i, every candidate c
that can assume i, and every candidate subset C′ ⊆ Pi\{c}. The entry stores
the “minimum partial Kemeny score” over all possible orders of the candidates
of C′ under the condition that c takes position i and all candidates of C′ take
positions smaller than i. To define the dynamic programming table formally, we
need some further notation.

Let Π(C′) denote the set of all possible orders of the candidates in C′, where
C′ ⊆ C. Further, consider a Kemeny consensus in which every candidate of C′

has a position smaller than every candidate in C\C′. Then, the minimum partial
Kemeny score restricted to C′ is defined as

min
(d1>d2>···>dx)∈Π(C′)

{

x
∑

s=1

pK(ds, {dj | s < j < m} ∪ (C\C′))

}

with x := |C′|. That is, it denotes the minimum partial Kemeny score over all
orders of C′. We define an entry of the dynamic programming table T for a
position i, a candidate c ∈ Pi, and a candidate subset P ′

i ⊆ Pi with c /∈ P ′
i .

For this, we define L :=
⋃

j≤i F (j) ∪ P ′
i . Then, an entry T (i, c, P ′

i) denotes the
minimum partial Kemeny score restricted to the candidates in L ∪ {c} under
the assumptions that c is at position i in a Kemeny consensus, all candidates of
L have positions smaller than i, and all other candidates have positions greater
than i. That is, for |L| = i − 1, define

T (i, c, P ′
i) := min

(d1>···>di−1)∈Π(L)

i−1
∑

s=0

pK(ds, C\{dj | j ≤ s})

+ pK(c, C\(L ∪ {c})).

4.4 Dynamic Programming Algorithm

The algorithm is displayed in Figure 3. It is easy to modify the algorithm such
that it outputs an optimal Kemeny consensus: for every entry T (i, c, P ′

i ), one ad-
ditionally has to store a candidate c′ that minimizes T (i−1, c′, (P ′

i ∪F (i))\{c′})
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Input: An election (V, C) and, for every 0 ≤ i < m, the set Pi of candidates that can
assume position i in an optimal Kemeny consensus.
Output: The Kemeny score of (V, C).

Initialization:

01 for i = 0, . . . , m − 1
02 for all c ∈ Pi

03 for all P ′
i ⊆ Pi\{c}

04 T (i, c, P ′
i ) := +∞

05 for all c ∈ P0

06 T (0, c, ∅) := pK(c, C\{c})

Update:

07 for i = 1, . . . , m − 1
08 for all c ∈ Pi

09 for all P ′
i ⊆ Pi\{c}

10 if |P ′
i ∪

S

j≤i
F (j)| = i − 1

and T (i − 1, c′, (P ′
i ∪ F (i))\{c′}) is defined then

11 T (i, c, P ′
i ) = min

c′∈P ′

i
∪F (i)

T (i − 1, c
′
, (P ′

i ∪ F (i))\{c′})

+ pK(c, (Pi ∪
[

i<j<m

I(j))\(P ′
i ∪ {c}))

Output :
12 K-score = minc∈Pm−1

T (m − 1, c, Pm−1\{c})

Fig. 3. Dynamic programming algorithm for Kemeny Score

in line 11. Then, starting with a minimum entry for position m − 1, one recon-
structs an optimal Kemeny consensus by iteratively adding the “predecessor”
candidate. The asymptotic running time remains unchanged. Moreover, in sev-
eral applications, it is useful to compute not just one optimal Kemeny consensus
but to enumerate all of them. At the expense of an increased running time, which
clearly depends on the number of possible optimal consensus rankings, our al-
gorithm can be extended to provide such an enumeration by storing all possible
predecessor candidates.

Lemma 3. The algorithm in Figure 3 correctly computes Kemeny Score.

Proof. For the correctness, we have to show two points:
First, all table entries are well-defined, that is, for an entry T (i, c, P ′

i ) con-
cerning position i there must be exactly i − 1 candidates that have positions
smaller than i. This condition is assured by line 10 of the algorithm.7

7 It can still happen that a candidate takes a position outside of the required range
around its average position. Since such an entry cannot lead to an optimal solution
according to Lemma 1, this does not affect the correctness of the algorithm. To
improve the running time it would be convenient to “cut away” such possibilities.
We leave considerations in this direction to future work.
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Second, we must ensure that our algorithm finds an optimal solution. Due to
Equality (10), we know that the Kemeny score can be decomposed into partial
Kemeny scores. Thus, it remains to show that the algorithm considers a decom-
position that leads to an optimal solution. For every position, the algorithm tries
all candidates in Pi. According to Lemma 1, one of these candidates must be
the “correct” candidate c for this position. Further, for c we can observe that
the algorithm tries a sufficient number of possibilities to partition all remain-
ing candidates C\{c} such that they have either smaller or greater positions
than i. More precisely, every candidate from C\{c} must be in exactly one of
the following three subsets:

1. The set F of candidates that have already been forgotten, that is, F :=
⋃

0≤j≤i F (j).
2. The set of candidates that can assume position i, that is, Pi\{c}.
3. The set I of candidates that are not inserted yet, that is, I :=

⋃

i<j<m I(j).

Due to Lemma 1 and the definition of F (j), we know that a candidate from F
cannot take a position greater than i−1 in an optimal Kemeny consensus. Thus,
it is sufficient to explore only those partitions in which the candidates from F
have positions smaller than i. Analogously, one can argue that for all candidates
in I, it is sufficient to consider partitions in which they have positions greater
than i. Thus, it remains to try all possibilities for partitioning the candidates
from Pi. This is done in line 09 of the algorithm. Thus, the algorithm returns
an optimal Kemeny score.

Theorem 1. Kemeny Score can be solved in O(16d · (d2 · m + d · m2 log m ·
n) + n2 · m logm) time with average KT-distance da and d = ⌈da⌉. The size of
the dynamic programming table is O(16d · d · m).

Proof. The dynamic programming procedure requires the set of candidates Pi

for 0 ≤ i < m as input. To determine Pi for all 0 ≤ i < m, one needs the
average positions of all candidates and the average KT-distance da of (V, C).
To determine da, compute the pairwise distances of all pairs of votes. As there
are O(n2) pairs and the pairwise KT-distance can be computed in O(m log m)
time [20], this takes O(n2 ·m log m) time. The average positions of all candidates
can be computed in O(n ·m) time by iterating once over every vote and adding
the position of every candidate to a counter variable for this candidate. Thus,
the input for the dynamic programming algorithm can be computed in O(n2 ·
m log m) time.

Concerning the dynamic programming algorithm itself, due to Lemma 2,
for 0 ≤ i < m, the size of Pi is upper-bounded by 4d. Then, for the initial-
ization as well as for the update, the algorithm iterates over m positions, 4d
candidates, and 24d subsets of candidates. Whereas the initialization in the in-
nermost instruction (line 04) can be done in constant time, in every innermost
instruction of the update phase (line 11) one has to look for a minimum entry
and one has to compute a pK-score. To find the minimum, one has to consider
all candidates from P ′

i ∪ F (i). As P ′
i ∪ F (i) is a subset of Pi−1, it can con-

tain at most 4d candidates. Further, the required pK-score can be computed in
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O(n·m log m) time. Thus, for the dynamic programming we arrive at the running
time of O(m · 4d · 24d · (4d + n · m log m)) = O(16d · (d2 · m + d · m2 log m · n)).

Concerning the size of the dynamic programming table, there are m positions
and any position can be assumed by at most 4d candidates. The number of
considered subsets is bounded from above by 24d. Hence, the size of the table T
is O(16d · d · m).

Finally, let us discuss the differences between the dynamic programming
algorithm used for the “maximum pairwise KT-distance” in [3] and the algorithm
presented in this work. In [3], the dynamic programming table stored all possible
orders of the candidates of a given subset of candidates. In this work, we eliminate
the need to store all orders by using the decomposition of the Kemeny score into
partial Kemeny scores. This allows us to restrict the considerations for a position
to a candidate and its order relative to all other candidates.

5 Small candidate range

In this section, we consider two further parameterizations, namely “maximum
range” and “average range” of candidates. As exhibited in Section 3, the range
parameters in general are “orthogonal” to the distance parameterizations dealt
with in Section 4. Whereas for the parameter “maximum range” we can obtain
fixed-parameter tractability by using the dynamic programming algorithm given
in Figure 3, the Kemeny Score problem becomes NP-complete already in case
of an average range of two.

5.1 Parameter Maximum Range

In the following, we show how to bound the number of candidates that can
assume a position in an optimal Kemeny consensus by a function of the maximum
range. This enables the application of the algorithm from Figure 3.

Lemma 4. Let rmax be the maximum range of an election (V, C). Then, for
every candidate its relative order in an optimal consensus with respect to all but
at most 3rmax candidates can be computed in O(n · m2) time.

Proof. We use an observation that follows directly from the Extended Condorcet
criterion [22]: If for two candidates b, c ∈ C we have v(b) > v(c) for all v ∈ V ,
then in every Kemeny consensus l it holds that l(b) > l(c). Thus, it follows that
for b, c ∈ C with maxv∈V v(b) < minv∈V v(c), in an optimal Kemeny consensus l
we have l(b) < l(c). That is, for two candidates with “non-overlapping range”
their relative order in an optimal Kemeny consensus can be determined using
this observation. Clearly, all these candidate pairs can be computed in O(n ·m2)
time.

Next, we show that for every candidate c there are at most 3rmax candidates
whose range overlaps with the range of c. The proof is by contradiction. Let
the range of c go from position i to j, with i < j. Further, assume that there
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is a subset of candidates S ⊆ C with |S| ≥ 3rmax + 1 such that for every
candidate s ∈ S there is a vote v ∈ V with i ≤ v(s) ≤ j. Now, consider an
arbitrary input vote v ∈ V . Since there are at most 3rmax positions p with
i−rmax ≤ p ≤ j+rmax for one candidate s ∈ S it must hold that v(s) < i−rmax

or v(s) > j + rmax. Thus, the range of s is greater than rmax, a contradiction.
Hence, there can be at most 3rmax candidates that have a position in the range
of c in a vote v ∈ V . As described above, for all other candidates we can compute
the relative order in O(n · m2) time. Hence, the lemma follows.

As a direct consequence of Lemma 4, we conclude that every candidate can
assume one of at most 3rmax consecutive positions in an optimal Kemeny con-
sensus. Recall that for a position i the set of candidates that can assume i in
an optimal consensus is denoted by Pi (see Definition 1). Then, using the same
argument as in Lemma 2, one obtains the following.

Lemma 5. For every position i, |Pi| ≤ 6rmax.

In complete analogy to Theorem 1, one arrives at the following.

Theorem 2. Kemeny Score can be solved in O(32rmax · (r2
max · m + rmax ·

m2 log m · n) + n2 · m logm) time with maximum range rmax. The size of the
dynamic programming table is O(32rmax · rmax · m).

5.2 Parameter Average Range

Theorem 3. Kemeny Score is NP-complete for elections with average range
two.

Proof. The proof uses a reduction from an arbitrary instance ((V, C), k) of Ke-

meny Score to a Kemeny Score-instance ((V ′, C′), k) with average range less
than two. The construction of the election (V ′, C′) is given in the following. To
this end, let ai, 1 ≤ i ≤ |C|2, be new candidates not occurring in C.

– C′ := C ⊎ {ai | 1 ≤ i ≤ |C|2}.

– For every vote v = c1 > c2 > · · · > cm in V , put the vote v′ := c1 > c2 >
· · · > cm > a1 > a2 > · · · > am2 into V ′.

It follows from the extended Condorcet criterion [22] that if a pair of can-
didates has the same order in all votes, it must have this order in a Kemeny
consensus as well. Thus, in a Kemeny consensus it holds that ai > aj for i > j
and, therefore, adding the candidates from C′\C does not increase the Kemeny
score. Hence, an optimal Kemeny consensus of size k for (V ′, C′) can be trans-
formed into an optimal Kemeny consensus of size k for (V, C) by deleting the
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candidates of C′\C. The average range of (V ′, C′) is bounded as follows:

ra =
1

m + m2
·

∑

c∈C′

r(c)

=
1

m + m2
·





∑

c∈C

r(c) +
∑

c∈C′\C

r(c)





≤
1

m + m2
· (m2 + m2) < 2.

Clearly, the reduction can be easily modified to work for every constant value
of at least two by choosing a C′ of appropriate size.

6 Conclusion

Compared to earlier work [3], we significantly improved the running time for
the natural parameterization “maximum KT-distance” for the Kemeny Score

problem. There have been some experimental studies [11, 8] that hinted that the
Kemeny problem is easier when the votes are close to a consensus and, thus, tend
to have a small average distance. Our results for the average distance parameteri-
zation can also be regarded as a theoretical explanation with provable guarantees
for this behavior. Moreover, we provided fixed-parameter tractability in terms of
the parameter “maximum range of positions”, whereas this is excluded for the
parameter “average range of positions” unless P=NP. These results are of par-
ticular interest because we indicated in Section 3 that the parameters “position
range” and “pairwise distance” are independent of each other.

As challenges for future work, we envisage the following:

– Extend our findings to the Kemeny Score problem with input votes that
may have ties or that may be incomplete (also see [3]).

– Improve the running time as well as the memory consumption (which is
exponential in the parameter)—we believe that still significant improvements
are possible.

– Implement the algorithms, perhaps including heuristic improvements of the
running times, and perform experimental studies.

– Investigate typical values of the average KT-distance and the maximum can-
didate range, either under some distributional assumption or for real-world
data.

Finally, we want to advocate parameterized algorithmics [13, 17, 21] as a very
helpful tool for better understanding and exploiting the numerous natural pa-
rameters occuring in voting szenarios with associated NP-hard combinatorial
problems. Only few investigations in this direction have been performed so far,
see, for instance [4–6, 16].
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