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We consider the following decision making scenario: a society of voters has to find an agreement on a set of
proposals, and every single proposal is to be accepted or rejected. Each voter supports a certain subset of the
proposals–the favorite ballot of this voter–and opposes the remaining ones. He accepts a ballot if he supports
more than half of the proposals in this ballot. The task is to decide whether there exists a ballot approving a
specified number of selected proposals (agenda) such that all voters (or a strict majority of them) accept this
ballot.

We show that, on the negative side, both problems are NP-complete, and on the positive side, they are
fixed-parameter tractable with respect to the total number of proposals or with respect to the total number of
voters. We look into further natural parameters and study their influence on the computational complexity
of both problems, thereby providing both tractability and intractability results. Furthermore, we provide
tight combinatorial bounds on the worst-case size of an accepted ballot in terms of the number of voters.
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1. INTRODUCTION
Consider the following decision making scenario which may occur in contexts like coali-
tion formation, the design of party platforms, the change of statutes of an association,
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or the agreement on contract issues: A leader has an agenda, that is, a set of proposals
she wants to get realized. However, a set of proposals has to be approved or disap-
proved as a whole by a set of voters. Each voter has his favorite proposals he wants
to support. A set of proposals is acceptable to a voter if he supports more than half of
these proposals. Now, the leader might have a hidden agenda, that is, she is searching
for a set of proposals containing at least some of her favorite proposals such that a
majority of voters accepts this set. Can the leader efficiently find such a successful set
of proposals satisfying her agenda? What changes when this set of proposals has to be
acceptable to all voters and not just to a majority?

1.1. Mathematical model
Let V be a society of n voters and P be a set of m proposals. Each voter may support
any number of proposals in P and rejects all the others. Subsets of P are called ballots.
The favorite ballot Bi ⊆ P of a voter i (1 ≤ i ≤ n) consists of all proposals he supports.

The voters evaluate a ballot Q ⊆ P according to the size of the intersection of Q and
their favorite ballots. More precisely, voter i accepts Q if and only if a strict majority of
proposals from Q is also contained in his favorite ballot, that is,

|Bi ∩Q| > |Q|/2.

We say that in this case voter i is happy with Q.
The central question is whether there exists a ballot Q that (a) satisfies a hidden

agenda and that (b) is acceptable to the society. The agenda is encoded by the agenda
set Q+ ⊆ P and by a lower bound q+ on the number of agenda proposals that are to be
contained in Q. The society’s acceptance in (b) might be a unanimous acceptance or a
majority acceptance. This leads to the following two problems which only differ in the
respective questions asked.

UNANIMOUSLY ACCEPTED BALLOT (UNAAB)
Input: A set P of m proposals; a society V of n voters with favorite ballots
B1, . . . , Bn ⊆ P; an agenda (Q+, q+), Q+ ⊆ P and q+ ∈ N.
Question: Is there a ballot Q ⊆ P with |Q+ ∩ Q| ≥ q+ which every single
voter i accepts (that is, |Bi ∩Q| > |Q|/2)?

MAJORITYWISE ACCEPTED BALLOT (MAJAB)
Input: A set P of m proposals; a society V of n voters with favorite ballots
B1, . . . , Bn ⊆ P; an agenda (Q+, q+), Q+ ⊆ P and q+ ∈ N.
Question: Is there a ballot Q ⊆ P with |Q+ ∩Q| ≥ q+ which a strict majority
of the voters accepts (that is, |Bi ∩Q| > |Q|/2)?

Sometimes we only use the term agenda (without “hidden”), although we always as-
sume the agenda to be unknown for the voters. One important special case of UNAAB
or MAJAB is when there is no agenda, that is, Q+ = ∅ or q+ = 0. In this case, the only
question is whether there is a ballot acceptable to the society. For the rest of the paper,
we assume without loss of generality that q+ = 0 if and only if Q+ = ∅.

The following example demonstrates that the solution sizes to our problems are not
monotone, that is, a solution ballot of size h does not imply a solution of a size smaller
or larger than h. This is in notable contrast to many natural decision problems, such
as all problems we reduce from in this paper.

Example 1. Consider the society V = {1, 2, 3, 4} of voters and the set P =
{p1, p2, p3, p4, p5} of proposals. The favorite ballots are given as B1 = {p1, p2, p4},
B2 = {p1, p2, p5}, B3 = {p1, p3, p5}, and B4 = {p2, p3, p4}.
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p1 p2 p3 p4 p5

B1 + + - + -

B2 + + - - +

B3 + - + - +

B4 - + + + -

p1 p2 p3 p4 p5

B1 + + - + -

B2 + + - - +

B3 + - + - +

B4 - + + + -

Fig. 1. Illustration of Example 1. There is one column for each proposal from P and one row for each
favorite ballot of a voter. There is a “+” in row i and column j if and only if pj ∈ Bi; otherwise there is a “−”.
We use this way of illustrating subset families several times in this paper. Here, we highlight the only two
unanimously accepted ballots from Example 1 (left: {p1, p2, p3}, right: {p1, p2, p3, p4, p5}).

Suppose that there is no agenda. Then the only unanimously accepted ballots are
{p1, p2, p3} of size three and {p1, p2, p3, p4, p5} of size five (see also Figure 1). This shows
that the set of the sizes of all solution ballots may contain gaps.

With regard to majority acceptance, if the hidden agenda is ({p4, p5}, 2), then the
ballots {p1, p4, p5}, {p2, p4, p5}, and {p1, p2, p3, p4, p5} are the only ballots that are ac-
ceptable to a strict majority of voters (the first ballot is accepted by the voters 1–3, the
second ballot is accepted by the voters 1, 2, and 4, and the third ballot is accepted by
all voters). Again, the set of the sizes of all solution ballots contains gaps.

1.2. Related work
Our model can be seen as special case of an approval voting system with threshold
functions as introduced by Fishburn and Pekeč [2004]. In this model, the profile also
consists of a set P of m proposals and a society V of n voters with favorite ballots
B1, . . . , Bn ⊆ P. Additionally, one specifies the set ζ of admissible committees which is
a family of subsets of P without the empty set. The winners are defined by the choice
function which maps each profile to a non-empty subfamily of ζ. The choice function Ct
for some threshold function t : ζ → R+ (with R+ being the set of positive rational
numbers) is defined by

Q ∈ Ct ↔ Q ∈ ζ ∧ ∀Q′ ∈ ζ : |{i : Bi ∩Q ≥ t(Q)}| ≥ |{i : Bi ∩Q′ ≥ t(Q′)}|.
Now, setting the admissible committees ζ to all subsets of P without the empty set and
defining the strict majority threshold function SMT by SMT(Q) := |Q|+1

2 , the choice
function CSMT can be read as follows: A ballot Q represents a voter if and only if a strict
majority of the proposals from Q are supported by the voter. The choice function CSMT

selects the ballots that represent the most voters [Kilgour and Marshall 2012]. In our
model, we ask whether there is a ballot that represents all (resp. a strict majority of
the) voters and which contains q+ proposals from Q+ Except for t being the constant
1-function where NP-hardness for computing the choice function is known [Fishburn
and Pekeč 2004], no computational complexity analysis has been undertaken for CSMT

[Fishburn and Pekeč 2004; Kilgour 2010; Kilgour and Marshall 2012].
The scenario considered in our work is also related to the concepts of collective domi-

nation [Elkind et al. 2011], approval-based multiwinner rules [Aziz et al. 2014; Kilgour
2010; Kilgour and Marshall 2012], and proportional representation in multiwinner
elections [Betzler et al. 2013; Chamberlin and Courant 1983; Lu and Boutilier 2011;
Monroe 1995; Potthoff and Brams 1998; Procaccia et al. 2008; Skowron et al. 2013a]
as well as in resource allocation [Skowron et al. 2013b; Skowron et al. 2014]—in all
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cases one has to select certain alternatives (proposals in our context) that provide a
“good representation” of the voters’ will. In our work, we deal with “collectively win-
ning ballots”, namely more than half of the proposals in such a ballot are supported by
a voter. The literature contains many different concepts for “good representations” of
the voters’ will in the literature which are designed for different application scenarios.
The approval-based multiwinner rule Satisfaction Approval Voting (SAV), introduced
by Kilgour [2010], has a similar flavor as our model since it also aims to maximize the
voters’ satisfaction with the selected committee. However, in SAV the committee size
is fixed, the satisfaction is measured by “the number of selected favorites divided by
the total number of the voter’s favorites” (instead of “the number of selected favorites
divided by the total number of selected alternatives” as in our model) and the opti-
mization criterion is utilitarian (instead of egalitarian as in our model). In contrast
to our model, winner determination for SAV is polynomial-time solvable. Similarly to
our unanimous model variant, where each voter must be satisfied, proportional repre-
sentation aims to assign to each voter a good representative, but the votes are usually
based on linear preferences or utility functions.

Further related models have been considered in the theory and practice of decision
making. For instance, Laffond and Lainé [2012] recently investigated the conditions
under which issue-wise majority voting allows for reaching several types of compro-
mise. An alternative to issue-wise evaluation is to compare issue sets (which corre-
spond to ballots in our setting) using the symmetric difference from a voter’s favorite
issue set [Çuhadaroğlu and Lainé 2012; Laffond and Lainé 2009; Laffond and Lainé
2012]. A small symmetric difference is good, and a large symmetric difference is bad.
This way of comparing issue sets is very close to our model: A voter accepts a ballot Q if
and only if the symmetric difference from his favorite ballot B to Q is smaller than the
symmetric difference from B to the empty ballot. Typically, the studies in this context
use issue sets to analyze properties or paradoxes of an issue-wise voting process and
do not provide computational complexity results.

Computational complexity studies are established for related decision making prob-
lems like judgment aggregation [Baumeister et al. 2011; Endriss et al. 2012], approval-
based multiwinner determination [Aziz et al. 2014], lobbying [Bredereck et al. 2014b;
Christian et al. 2007; Binkele-Raible et al. 2014; Erdélyi et al. 2007], proportional rep-
resentation in multiwinner elections [Potthoff and Brams 1998; Procaccia et al. 2008;
Lu and Boutilier 2011; Betzler et al. 2013; Skowron et al. 2013a] as well as in resource
allocation [Skowron et al. 2013b; Skowron et al. 2014], or control of multiple refer-
enda [Conitzer et al. 2009]. In the context of judgment aggregation, Alon et al. [2013b]
investigated the computational complexity of control by bundling issues which is also
related to “vote on bundled proposals” as considered in our paper. Baumeister et al.
[2013] investigated the computational complexity of control by bundling judges.

Finally, we mention in passing that central computational complexity results of our
work are cast within the framework of parameterized complexity analysis, which due
to its refined view on algorithmic (in)tractability fits particularly well with voting and
related problems [Betzler et al. 2012; Bredereck et al. 2014a].

1.3. Our contributions
We analyze the combinatorial and algorithmic behavior of UNANIMOUSLY ACCEPTED
BALLOT and MAJORITYWISE ACCEPTED BALLOT. In particular, we investigate the
role of the following natural parameters:

— the size |Q+| of the agenda set,
— the number m of proposals,
— the number n of voters,
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Table I. Parameterized complexity results on two central problems. The entry “ILP-FPT” means fixed-
parameter tractability based on a formulation as an integer linear program. Note that all our “intractabil-
ity” results except for the W[1]-completeness result for MAJAB parameterized by bmax also hold for the
case without hidden agenda.

Parameters UNAAB MAJAB

Size |Q+| of the agenda NP-complete already for |Q+| = 0 (Thm. 2.1)
Number m of proposals FPT, no polynomial kernel (Thm. 2.2)
Number n of voters ILP-FPT, no polynomial kernel (Thm. 2.3)
Parameter h W[2]-complete (Thm. 2.4) W[2]-hard (Thm. 2.4)
Parameter bmax FPT, no polynomial kernel (Thm. 2.5) W[1]-complete (Thm. 2.5)
Parameter bgap NP-complete already for bgap = 1 (Thm. 2.9)

— the size h of the solution ballot Q, that is, h = |Q|,
— the maximum size bmax of favorite ballots, that is, bmax = maxi∈V |Bi|, and
— the difference bgap between d(m+ 1)/2e and the minimum size of favorite ballots, that

is, bgap = d(m+ 1)/2e −mini∈V |Bi|.

The parameter bgap measures how far a given instance is from being trivial in terms
of the number of proposals: If each voter’s favorite ballot contains at least d(m+ 1)/2e
proposals, then choosing Q = P makes every voter happy, so the instance is a trivial
yes-instance. While the parameters n and m are naturally related to the “dimensions”
of the input, the parameters h, bmax, and bgap measure certain degrees of contradiction
or inhomogeneity in an instance. The parameter |Q+| measures the size of the agenda
set and is an upper bound for q+ (in non-trivial instances).

Section 2 is devoted to computational complexity results. The main picture is sum-
marized in Table I. Not too much of a surprise, UNANIMOUSLY ACCEPTED BALLOT
and MAJORITYWISE ACCEPTED BALLOT turn out to be NP-complete. More surpris-
ingly, this remains so even when the input ballots are almost trivial, that is, bgap = 1.
Namely, if |Bi| ≥ bm/2c + 1 for all voters i, then all voters accept the ballot P.
But if every voter i only satisfies the slightly weaker condition |Bi| ≥ bm/2c, then
both problems already become NP-complete. Next, formulating the problems as in-
teger linear programs (ILPs) where the number of variables only depends (exponen-
tially) on n implies fixed-parameter tractability with respect to the parameter n. Using
simple brute-force search, one easily obtains that both problems are fixed-parameter
tractable with respect to the parameter m. As to efficient and effective preprocess-
ing by polynomial-time data reduction, however, we show that neither for parame-
ter n nor for parameter m polynomial-size problem kernels exist unless an unlikely
collapse in complexity theory occurs. As to the parameter h, we prove parameterized
intractability—more precisely, W[2]-completeness for UNANIMOUSLY ACCEPTED BAL-
LOT and W[2]-hardness for MAJORITYWISE ACCEPTED BALLOT. While the two prob-
lems behave in almost the same way with respect to the parameters n, m, and h, the
situation changes for the parameter bmax: While UNANIMOUSLY ACCEPTED BALLOT is
shown fixed-parameter tractable, MAJORITYWISE ACCEPTED BALLOT is proven to be
W[1]-complete. However, the corresponding W[1]-hardness proof requires a non-empty
agenda set. W[1]-hardness for MAJORITYWISE ACCEPTED BALLOT without hidden
agenda remains as an open question. All other intractability results hold even without
hidden agenda.

In Section 3, we provide an in-depth combinatorial analysis concerning the depen-
dence of the size of a minimal solution ballot on the parameter n. In particular, we show
the upper bound (n + 1)(n+1)/2 and the lower bound nn/2−o(n) for UNANIMOUSLY AC-
CEPTED BALLOT without hidden agenda, thus achieving asymptotically almost match-
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ing bounds. Analogous results hold for MAJORITYWISE ACCEPTED BALLOT without
hidden agenda. In Section 4, we conclude with some open questions for future research.

1.4. Parameterized complexity preliminaries
The concept of parameterized complexity was pioneered by Downey and Fel-
lows [Downey and Fellows 2013] (see also further textbooks [Flum and Grohe 2006;
Niedermeier 2006]). A parameterized problem is a language L ⊆ Σ∗×Σ∗, where Σ is an
alphabet. The second component is called the parameter of the problem. Typically, the
parameter or the “combined” ones are non-negative integers. A parameterized prob-
lem L is fixed-parameter tractable if there is an algorithm that decides in f(k) · |x|O(1)

time whether (x, k) ∈ L, where f is an arbitrary computable function depending only
on k. Correspondingly, FPT denotes the class of all fixed-parameter tractable param-
eterized problems. A core tool in the development of fixed-parameter algorithms is
polynomial-time preprocessing by data reduction [Guo and Niedermeier 2007; Kratsch
2014]. Here, the goal is to transform a given problem instance (x, k) in polynomial time
into an equivalent instance (x′, k′) with parameter k′ ≤ k such that the size of (x′, k′)
is upper-bounded by some function g only depending on k. If this is the case, we call
instance (x′, k′) a (problem) kernel of size g(k). If g is a polynomial, then we say that
this problem has a polynomial-size problem kernel, in short, polynomial kernel.

Fixed-parameter intractability under some plausible complexity-theoretic assump-
tions can be shown by means of parameterized reductions. A parameterized reduction
from a parameterized problem P to another parameterized problem P ′ is a function
that, given an instance (x, k), computes in f(k) · |x|O(1) time an instance (x′, k′) (with k′
only depending on k) such that (x, k) is a yes-instance for P if and only if (x′, k′) is a
yes-instance for P ′. The two basic complexity classes for fixed-parameter intractabil-
ity are W[1] and W[2]. A parameterized problem L is W[1]- or W[2]-hard if there is a
parameterized reduction from a W[1]- or W[2]-hard problem to L. For instance, both
INDEPENDENT SET and HITTING SET are known to be NP-complete [Garey and John-
son 1979]. However, when parameterized by the solution size, INDEPENDENT SET is
W[1]-complete while HITTING SET is W[2]-complete [Downey and Fellows 2013]. There
is good complexity-theoretic reason to believe that W[1]-hard and W[2]-hard problems
are not fixed-parameter tractable [Downey and Fellows 2013; Flum and Grohe 2006;
Niedermeier 2006].

2. COMPUTATIONAL COMPLEXITY RESULTS
The following observation is used many times in our proofs.

OBSERVATION 1. Let i and j be two voters that are both happy with some Q ⊆ P.

(i) Then Bi ∩Bj 6= ∅.
(ii) If Bi ∩Bj = {p}, then p ∈ Q and furthermore |Bi ∩Q| = |Bj ∩Q|.

PROOF. (i) Assume Bi∩Bj = ∅. Since i is happy with Q it holds that |Bi∩Q| > |Q|/2
and thus |Q \Bi| < |Q|/2. As Bj ∩Q ⊆ Q \Bi, voter j cannot be happy; a contradiction.

(ii) First, assume Bi ∩ Bj = {p} and p /∈ Q. Then, two voters with the favorite
ballots Bi \ {p} and Bj \ {p} would be happy with Q, but (Bi \ {p}) ∩ (Bj \ {p}) = ∅; a
contradiction to (i). Second, assume Bi∩Bj = {p}, p ∈ Q, and without loss of generality
|Bi∩Q| > |Bj ∩Q|. Since voter i is happy with Q it holds that |Bi∩Q| ≥ |Q|/2+1. Then,
Q contains at least |Q|/2 proposals which are not p and thus not in Bj ; a contradiction
to the fact that voter j is happy.

The next observation basically says that UNAAB can be many-one reduced in poly-
nomial time to MAJAB with the same agenda. This implies that the “majority problem”
is computationally at least as hard as the “unanimous problem”.
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U = {1,2, 3, 4,5}
S = { S1 = {2, 4}

S2 = {3,5}
S3 = {1,2, 3}
S4 = {4,5} }

k = 2
r = 4

1 2 3 4 5 d1 d2 α

B1 - + - + - + + -

B2 - - + - + + + -

B3 + + + - - + + -

B4 - - - + + + + -

B5 + + + + + - - +

B6 - - - - - + + +

Fig. 2. Illustration of Reduction 1. Left: A HITTING SET instance with solution size k = 2 and number
of subsets r = 4. The solution {2, 5} is highlighted in boldface. Right: Constructed UNAAB instance with
dummy proposals d1 and d2, special proposal α, and the dummy voters 5 and 6. The solution {2, 5, d1, d2, α}
corresponding to the HITTING SET solution is highlighted in gray.

OBSERVATION 2. Let Iuna be a UNAAB instance with n voters, and let Imaj be a
MAJAB instance with 2n− 1 voters such that

— Iuna and Imaj both have the same proposal set P and the same agenda (Q+, q+),
— the voters from Iuna and the first n voters from Imaj have the same favorite bal-

lots B1, . . . , Bn, and
— the remaining n− 1 voters from Imaj support no proposals.

Then, Q ⊆ P is a solution for Iuna if and only if Q is a solution for Imaj.

PROOF. For the “only if” part, assume there is a ballot Q with |Q+∩Q| ≥ q+ and Q is
accepted by all n voters from Iuna. Then, the first n voters from Imaj also accept Q and
Imaj has altogether 2n− 1 voters. For the “if” part, observe that only the first n voters
from Imaj can be happy with any ballot Q, because the remaining voters do not support
any proposal. Hence, every Q that is accepted by a majority of voters from Imaj is
accepted by all voters from Iuna.

We will use the NP-complete HITTING SET problem [Garey and Johnson 1979] to
prove many of our intractability results. Given a finite set U , subsets S1, . . . , Sr of U ,
and a nonnegative integer k, HITTING SET asks whether there is a hitting set of size
k, that is, whether there is a size-k set U ′ ⊆ U such that Si ∩ U ′ 6= ∅, i ∈ {1, . . . , r}.
The following reduction from HITTING SET to UNAAB is used several times in our
intractability proofs. Note that, due to Observation 2, it implies a reduction to MAJAB.

Reduction 1. Let (U , S1, . . . , Sr, k) be an instance of HITTING SET. Construct an
instance of UNAAB as follows. The proposal set P consists of all the elements of U ,
of k new dummy proposals, and of a special proposal α. There are r + 2 voters. For
1 ≤ i ≤ r, the favorite ballot Bi consists of the elements from Si together with all
dummy proposals. Furthermore, Br+1 := U ∪ {α} and Br+2 consists of α together with
all dummy proposals. Finally, set Q+ := ∅ and q+ := 0.

Reduction 1 is illustrated by an example in Figure 2.
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LEMMA 1. Reduction 1 is a parameterized reduction where the parameters h, n,
and m are linearly bounded in the parameters k, r, and |U |, respectively. More precisely,
h = 2k + 1, n = r + 2, and m = |U |+ k + 1 ≤ 2|U |+ 1.

PROOF. The instance constructed in Reduction 1 has m = |U |+ k + 1 proposals and
n = r + 2 voters. We will see in the following that the size h of the solution ballot Q is
2k+ 1. The reduction runs in O(|U | · r) time. Since Q+ = ∅, any ballot that makes every
voter happy is a solution. Thus, it remains to show that (U , S1, . . . , Sr, k) has a hitting
set of size k if and only if there is a ballot Q ⊆ P with |Q| ≤ 2k + 1 that makes every
voter happy.

For the “only if” part, let H be a hitting set of size k, and let Q contain the k dummy
proposals, the special proposal α, and the proposals in H. Then |Q| = 2k + 1, and it is
easily seen that |Bi ∩Q| ≥ k + 1 holds for all voters i.

For the “if” part, by applying Observation 1(ii) to Br+1 and Br+2, ballot Q contains
the special proposal α and furthermore Q contains the same number x of proposals
from U as from the dummy proposals. Then x ≤ k, as there are only k dummy propos-
als. For 1 ≤ i ≤ r, the intersection Q ∩ Bi must contain at least one proposal from Si
and hence Q ∩ Si 6= ∅. Hence the x ≤ k elements in Q ∩ U form a hitting set.

2.1. NP-completeness
We show that UNAAB and MAJAB are NP-complete even without hidden agenda. This
implies that there is no hope for fixed-parameter tractability when parameterizing
by |Q+| or q+.

THEOREM 2.1. Both UNANIMOUSLY ACCEPTED BALLOT and MAJORITYWISE AC-
CEPTED BALLOT are NP-complete even without hidden agenda.

PROOF. Both problems are in NP: Checking whether a strict majority of voters or all
voters are happy with a given proposal set Q such that |Q+∩Q| ≥ q+ takes polynomial
time. For the hardness proof, due to Observation 2, it is sufficient to show that UNAAB
is NP-hard even without hidden agenda. This is achieved due to Lemma 1 and the fact
that Reduction 1 is also a polynomial-time many-one reduction.

2.2. Few proposals or few voters
Complementing our intractability result from Theorem 2.1, we show that instances
with few proposals or few voters are tractable. More precisely, we show fixed-
parameter tractability, that is, the considered problems are polynomial-time solvable
for a fixed number of proposals or a fixed number of voters and the degree of the poly-
nomial is a constant. However, we also show that under plausible complexity-theoretic
assumptions these problems do not admit polynomial-time preprocessing algorithms
that reduce the size of an instance to be polynomially bounded by the the number m of
proposals or the number n of voters. In other words, UNAAB and MAJAB are unlikely
to allow for polynomial kernels with respect to the parameters n or m, respectively.

THEOREM 2.2. Parameterized by the number m of proposals, UNANIMOUSLY
ACCEPTED BALLOT and MAJORITYWISE ACCEPTED BALLOT are fixed-parameter
tractable. Unless NP ⊆ coNP/poly, both problems do not admit a polynomial kernel
even without hidden agenda.

PROOF. A straightforward brute-force algorithm running in O(2m ·nm) time simply
tries all ballots Q ⊆ P and checks for each ballot whether it is a solution for UNAAB,
that is, whether |Q+ ∩Q| ≥ q+ and |Q ∩Bi| > |Q|/2 for each voter i. Hence, UNAAB is
in FPT. Analogously, MAJAB is also in FPT.
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How to Put Through Your Agenda in Collective Binary Decisions A:9

Unless NP ⊆ coNP/poly, both problems do not have a polynomial kernel with respect
to the parameter m even without hidden agenda: Reduction 1 is a polynomial-time
reduction from the NP-complete HITTING SET problem; the number m of proposals in
the reduced instance equals |U | + k + 1; and Q+ = ∅. A polynomial kernel of UNAAB
parameterized by m would yield a polynomial kernel of HITTING SET parameterized
by |U | + k. However, Dom et al. [2014] showed that the latter admits no polynomial
kernels unless NP ⊆ coNP/poly.

Thus, even without hidden agenda, UNAAB does not admit a polynomial kernel with
respect to the parameter m. Due to Observation 2, the non-existence of polynomial
kernels transfers to MAJAB even without hidden agenda.

THEOREM 2.3. Parameterized by the number n of voters, UNANIMOUSLY ACCEPT-
ED BALLOT and MAJORITYWISE ACCEPTED BALLOT are fixed-parameter tractable.
Unless NP ⊆ coNP/poly, both problems do not admit a polynomial kernel even without
hidden agenda.

PROOF. We first describe how to formulate MAJAB as an integer linear pro-
gram (ILP) and show how to modify the ILP to also work for UNAAB. Let NV be
the number of proposals that are accepted by the voter set V and rejected by the
rest, that is, NV := |{j | (∀i ∈ V : j ∈ Bi) ∧ (∀i′ /∈ V : j /∈ Bi′)}|. As the propos-
als counted by NV only depend on V , we refer to V as a proposal type. Let xV be the
number of proposals of type V in the ballot Q. Further, let N+

V be the number of pro-
posals in Q+ that are accepted by the voter set V ⊆ V and rejected by the rest, that
is, N+

V := |Q+ ∩ {j | (∀i ∈ V : j ∈ Bi) ∧ (∀i′ /∈ V : j /∈ Bi′)}|. Since ballot Q must
contain at least q+ proposals in Q+, we introduce one variable x+V for each proposal
type V . Variable x+V denotes the number of proposals of type V that are in ballot Q as
well as in ballot Q+. For each voter i we introduce a binary variable zi that may only
have value 1 if voter i is happy with Q. Then Q must satisfy the following constraints
(1)–(5).

n∑
i=1

zi ≥
n+ 1

2
(1)∑

V⊆V

x+V ≥ q+ (2)

∑
V⊆V:
i∈V

xV −
∑
V⊆V:
i/∈V

xV ≥ 1− (m+ 1)(zi − 1) ∀ i ∈ {1, . . . , n} (3)

N+
V ≥ x+V ≥ 0 ∀V ⊆ V (4)

NV ≥ xV ≥ x+V ∀V ⊆ V (5)

Constraint (1) requires that a strict majority of voters is happy with Q, while Con-
straint (2) requires that the number of proposals in Q ∩ Q+ is at least q+. Constraint
set (3) ensures that if variable zi is set to 1, then voter i is happy: if zi = 1, then the
right-hand side equals 1 and the number of proposals which voter i accepts (that is,∑
V⊆V:i∈V xV ) is larger than the number of proposals which voter i rejects (that is,∑
V⊆V:i/∈V xV ). If zi = 0, then the right-hand side equals −m and the constraint is

fulfilled even if voter i rejects the all proposals. Constraint set (4) (respectively Con-
straint set (5)) restricts the number of proposals of each type in Q ∩ Q+ (respectively
in Q) to those actually present. Moreover, Constraint set (5) expresses the relation of

ACM Transactions on Economics and Computation, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 N. Alon et al.

variables x+V and xV . It requires that the number of proposals of each type in Q is at
least the number of proposals of this type in both Q and Q+.

Our ILP contains at most 2n variables xV , 2n variables x+V , and n variables zi. The
total number of constraints is at most 2 · 2n + n + 2. Since the “integer feasibility
problem” (that is, an ILP without objective function) with ρ variables and L input bits
can be solved in O(ρ2.5ρ+o(ρ)L) time [Lenstra 1983; Kannan 1987; Frank and Tardos
1987], MAJAB is fixed-parameter tractable with respect to the number n of voters.

If we delete Constraint (1) and the variables zi, and replace the right-hand sides of
Constraint set (3) with 1, then we gain an ILP for UNAAB with at most 2 · 2n variables
and 2 · 2n + n + 1 constraints. Thus, UNAAB is also fixed-parameter tractable with
respect to parameter n.

Unless NP ⊆ coNP/poly, even without hidden agenda, both problems do not have
a polynomial kernel with respect to the parameter n: Reduction 1 is a polynomial-
time reduction from the NP-complete problem HITTING SET; the number n of voters
in the reduced instance is linearly bounded by the number r of sets in the instance
one reduces from; and Q+ = ∅. A polynomial kernel of UNAAB with Q+ = ∅ para-
meterized by n would yield a polynomial kernel for HITTING SET parameterized by r.
However, this is not possible unless NP ⊆ coNP/poly (cf. [Hermelin et al. 2013, Theorem
5]). Thus, even without hidden agenda, UNAAB does not admit a polynomial kernel.
Neither does MAJAB admit a polynomial kernel even without hidden agenda due to
Observation 2.

2.3. Small Ballots
In this subsection, we perform a parameterized complexity analysis concerning pa-
rameters based on the ballot sizes. We start with the size h of the solution ballot. For
technical reasons, we need to assume that h is given as part of the input when deal-
ing with the parameterized problems and denotes an upper bound for the size of the
solution ballot Q.

To show parameterized intractability for the parameter h, we use the following
lemma that basically says that for UNAAB we may assume without loss of general-
ity that ballot Q has size exactly h.

LEMMA 2. Given an instance I of UNANIMOUSLY ACCEPTED BALLOT, we define a
modified instance I ′ by duplicating each voter and by adding dh/2e dummy proposals
and dh/2e copy proposals so that each original voter additionally supports all dummy
proposals and each duplicate voter additionally supports all the copy proposals. Then,
there is a unanimously accepted ballot of size at most h for I if and only if there is a
unanimously accepted ballot of size exactly h for I ′.

PROOF. For the “only if” part, suppose that a ballot Q with |Q| ≤ h is accepted by
all voters in I. We assume that |Q| and h are odd since every voter that is happy with
a ballot of even size is still happy if one removes an arbitrary proposal. Then, adding
(h− |Q|)/2 dummy proposals and (h− |Q|)/2 copy proposals to Q results in a ballot of
size h that is accepted by all voters in I ′.

For the “if” part, suppose that a ballot Q′ with |Q′| = h is accepted by all voters
in I ′. Then delete all dummy and copy proposals from Q′ to obtain a ballot Q that
is accepted by all voters in I. By applying Observation 1(i) to any original voter and
its duplicate one knows that Q is non-empty. Assume towards a contradiction that
there is a voter in I that is not happy with Q. Since the corresponding voter in I ′ is
happy with Q′, ballot Q′ contains more dummy proposals than copy proposals. Then,
the corresponding duplicate voter is not happy with Q′, a contradiction.
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p1 p2 p3 p4

B1 + + - -

B2 + - + -

B3 - + + +

h = 3, Q+ = {p2, p3, p4}, q+ = 2

[h] = {1, 2, 3}, H = {H1, H2, H3}
H1 = {1, 2}, H2 = {2, 3}, H3 = {1, 3}

p11 p12 p13 p14d1

p21 p22 p23 p24d2

p31 p32 p33 p34d3

layer 1

layer 2

layer 3

a1

a2v11 v12 v13

v21 v22 v23

v31 v32 v33

Fig. 3. Illustration of the reduction from UNAAB to INDEPENDENT DOMINATING SET (IDS). Top: UNAAB
instance with four proposals and three voters and the corresponding auxiliary set family H. All entries in
columns corresponding to proposals from the agenda are written in boldface. All voters are happy with the
ballot {p1, p2, p3}. Bottom: The corresponding graph of the IDS instance. Vertices inside gray bars form
cliques. The three vertices p31, p22, and p13 form an independent dominating set.

Note that I and I ′ have the same agenda (Q+, q+) (we initially copied I to obtain I ′)
and adding or removing proposals that are not in Q+ from a ballot Q has no influence
on whether |Q+ ∩Q| ≥ q+.

Due to Lemma 2 we can assume without loss of generality that given any upper
bound h on the size of the solution ballot every unanimously accepted ballot has size
exactly h. We use this in the W[2]-membership proof for UNAAB parameterized by h
leading to the following theorem.

THEOREM 2.4. Parameterized by the size h of the solution ballot, UNANIMOUSLY
ACCEPTED BALLOT is W[2]-complete and MAJORITYWISE ACCEPTED BALLOT is W[2]-
hard. Both results hold even without hidden agenda.
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PROOF. Due to Lemma 1, Reduction 1 is a parameterized reduction from the W[2]-
hard HITTING SET parameterized by the size k of the hitting set to UNAAB parame-
terized by the size h of the solution ballot without hidden agenda. Because of Obser-
vation 2, this implies W[2]-hardness for MAJAB parameterized by the size h of the
solution ballot even without hidden agenda.

To show that UNAAB is in W[2], we describe a parameterized reduction from UNAAB
parameterized by the size h of the solution ballot to INDEPENDENT DOMINATING SET
(IDS) parameterized by the solution size k. (The W[2]-membership of IDS follows by
a straightforward reduction to WEIGHTED WEFT-t CIRCUIT SATISFIABILITY [Downey
and Fellows 2013].) Given an undirected graph G = (U,E) and an integer k, IDS asks
whether there is an independent dominating set of k vertices, that is, whether there
exists a U ′ ⊆ U with |U ′| = k such that no pair of vertices from U ′ is adjacent and each
vertex from U \ U ′ is adjacent to at least one vertex from U ′.

In the following, we use [z] to denote the set {1, . . . , z} with z ∈ N. Let I :=
(P,V, (Q+, q+), h) be an instance of UNAAB with n voters and m proposals where h
denotes an upper bound for the size of the solution ballot. Let B1, . . . , Bn denote the
favorite ballots of the voters. We construct an instance I ′ = ((U,E), k) of IDS as fol-
lows. The vertex set U consists of proposal vertices, voter vertices, agenda vertices,
and dummy vertices. There are h layers of proposal vertices each containing one ver-
tex for each proposal. We say that the proposal vertex p`j corresponds to proposal j in
layer `. We enumerate all subsets of [h] of size dh/2e. In the following let Hx denote
the xth of these subsets and set H := {H1, . . . ,Hh∗} with h∗ =

(
h
dh/2e

)
. For each voter i

there is one voter vertex for each element inH. We say that voter vertex vsi corresponds
to voter i and subset Hs. There are q+ agenda vertices a1, . . . , aq+ and h dummy vertices
d1, . . . , dh.

The edge set E is constructed as follows. Two proposal vertices are adjacent if they
correspond to the same proposal or are in the same layer, that is, {p`j , p`

′

j′} ∈ E if j = j′

or ` = `′. Each dummy vertex d` is adjacent to all proposal vertices in layer `, that is,
{d`, p`j} ∈ E for each j ∈ [m]. Proposal vertex p`j and voter vertex vsi are adjacent if
voter i supports proposal j and ` ∈ Hs. Proposal vertex p`j and agenda vertex a` are
adjacent if proposal j is from Q+.

We set the size k of the independent dominating set to h. This completes the con-
struction which is illustrated in Figure 3.

Now, we highlight two properties of the constructed instance which help to prove
the correctness of the reduction. First, the proposal vertices from the same layer and
the proposal vertices corresponding to the same proposal form a complete subgraph,
respectively. Hence, an independent dominating set may contain at most one proposal
vertex from each layer and no two proposal vertices corresponding to the same pro-
posal. Second, taking a different proposal vertex from each layer into the dominating
set is the only way to form an independent set of size k such that all dummy vertices
and all other proposal vertices are dominated.

Due to Lemma 2 it remains to show that every voter in I is happy with some ballot Q
with |Q| = h and |Q+∩Q| ≥ q+ if and only if the constructed graph has an independent
dominating set of size k = h.

For the “only if” part, suppose that every voter is happy with the ballot Q :=
{j1, . . . , jh} and |Q+ ∩ Q| ≥ q+. Without loss of generality let {j1, . . . , jq+} ⊆ Q+, that
is, we fix an ordering of the proposals in Q such that the first q+ proposals are from
Q+. We show that the vertex set U ′ = {p1j1 , . . . , p

h
jh
} is an independent dominating set

for I. As discussed above, U ′ is an independent set and all dummy vertices as well
as proposal vertices are either in U ′ or adjacent to a vertex in U ′. So, suppose for the
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sake of contradiction that a voter vertex vsi is not dominated by U ′. This means that
U ′ ∩ {p`j | j ∈ Bi ∧ ` ∈ Hs} = ∅. Hence, at most bh/2c layers may contain proposal
vertices p`j with j ∈ Bi that are in vertex set U ′. Since U ′ does not contain two pro-
posal vertices from the same layer, there are at most bh/2c proposal vertices p`j in U ′

with j ∈ Bi. Thus, voter i is not happy with Q, a contradiction. Analogously, suppose
that agenda vertex a` is not dominated by U ′. However, we already know that p`j` ∈ Q+

and there is an edge between p`j` and a`, a contradiction.
For the “if” part, due to the observations above we know that the vertices forming an

independent dominating set must be proposal vertices (from h different layers). Now,
suppose that U ′ := {p1j1 , . . . , p

h
jh
} is an independent dominating set of size h. First, we

show that every voter in I is happy with Q := {j1, . . . , jh}. The ballot Q is of size h
because U ′ is an independent set, and hence, there are no two proposals vertices in U ′

corresponding to the same proposal. Suppose for the sake of contradiction that voter i
is not happy with Q. Then |Q∩Bi| ≤ bh/2c which means |Q \Bi| ≥ dh/2e. Let X = {` ∈
[h] | p`j ∈ U ′ ∧ j ∈ Q \ Bi} and let vsi be a voter vertex with Hs ⊆ X. This vertex exists
since |X| ≥ dh/2e. Let p`j be a proposal vertex in U ′ that dominates vsi . Then ` ∈ Hs ⊆ X
and j ∈ Bi, a contradiction. Second, we show that |Q∩Q+| ≥ q+. Recall that U ′ contains
h proposal vertices from h different layers corresponding to h different proposals. In
particular, this implies that the q+ agenda vertices are adjacent to q+ proposal vertices
from U ′ corresponding to pairwise different proposals. Hence, Q contains q+ proposals
from the agenda set Q+.

The membership of MAJAB parameterized by the size h of the solution ballot for the
class W[2] remains open. Note that the W[2]-hardness reduction in the proof of Theo-
rem 2.4 does not rely on (an upper bound for) h being given as part of the input. That
is, the problem is computationally hard also for the cases where the size of ballot Q is
not explicitly required to be bounded by h.

Except for the parameter h where we only know that MAJAB is W[2]-hard while
UNAAB is even W[2]-complete, all results shown so far are the same for unani-
mous acceptance and majority acceptance. The following theorem shows that this
changes when considering the parameter bmax where UNAAB remains fixed-parameter
tractable but for MAJAB we show W[1]-completeness.

THEOREM 2.5. Parameterized by the maximum size bmax of the favorite ballots,

(1) UNANIMOUSLY ACCEPTED BALLOT can be solved in O(b2bmax
max · nm) time implying

fixed-parameter tractability; however, even without hidden agenda it admits no poly-
nomial kernel unless NP ⊆ coNP/poly, and

(2) MAJORITYWISE ACCEPTED BALLOT parameterized by bmax is W[1]-complete.

In the remainder of this subsection we prove Theorem 2.5. The non-existence of a
polynomial kernel for UNAAB with respect to parameter m shown in Theorem 2.2 also
holds for parameter bmax, as bmax ≤ m. Although there is no hope for polynomial kernels,
we at least show fixed-parameter tractability for UNAAB parameterized by bmax by a
depth-bounded search tree algorithm.

LEMMA 2.6. UNANIMOUSLY ACCEPTED BALLOT can be solved in O(b2bmax
max · nm)

time.

PROOF. Let I = (P,V, (Q+, q+)) denote an instance of UNAAB with |Bi| ≤ bmax, i ∈
V. Observe that any ballot Q that makes every voter happy contains at most 2bmax − 1
proposals, otherwise the intersection of Q and any favorite ballot has at most bmax pro-
posals but bmax ≤ |Q|/2. Using this observation, we describe a depth-bounded search
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tree algorithm solving the optimization version of UNAAB, that is, it computes a so-
lution ballot Q with the largest intersection Q ∩ Q+ such that every voter is happy
with Q, or it returns ‘no’ if there is no such ballot. The algorithm works as follows.
Start with branching over the upper bound size h ∈ {1, . . . , 2bmax − 1} of the solution
and initialize Q ← ∅ in each branch. Repeat the following until all voters are satis-
fied or |Q| = h: Mark every voter i with |Bi ∩ Q| > bh/2c as satisfied and branch into
adding one proposal from Bj \ Q to Q for an arbitrary unsatisfied voter j. Finally, if
all voters are satisfied, then the computed ballot Q makes every voter happy since
|Bi ∩ Q| > bh/2c ≥ |Q|/2 for each i ∈ V; otherwise discard this branch, because this
path of the search tree cannot lead to a solution as the size of ballot Q reaches the
upper bound h but there is some voter j with |Bj ∩Q| ≤ bh/2c. Finally, if |Q| < h, then
fill up Q with h− |Q| arbitrary proposals from Q+. It is easy to verify that the ballot Q
having the largest intersection with Q+ among all ballots in the leaves of the search
tree is an optimal solution, that is, among all possible ballots that make all voters
happy, ballot Q also has the largest intersection with Q+.

The search tree has depth at most 2bmax, since the size of Q is increased in each
branching step and |Q| ≤ 2bmax. The number of branching possibilities in each step is at
most bmax. Altogether, the algorithm takes O(b2bmax

max · nm) time, because each branching
step needs O(nm) time.

In contrast to UNAAB, MAJAB becomes W[1]-complete for the parameter bmax. We
first prove the W[1]-hardness by a reduction from MAJORITY VERTEX COVER.

LEMMA 2.7. MAJORITYWISE ACCEPTED BALLOT parameterized by the maximum
size bmax of the favorite ballots is W[1]-hard.

PROOF. We describe a parameterized reduction from the W[1]-hard MAJORITY
VERTEX COVER (MVC) problem [Fellows et al. 2010] (cf. [Guo et al. 2007]). Given
an undirected graph G = (U,E) and an integer k, MVC asks whether there is a sub-
set of k vertices which covers a majority of the edges of G, that is, is there a size-k
subset U ′ ⊆ U with |{e ∈ E | e ∩ U ′ 6= ∅}| > |E|/2?

Let (G, k) be an instance of MVC with U denoting the set of vertices and E =
{e1, . . . , es} denoting the set of edges. Now, construct a MAJAB instance as follows.
The proposal set P is defined as U ∪ D with D being a set of k − 1 dummy proposals.
For each edge ej ∈ E there is one voter with the favorite ballot Bj = ej ∪D. Further-
more, the agenda consists of Q+ = U and q+ = k. This completes the construction
which runs in polynomial time. It is illustrated by an example in Figure 4. Next, we
show that (G, k) is a yes-instance for MVC if and only if the constructed instance is a
yes-instance for MAJAB.

For the “only if” part, suppose that there is a subset U ′ ⊆ U of k vertices covering
more than s/2 edges. Then, Q = U ′ ∪D is a solution for our MAJAB instance: Further-
more, |Q| = 2k−1 and |Q+∩Q| = k. Since |Bj ∩Q| = |D|+ |U ′∩ ej | ≥ k for each covered
edge ej , more than s/2 voters are happy.

For the “if” part, we first assume that s/2 ≥
(
k+2
2

)
. Otherwise, add to the graph G a

tree consisting of a root with
(
k+3
2

)
children each of which has a single leaf. This results

in an equivalent instance ((U ′, E′), k′ = k + 1) with |E′|/2 = s/2 +
(
k′+2
2

)
≥
(
k′+2
2

)
.

Suppose that there is a ballot Q ⊆ P which a majority of voters is happy with, and
|Q∩Q+| ≥ k. Note that adding all dummy proposals to Q also results in a feasible solu-
tion. Thus, we assume that Q contains all k− 1 dummy proposals. Then, ballot Q must
contain at least one vertex proposal in each of the happy voters’ favorite ballots. This
implies that the edges corresponding to the happy voters are covered by the vertices
corresponding to the voters in Q. As a majority of voters is happy, a majority of edges
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u7

u8

u1

u2 u3

u4

u5u6

k = 2

u1 u2 u3 u4 u5 u6 u7 u8 d1

{u1, u2} + + - - - - - - +

{u2, u3} - + + - - - - - +

{u1, u7} + - - - - - + - +

{u2, u7} - + - - - - + - +

{u3, u7} - - + - - - + - +

{u7, u8} - - - - - - + + +

{u4, u5} - - - + + - - - +

{u5, u6} - - - - + + - - +

{u4, u8} - - - + - - - + +

{u5, u8} - - - - + - - + +

{u6, u8} - - - - - + - + +

Fig. 4. Illustration of the reduction from MAJORITY VERTEX COVER (MVC) to MAJAB. Top: The graph of
the MVC instance. Vertices u7 and u8 cover seven out of eleven edges. Bottom: The corresponding MAJAB
instance. The agenda is ({u1, . . . , u8}, 2). Seven out of eleven voters (as highlighted) are happy with the
ballot {u7, u8, d1}.

is covered. Finally, we show that the number of vertex proposals in Q is exactly k. Ob-
serve that ballot Q can have at most k + 2 vertex proposals since otherwise no voter is
happy: each voter supports at most two vertex proposals and k − 1 dummy proposals,
and hence, a solution cannot have more than k unsupported vertex proposals. Further-
more, there are at most

(
k+2
2

)
happy voters such that both their vertex proposals are

contained in Q. But since s/2 ≥
(
k+2
2

)
, there must be at least one happy voter j such

that only one vertex proposal in his favorite ballot Bj is contained in Q. This implies
that Q can only be of size 2k − 1, and hence, contains exactly k vertex proposals, since
otherwise voter j is not happy.

As the most technical part of the proof of Theorem 2.5 we finally show that MAJAB
is contained in W[1] for bmax.
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ALGORITHM 1: Nondeterministic part of program P
Input: Proposal set P, the number n of voters, and table z where z[Q′] is the number of voters

whose favorite ballots are supersets of Q′.
Guess a ballot Q ⊆ P with |Q+ ∩Q| ≥ q+ and |Q| ≤ 2bmax;
Initialize z0 ← 0;
for s = min(bmax, |Q|) downto d(|Q|+ 1)/2e do

for each crucial subset Q′ ⊆ Q of size s do
z0 ← z0 + z[Q′];
for each crucial subset Q′′ ⊆ Q′ do

z[Q′′]← z[Q′′]− z[Q′];
end

end
end
if z0 > n/2 then return ‘yes’; else return ‘no’;

LEMMA 2.8. MAJORITYWISE ACCEPTED BALLOT parameterized by the maximum
size bmax of the favorite ballots is in W[1].

PROOF. We use a characterization of W[1] [Flum and Grohe 2006, Theorem 6.22.]
which states that a parameterized problem L with parameter k is in W[1] if and only
if there is a tail-nondeterministic k-restricted nondeterministic random access ma-
chine (NRAM) program deciding L as follows: On each input (x, k), it

(a) performs at most f(k) · poly(|x|) steps with only the last f(k) steps being nondeter-
ministic,

(b) uses only the first f(k) · poly(|x|) registers, and
(c) has numbers of value at most f(k) · poly(|x|) in any register at any time

where f is a function only depending on the parameter k and poly is a polynomial
function. (See Flum and Grohe [2006, Chapter 6] for further information about the
machine characterization of problems in W[1].)

To show the W[1] containment, we describe a tail-nondeterministic bmax-restricted
NRAM program P to decide MAJAB. Given a MAJAB instance I = (P,V, (Q+, q+))
with |P| = m, we say that a ballot Q′ ⊆ P is crucial if it is a subset of the favorite
ballot Bj for some voter j ∈ V, that is, ∃j ∈ V : Q′ ⊆ Bj . The deterministic phase
of P works as follows. For each crucial ballot Q′ the program P counts and stores the
number of voters whose favorite ballots are supersets of Q′; we denote this number
as z[Q′] in the following. Since the maximum size of the favorite ballots is bmax, table z
can be filled in f(bmax) · (nm)c time where f is a function only depending on bmax and c is
a constant. Every number in z has value at most n. The program P uses an additional
counter z0 to store the number of happy voters.

We remark that a straightforward implementation of table z would useO(bmax·mbmax)
registers since a crucial ballot Q′ ⊆ P can have up to bmax proposals. Furthermore, in
the nondeterministic phase we assume that P can decide whether a ballot is crucial in
f(bmax) steps; we address both these issues at the end of the membership proof.

As for the nondeterministic phase of P (see Algorithm 1 for the pseudocode), note that
any ballot making more than half of the voters happy contains at most 2bmax proposals.
Hence, the program P guesses a ballot Q with |Q+ ∩Q| ≥ q+ and |Q| ≤ 2bmax. Checking
whether Q is a solution works as follows.

(i) Take a crucial ballot Q′ ⊆ Q with |Q′| > |Q|/2 (note that |Q′| ≤ bmax),
(ii) increase the counter z0 by z[Q′], and

(iii) decrease z[Q′′] for each crucial ballot Q′′ ( Q′ with |Q′′| > |Q|/2 by z[Q′].
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The program repeats Steps (i)–(iii), considering all crucial ballots Q′ ⊆ Q satisfy-
ing the condition in Step (i) ordered by decreasing size and starting with a Q′ of
size min(bmax, |Q|). The number of steps needed in the nondeterministic part is in
O(4bmax) since the number of sets Q′ fulfilling (i) and the number of subsets Q′′ ⊆ Q′

with |Q′′| > |Q|/2 are both upper-bounded by 2bmax .
Finally, the program decides whether I is a yes-instance by checking whether

z0 ≥ bn/2c+1. To show the correctness of P, it remains to show that z0 indeed equals the
number of voters happy with Q. Let the happy voters be v1, . . . , vr. By accounting for
every crucial subset Q′ ⊆ Q of size at least d(|Q|+ 1)/2e ordered by decreasing size and
reducing the entry z[Q′′] of any subset Q′′ ( Q′ by z[Q′], we count every happy voter
exactly once. That is, we partition the happy voters v1, . . . , vr into subsets V1, . . . , Vs
such that the favorite ballots of any two voters from the same subset have the same in-
tersection with Q and the subsets with lower indices have larger intersections with Q.
Then, in the ith iteration, program P adds the size of set Vi to counter z0. In this way,
counter z0 sums up to the number of voters happy with Q.

Let us now explain how to implement table z using only the first f(bmax)·poly(|I|) reg-
isters and how to decide whether a ballot is crucial. For detecting crucial ballots we
show that it is sufficient to be able to have certificates for crucial ballots and for
“pseudo-crucial” ballots. To this end, we additionally store z[Q′] = 0 for every ballot Q′
that is pseudo-crucial, that is, for every ballot Q′ that is not crucial itself but contains a
proposal whose (single) removal would yield a crucial ballot. This enlarges the table z
by a factor of at most m (as all candidates for being pseudo-crucial can be obtained by
adding one of the m proposals to some crucial ballot). Note that a ballot is non-crucial
if and only if it has a subset that is pseudo-crucial, because we can assume without
loss of generality that every singleton from P is crucial. Thus, a pseudo-crucial subset
Q′′ ⊆ Q′ is a certificate for Q′ being non-crucial.

The table implementation is based on the fact that P actually uses only f(bmax) ·
poly(|I|) entries. To ensure that we only use the first f(bmax)·poly(|I|) registers we store
the entries of table z in an unordered fashion in the first registers, but we augment
the entry for each of such ballots Q′ by additionally storing Q′ itself; each of these
augmentations has size at most O(bmax · logm) for encoding up to bmax proposals in each
ballot Q′. Note that, for simplicity, we could just use a pair of registers for each entry.
Throughout the filling of the table, this makes no difference as we have f(bmax)·poly(|I|)
time available and can afford sequential search for entries, if needed.

The essential idea for querying z[Q′] is to use nondeterminism to guess the position
of a required table entry in the unordered sequence of entries and to check whether the
augmented entry stored in this entry corresponds to Q′. The essential idea for deciding
whether a ballot Q′ is crucial is to simply guess and search for a certificate showing
that the guess was correct.

More precisely, P does the following nondeterministic preprocessing. For each subset
Q′ ⊆ Q, program P guesses whether Q′ is crucial. Then P guesses

(a) the position of the table entry z[Q′] in the registers if Q′ is guessed crucial or
(b) the position of the table entry z[Q′′] for some pseudo-crucial subset Q′′ ⊆ Q′ if Q′ is

guessed non-crucial.

For Case (a), program P checks whether the augmented entry corresponds to ballot Q′
and z[Q′] > 0: If this is the case, then the guess was correct and P stores the position
of the table entry for later access; otherwise, P returns ‘no’. For Case (b), program P
checks whether the augmented entry corresponds to some pseudo-crucial subset of
Q′′ ⊆ Q′ (including Q′ itself) and whether z[Q′′] = 0: If this is the case, then Q′′ is
pseudo-crucial which means that Q′ is non-crucial and that the guess was correct;
otherwise, P returns ‘no’.

ACM Transactions on Economics and Computation, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 N. Alon et al.

It is easy to see that if we have a yes-instance and an appropriate ballot Q, then
there exist correct guesses such that for at least one set of guesses the machine will
answer ‘yes’, as needed. If we have a no-instance and P returns ‘yes’, then one of the
guesses was wrong. However, this is not possible since P validates the correctness of
each single guess or returns ‘no’.

2.4. Further Parameterizations
In the previous subsections, we discussed parameters whose motivation is quite clear
already from their definitions as all these parameters measure something which can
be relatively small in realistic instances. Next, we discuss a parameter that may not
immediately seem interesting from its definition. More precisely, we consider the “be-
low guarantee parameter” [Mahajan and Raman 1999] bgap = d(m+ 1)/2e−mini∈V |Bi|
measuring the distance to trivial yes-instances. To this end, observe that an instance
of UNAAB or MAJAB is a yes-instance if the minimum size of the favorite ballots is at
least d(m + 1)/2e where m denotes the total number of proposals in P. However, both
problems become NP-complete when this minimum size is one less than the guaran-
tee d(m + 1)/2e, even without hidden agenda. This implies that there is no hope for
fixed-parameter tractability with respect to the “below guarantee parameter” bgap.

THEOREM 2.9. Every instance of UNANIMOUSLY ACCEPTED BALLOT or MAJOR-
ITYWISE ACCEPTED BALLOT where each voter i satisfies |Bi| > m/2 is a yes-instance.
UNANIMOUSLY ACCEPTED BALLOT and MAJORITYWISE ACCEPTED BALLOT are NP-
complete even without hidden agenda and when each voter i satisfies |Bi| > m/2− 1.

PROOF. As for the first statement, choosing Q = P makes every voter happy.
To show the second statement, we many-one reduce from the NP-complete VERTEX
COVER (VC) problem. Given an undirected graph G = (U,E) and an integer k ≤ |U |,
VC asks whether there is a vertex cover of at most k vertices, that is, whether there is
a set U ′ ⊆ U with |U ′| ≤ k and for each e ∈ E we have e ∩ U ′ 6= ∅.

Let I = ((U,E), k) with vertex set U = {u1, . . . , ur} and edge set E = {e1, . . . , es} be a
VC instance where we assume without loss of generality that r ≥ k+2. We first reduce
from it to an instance I ′ for UNAAB and then extend this reduced instance I ′ to an
instance I ′′ for MAJAB.

Both instances I ′ and I ′′ have the same proposal set P. It consists of one special
proposal α, of all vertices in U , of k dummy proposals βj (1 ≤ j ≤ k), and of r − k
additional dummy proposals γj′ (1 ≤ j′ ≤ r − k). Thus, |P| = 2r + 1.

Instance I ′ contains four types of voters: one voter v0, one voter v0, s edge voters, and
r−k vertex haters. Voter v0 supports proposal α and all the r dummy proposals. Voter v0
also supports proposal α, and all the vertices in U . For 1 ≤ i ≤ s, the ith edge voter’s
favorite ballot Ai consists of the two vertices in ei, of all the k dummy proposals βj , and
of r − k − 2 arbitrarily chosen dummy proposals from {γ1, . . . , γr−k}. For 1 ≤ i′ ≤ r − k,
the favorite ballot Bi′ of vertex hater i′ consists of α and of all dummy proposals but γi′ .
In total, the number of voters in I ′ is s+ r − k + 2, with each voter supporting at least
r = b|P|/2c proposals. Set Q+ := ∅ and q+ := 0. This reduction can be computed in
polynomial time; it is illustrated with an example in Figure 5.

To show the reduction’s correctness, we have to show that I has a vertex cover of size
at most k if and only if there is a ballot Q ⊆ P that all the voters in I are happy with.

For the “only if” part, suppose that U ′ ⊆ U with |U ′| ≤ k is a vertex cover. We show
that every voter is happy with Q = {α} ∪ {βj | 1 ≤ j ≤ |U ′|} ∪ U ′. First, the size of Q is
2|U ′|+ 1. To make a voter happy, at least |U ′|+ 1 of his favorite proposals must be also
in Q. Voters v0, v0 and all vertex haters are happy with Q. For each i ∈ {1, . . . , s}, Q∩Ai
contains all dummy proposals βj with 1 ≤ j ≤ |U ′| and at least one vertex proposal vj′
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u1

u2u4

u5 u3

k = 2

u1 u2 u3 u4 u5 α β1 β2 γ1 γ2 γ3

v0 - - - - - + + + + + +

v0 + + + + + + - - - - -

{u1, u4} + - - + - - + + + - -

{u1, u5} + - - - + - + + + - -

{u2, u4} - + - + - - + + + - -

{u2, u5} - + - - + - + + + - -

{u3, u5} - - - + - + + + + - -

{u4, u5} - - - + + - + + + - -

1′ - - - - - + + + - + +

2′ - - - - - + + + + - +

3′ - - - - - + + + + + -

special voter

edge
voter

vertex hater

Fig. 5. Illustration of the reduction from VERTEX COVER to UNAAB. Top: The graph of the VERTEX COVER
instance. The vertices u4 and u5 cover all edges. Bottom: The corresponding UNAAB instance. All voters are
happy with the ballot {u4, u5, α, β1, β2} (marked in gray).

with vj′ ∈ ei ∩ U ′ since U ′ is a vertex cover. This sums up to at least |U ′|+ 1 proposals.
Hence, every edge voter is also happy with Q.

For the “if” part, by applying Observation 1(ii) to the ballots of voters v0 and v0,
ballot Q must contain α, and furthermore, Q contains an equal number x of vertex
proposals and dummy proposals. For each i′ ∈ {1, . . . , r − k}, ballot Q cannot contain
dummy proposal γi′ since otherwise |Bi′ ∩ Q| = x < b|Q|/2c + 1. Thus, vertex hater i′
would not be happy. Therefore, the x dummy proposals must come from {β1, . . . , βk}
and x ≤ k. To make the ith edge voter happy, ballot Q must satisfy the condition
|Q ∩Ai| ≥ x+ 1. But since no edge voter supports proposal α, ballot Q must contain at
least one proposal uj ∈ Ai. By definition of Ai, the corresponding vertex uj is incident
to edge ei. This implies that the x vertices in Q form a vertex cover for (U,E).

Next, we extend instance I ′ to instance I ′′ for MAJAB by adding r − k vertex lovers
who have the same favorite ballot U , and s edge-inverse voters such that for 1 ≤ i ≤ s,
edge-inverse voter i’s favorite ballot Ci = (U ∪ {γ1, . . . , γr−k}) \Ai. Thus, Ci and Ai are
disjoint for all 1 ≤ i ≤ s. In total, I ′′ has 2(s+ r− k) + 2 voters. Since each of the newly
added voters supports exactly r proposals, the constraint that each voter’s proposal set
has at least r = b|P|/2c holds. This extension can also be computed in polynomial time.
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Now we show the correctness of the extended reduction, that is, I has a vertex cover
of size at most k if and only if there is a ballot Q ⊆ P which more than half of the
voters in I ′′ are happy with.

For the “only if” part, the ballot Q as constructed in the “only if” part above makes
all voters in I ′ happy. This sums up to s + r − k + 2. Since I ′′ contains all the voters
from I ′ and has 2(s+r−k)+2 voters, this also means that more than half of the voters
in I ′′ are happy with Q.

For the “if” part, for 1 ≤ i ≤ s, the ith edge voter and the ith edge-inverse voter
do not share a common favorite proposal. Furthermore, no vertex hater’s favorite bal-
lot intersects any vertex lover’s favorite ballot. Hence, by applying Observation 1(i),
any ballot can make at most s voters from the edge voters and the edge-inverse voters
happy, and can make at most r − k voters from the vertex haters and the newly con-
structed vertex lovers happy. But I ′′ has 2(s+r−k)+2 voters. This means that in order
to be a solution ballot for I ′′, Q must make both v0 and v0 happy. By applying Obser-
vation 1(ii), Q must then contain α, and, furthermore, Q contains the same number x
of vertex proposals and dummy proposals. The ballot Q cannot make any vertex lover
happy since his favorite ballot and Q have an intersection of size x which is smaller
than b|Q|/2c + 1. Thus, Q needs to make all vertex haters happy. Then, Q cannot con-
tain any dummy proposal γi′ since otherwise the vertex hater i′ is not happy due to
|Bi′ ∩ Q| = x < b|Q|/2c + 1. Hence, Q contains x dummy proposals from {β1, . . . , βk}
with x ≤ k. Then, no edge-inverse voter is happy with Q since at most x proposals from
his favorite ballot are in Q. This means that all edge voters must be happy with Q. To
make the ith edge voter happy, Q must intersect with Ai in at least one vertex uj ∈ Ai.
By definition of Ai, the corresponding vertex uj is incident to edge ei. Thus, the x ver-
tices in Q form a vertex cover for (U,E).

We conclude this subsection with a brief discussion on the relation between the param-
eters “maximum size bmax of the favorite ballots” and “the size hmax of the maximum
symmetric difference between any two favorite ballots”. As the following proposition
shows, for the cases without hidden agenda, the two parameters hmax and bmax are
“equivalent” in terms of parameterized complexity theory: The fact that for two pa-
rameters x and y one has x = Θ(y) implies that the parameterization by x and the
parameterization by y are in the same level of the W-hierarchy and yield the same
parameterized hardness results.

PROPOSITION 2.10. For any instance of UNANIMOUSLY ACCEPTED BALLOT or
MAJORITYWISE ACCEPTED BALLOT it holds that hmax ≤ 2bmax, where hmax denotes the
size of the maximum symmetric difference between two favorite ballots and bmax denotes
the maximum size of the given favorite ballots. Instances of UNANIMOUSLY ACCEPTED
BALLOT or MAJORITYWISE ACCEPTED BALLOT are yes-instances if hmax < bmax/2 and
Q+ = ∅.

PROOF. The first statement follows as hmax equals maxi,j∈V(|Bi \ Bj | + |Bj \ Bi|),
which is bounded by 2bmax. For the second statement, note that hmax < bmax/2 implies
that every voter is happy with the favorite ballot B` of a voter ` with |B`| = bmax. To see
this, consider some voter i . Now, |Bi ∩B`| = |B`| − |B` \Bi| = bmax − hmax > bmax/2.

3. COMBINATORIAL BOUNDS ON MINIMAL ACCEPTED BALLOTS
We say that a unanimously (resp. majoritywise) accepted ballot is minimal if no proper
subset of it is also unanimously (resp. majoritywise) accepted. In this section, we in-
vestigate the largest possible size of a minimal unanimously accepted ballot for the
situation with n voters and Q+ = ∅. We derive (almost tight) upper and lower bounds
on this quantity. From this bound, a similar result can be derived for majoritywise
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accepted ballots. Note that with a non-empty agenda set the size of a minimal unan-
imously (resp. majoritywise) accepted ballot cannot be expressed by a function only
depending on n; it may additionally depend on q+.

It is not hard to see that both upper and lower bounds come down to studying the
case where the set P of all proposals already is a minimal accepted ballot: Such in-
stances cannot have smaller solutions (giving a lower bound), and upper bounds di-
rectly carry over to Q ⊆ P by considering a restricted instance with P ′ := Q. To make
the question more amenable to combinatorial tools we translate it into a problem on
a sequence of vectors with {−1, 1}-entries: Given n voters and m proposals we create
m vectors x1, . . . , xm ∈ {−1, 1}n; the ith entry in vector xj is 1 if the jth proposal is con-
tained in the favorite ballot of voter i, else it is −1. In this formulation, a unanimously
accepted ballot Q corresponds to a subset of the vectors whose vector sum is positive
in each coordinate: Considering some voter i, for each proposal in Bi ∩ Q we incur 1,
for each proposal in Q \ Bi we incur −1. If |Bi ∩ Q| > |Q|/2 then this gives a positive
sum in coordinate i; the converse is true as well.

Let us normalize the question a little more. First of all, no minimal ballot can be
of even size: Otherwise all coordinate sums would be even and hence each sum is
at least 2; then however we may discard an arbitrary vector and still retain sums
of at least 1 each. Secondly, it is clear that replacing +1 entries by −1 entries does
not introduce additional subsequences with positive coordinate sums. Thus, we may
restrict ourselves to the case where the coordinate sums over the minimal sequence
of m vectors are all equal to 1 (the row sums over an odd number of +1 and −1 values
are odd, and each replacement of a +1 by a −1 lowers the corresponding sum by 2).

Now, a collection of vectors is called a minimal majority sequence of dimension n (an
n-mms for short) if all its coordinate-wise sums are 1 and no proper subsequence of the
vectors has a positive sum in each coordinate. Note that an n-mms cannot contain a
non-empty subsequence S whose sum is at most 0 in each coordinate, since otherwise
the sum of the vectors that are in this n-mms but not in S must be positive in each
coordinate—a contradiction to the minimality of an n-mms. Thus, the definition of an
n-mms is equivalent to the condition that all its coordinate-wise sums are 1 and no
non-empty subsequence has sum of at most 0 in each coordinate. The length of the
sequence is the number m of its elements. Let f(n) denote the maximum possible
length of an n-mms. In this section, we show that f(n) ≈ nn/2+o(n).

THEOREM 3.1. The maximum possible length f(n) of a minimal majority sequence
of dimension n satisfies

nn/2−o(n) ≤ f(n) ≤ (n+ 1)(n+1)/2.

The proof combines the main result of Alon and Vu [1997] with arguments from
Linear Algebra, Geometry, and Discrepancy Theory. Before turning to the proof pre-
sented in Sections 3.1 and 3.2, let us give a corollary for the effect on UNANIMOUSLY
ACCEPTED BALLOT and MAJORITYWISE ACCEPTED BALLOT.

COROLLARY 3.2. Consider a UNANIMOUSLY ACCEPTED BALLOT instance with
n voters. If there exists a unanimously accepted ballot, then there also exists one of
size at most (n + 1)(n+1)/2. This bound is essentially tight, as there exist choices of ac-
cepted ballots such that any unanimously accepted ballot has size at least nn/2−o(n).
For MAJORITYWISE ACCEPTED BALLOT, the corresponding upper and lower bounds
are respectively (t + 1)(t+1)/2 and tt/2−o(t), where t = d(n+ 1)/2e denotes the majority
threshold.
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PROOF. As the correspondence between favorite ballots and vector sequences has
been thoroughly discussed above for the unanimous case, we now concentrate on the
majority case.

To see the lower bound for the majority case, we start from a lower bound example for
the unanimous case with t old voters and a minimum accepted ballot size of tt/2−o(t),
and we add n − t < n/2 new voters with empty favorite ballots to it. Note that the
resulting instance has a total of n voters and that its majority threshold indeed is t.
Then any majoritywise accepted ballot must be unanimously accepted by the t old
voters, so that the minimum majoritywise accepted ballot has size at least tt/2−o(t).

For the upper bound, consider any majoritywise accepted ballot Q for n voters and
consider any minimal majority of t voters that (amongst themselves) unanimously
accept this ballot. Then any other unanimously accepted ballot for these voters is
also majoritywise accepted by all n voters, so that we get the desired upper bound
of (t+ 1)(t+1)/2 on the size of Q.

In the remainder of this section, we prove Theorem 3.1 by first showing the upper
bound (Section 3.1) and then the lower bound (Section 3.2).

3.1. Upper bound
One way to obtain an upper bound on f(n) is to apply a known result of Sevastyanov
[1978]. It asserts that any sequence of vectors whose sum is the zero vector, where
the vectors lie in an arbitrary n-dimensional normed space R and each of them has
norm at most 1, can be permuted so that all initial sums of the permuted sequence
are of norm at most n. We will apply this result using the maximum norm l∞. Thus,
given an n-mms v1, . . . , vm ∈ {−1, 1}n, append to it the vector −1 where 1 is the all
1 vector of length n to get a zero-sum sequence of m + 1 vectors in Rn, where the
`∞ norm of each vector is 1. By the above mentioned result there is a permutation
u1, u2, . . . , um+1 of these vectors so that the `∞-norm of each initial sum

∑j
i=1 ui is at

most n. If m+ 1 > (2n+ 1)n then, by the pigeonhole principle, some two distinct initial
sums are equal. It follows that summing over the set of vectors appearing only in the
longer sequence gives 0. This implies a proper subsequence of the original mms with
sum either 0 (if this set does not include the vector −1), or 1 (if it does). In both cases,
this contradicts the assumption that the original sequence is an mms. This shows that
f(n) ≤ (2n+ 1)n. See Alon and Berman [1986] for a similar argument.

The proof of the stronger upper bound stated in Theorem 3.1 is similar to that of
a result of Huckeman, Jurkat, and Shapley (cf. [Graver 1973]) and is based on some
simple facts from convex geometry. The details follow.

Let u1, u2, . . . , ut be a sequence of pairwise distinct nonzero vectors in Rn, and let
C = C(u1, . . . , ut) denote the cone

C =

{
(x1, x2, . . . , xt) | xi ≥ 0 and

t∑
i=1

uixi = 0

}
.

A point x = (x1, x2, . . . , xt) ∈ C is called basic if the vectors {ui | i ∈ I} are affinely
independent, where I is the support of x, i.e., the set I = {i | xi > 0}. Note that in
this case |I| ≤ n + 1, and the nonzero coordinates of the vector (x1, x2, . . . , xt) form a
solution of the system

∑
i∈I uixi = 0, which has a unique solution, up to a constant

factor.

LEMMA 3. Any vector x = (x1, x2, . . . , xt) ∈ C is a positive linear combination of
fewer than ` basic points, where ` ≤ t is the size of the support of x.
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PROOF. We apply induction on `. The assertion is clear for ` ≤ 2. Indeed, there is
no vector in C with support of size smaller than 2, as the vectors ui are distinct non-
zero vectors. Moreover, every vector of C with support of size 2 is basic, since any two
distinct vectors ui are affinely independent. Assuming the lemma holds for all `′ < `we
prove it for `. By assumption, 0 lies in the convex hull of the vectors {ui | xi > 0}. Let p
be the minimum dimension of a facet of this convex hull that includes 0. The extreme
points of this facet are p+1 of the vectors ui, which are affinely independent. Therefore
there is a basic point of the cone whose support is the set of these p + 1 vectors. We
can now subtract from x an appropriate positive multiple of this basic point, keeping x
nonnegative and reducing the size of its support by at least 1. This completes the proof
of the lemma.

LEMMA 4. Suppose that ui ∈ {−1, 1}n for all i. Let y be an integral basic point of C,
and suppose that the greatest common divisor of the nonzero coordinates of y is 1. Then
the `1-norm of y, i.e. the sum of entries of y, is bounded from above by 21−n(n+1)(n+1)/2.

PROOF. Let p + 1 (≤ n + 1) be the size of the support of y. Then, by Cramer’s rule
there is a p by p+ 1 matrix C with {−1, 1}-entries so that the ith nonzero entry of y is
given by

yi =
(−1)i+1 det(Ci)

gcd[det(C1),det(C2), . . . ,det(Cp+1)]
, (6)

where Ci is the matrix obtained from C by omitting column number i. Each of the
determinants det(Ci) is the determinant of a p by p matrix with {−1, 1}-entries. By
adding the first row to each of the others we get a matrix in which all rows but the
first are divisible by 2, hence the determinant is divisible by 2p−1, implying that the
denominator of (6) is at least 2p−1. In addition, by appending to C the all-1-vectors of
length p+1 as a first row we get a p+1 by p+1 matrix with {−1, 1}-entries whose deter-
minant is the `1-norm of y. The assertion of the lemma thus follows from Hadamard’s
inequality [Hadamard 1893].

PROOF OF THEOREM 3.1, UPPER BOUND. Let v1, v2, . . . , vm be an n-mms of length
m = f(n). Then

∑
i vi − 1 = 0, where 1 is the all-1-vector of length n, and no proper

subsequence of the sequence S = (v1, v2, . . . , vm,−1) has zero sum (again, depending on
inclusion of −1, this would give a subsequence of v1, . . . , vm with sum 0 or the vector 1).
Let u1, u2, . . . , ut be a sequence consisting of all distinct vectors in the sequence S, and
let xi be the number of times ui appears in this sequence. Then t ≤ 2n−1, since S cannot
contain a vector and its inverse, and the vector x = (x1, x2 . . . , xt) belongs to the cone
C(u1, u2, . . . , ut). By Lemma 3 this vector is a positive linear combination of less than t
basic integral points of the cone. Note that each such coefficient is at most 1, since
otherwise the corresponding basic integral point provides a proper subsequence of S
with zero sum, a contradiction. By Lemma 4 the `1-norm of each integral basic point
is at most 21−n(n+ 1)(n+1)/2. Therefore, the `1-norm of x, which is the length of S, that
is, m+ 1, is at most t · 21−n(n+ 1)(n+1)/2 ≤ (n+ 1)(n+1)/2, completing the proof.

3.2. Lower bound
We use the following result by Alon and Vu [1997].

LEMMA 5. For every k there exists a nonsingular k by k matrix A with {−1, 1}-
entries, so that the maximum entry of the inverse of A is at least kk/2−o(k). This is tight
up to the o(k) term.

We will also use the following result by Spencer [1985].
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LEMMA 6. For any k by k+1 matrix A with {−1, 1}-entries, one can change the sign
of some of the rows of A to get a matrix A′ so that the absolute value of the sum of entries
in each column of A′ is less than 6

√
k. This is tight up to the constant 6.

PROOF OF THEOREM 3.1, LOWER BOUND. By Lemma 5 and Cramer’s rule (and by
permuting rows and columns, if needed), there is a k by k matrixAwith {−1, 1}-entries,
so that the ratio between det(A11) and det(A) is at least kk/2−o(k), where Aij is the
submatrix of A obtained by deleting row number i and column number j. Add to A a
column c with {−1, 1}-entries, where ci = sign(det(Ai1)). Then, by Cramer’s rule, the
unique solution x of Ax = c has

x1 =

∑
i |det(Ai1)|
det(A)

≥ det(A11)

det(A)
≥ kk/2−o(k).

This implies that the unique positive integral linear dependence among the columns of
the extended k by k+1 matrix consisting of A and c, in which the greatest common divi-
sor of the entries is 1, has `1 norm at least kk/2−o(k), since there is an integral solution
in which the first coordinate is at least det(A11) and the last is det(A). By changing the
signs of some of these columns, if needed, we get k+1 column vectors in {−1, 1}k so that
there is an integral positive linear combination of them with coefficients x1, x2, . . . xk+1

that sums to zero, the greatest common divisor of its coefficients xi is 1, and its `1 norm
x1 +x2 + . . .+xk+1 is at least kk/2−o(k). Moreover, since any linear combination of these
columns that sums to zero is a multiple of this one, there is no nontrivial integral
nonnegative combination of these vectors that sums to zero in which the coefficients
y1, y2, . . . , yk+1 satisfy 0 ≤ yi ≤ xi for all i and

∑
yi <

∑
xi.

Consider the k by k + 1 matrix whose columns are the above vectors. By Lemma 6
one can change the signs of some of the rows of this matrix to ensure that the absolute
value of the sum of entries in each column is smaller than 6

√
k. Denote the resulting

column vectors by w1, . . . , wk+1 and note that
∑
xiwi = 0 for the integers xi as before,

and if
∑
yiwi = 0 for nonnegative integers yi ≤ xi then either yi = 0 for all i or yi = xi

for all i. Put t =
∑
i xi and letB be the k by tmatrix obtained by picking each column wi

exactly xi times. Then the sum of columns of B is the zero vector, and no proper subset
of the columns has zero sum.

Next we add a (relatively small) number of rows to B to get a matrix in which the
sum of every row and the sum of every column is zero. To do so, let s ≤ 6

√
k be an

integer so that s + k is even and so that the absolute value of the sum of any column
of B is at most s.

LEMMA 7. There is a matrix B′ obtained from B by adding to it s rows of {−1, 1}-
entries, so that the sum of every row and every column of B′ is 0.

PROOF. Let sj be the sum of entries of the jth column of B. Note that
∑
sj = 0 (as

the sum of columns of B is the zero vector), that |sj | ≤ s for all j, and that sj has the
same parity as s. We have to show that there is an s by t matrix with {−1, 1}-entries,
in which the sum of elements in column number j is −sj and the sum of elements in
every row is 0.

One possible proof of that is to apply the well known Gale-Ryser theorem (cf. [West
2001, Theorem 4.3.18]) which gives a necessary and sufficient condition for the exis-
tence of a {0, 1}matrix with prescribed row and column sums. Another possibility is to
describe explicitly a cyclic procedure for completing the new entries of B′. The shortest
proof seems, however, to consider, among all s by t matrices M with {−1, 1}-entries
in which the sum of entries in column number j is −sj , the one in which the sum of
squares of row-sums is minimum. If this sum of squares is 0 we are done, else, there
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is a row with positive sum, and a row with negative sum (as the sum of all row sums
is zero). Let these two rows be rows numbers p and q. Then there is some column j so
that entry Mp,j = 1 and entry Mq,j = −1. Swapping those to Mp,j = −1 and Mq,j = 1
reduces the sum of squares (note that every row-sum is even so if it is positive it is at
least 2), contradicting the minimality. This completes the proof of the lemma.

We can now define our n = (k + s)-mms. Put m = t + 1, and let the first t − 1
vectors v1, v2, . . . , vt−1 in the sequence be the columns of B′, without the last one. This
last vector has +1 in a set J of n/2 coordinates, and −1 in its complement. Therefore,
the sum of the vectors v1, . . . , vt−1 is −1 in the coordinates of J and +1 in the other
coordinates. We now add two vectors vt and vt+1 to our sequence. Both vectors have +1
in the coordinates of J , whereas in the other coordinates one of them has −1 and one
has +1, ensuring that each of them has at least one +1 in these coordinates. Note that
the sum of coordinates of vt is strictly positive, and so is the sum of coordinates of vt+1.
Note also that the sum of all t+ 1 vectors vi is the all 1 vector.

It is not difficult to check that there is no non-empty subsequence of the sequence vi
for which the sum in every entry is at most 0. Indeed, suppose there is such a subse-
quence. As the sum of coordinates of every vector vi for i < t is 0, and the sum of coor-
dinates of vt and of vt+1 is positive, this subsequence can contain neither vt nor vt+1.
Thus, the sum of its elements must be the zero vector, because the sum of its coordi-
nates is 0 and they are all non-positive. However, if this is the case, then the sum of the
vectors of length k obtained from the vectors in the subsequence by taking the first k
coordinates of each vector is also the (k-dimensional) zero vector. This contradicts the
property of the matrix B, showing that indeed v1, . . . , vt+1 is an n-mms.

Note that n = k + O(
√
k) and thus m = t + 1 = kk/2−o(k) = nn/2−o(n). Note also that

the definition easily implies that f(n+ 1) ≥ f(n) for every n, and therefore it is enough
to prove the lower bound for a sufficiently dense set of values of n (for example, all
large even numbers) to get a similar estimate for every n. This completes the proof.

4. CONCLUSION AND OPEN QUESTIONS
We have introduced problems in computational social choice which model the task of
finding a bundle of proposals that is accepted by a society of voters while containing
a specific number of proposal from an agenda set. This can be seen as an extension of
a special case of approval voting for committee election by threshold functions as in-
troduced by Fishburn and Pekeč [2004] (see also [Kilgour 2010; Kilgour and Marshall
2012]). We studied the computational complexity of our problems and revealed both
(fixed-parameter) tractable and intractable special cases. Furthermore, we started an
analysis of their combinatorial properties. We conclude this paper with a few chal-
lenges for future research.

First, recall that in Theorem 2.10 we stated upper bounds on hmax (the size of the
maximum symmetric difference between two favorite ballots) in terms of linear func-
tions in bmax (the maximum ballot size of voters). Hence, parameterized hardness re-
sults with respect to bmax transfer to the parameterization by hmax. In the case of non-
empty agenda, that is, q+ ≥ 1, however, we have no good lower bounds for hmax in
terms of bmax. Thus, it remains to classify the parameterized computational complexity
of both UNANIMOUSLY ACCEPTED BALLOT and MAJORITYWISE ACCEPTED BALLOT
using parameter hmax. Notably, in the cases without hidden agenda the parameters
hmax and bmax are linearly related so that the same parameterized complexity results
will hold for both parameterizations.

Second, with respect to the parameter h (the size of the solution ballot Q), we es-
tablished W[2]-hardness for MAJORITYWISE ACCEPTED BALLOT even without hidden
agenda, but we left open the precise location of this problem in the parameterized
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complexity hierarchy. It might be W[2]-complete, but all we currently know is that it
is contained in W[2] (Maj), a class presumably larger than W[2] [Fellows et al. 2010].
See also a recent survey [Bredereck et al. 2014a] for a more detailed description of this
challenge.

Third, the combinatorial bounds from Section 3 do not hold for instances with non-
empty agenda, since such bounds cannot be independent of |Q+|. For cases with non-
empty agenda there are similar bounds with an extra factor of |Q+|. A detailed analysis
could be part of investigations of weighted variants of our problems. In this regard,
weights on the voters, weights on the proposals, or weights on the acceptance threshold
of the voters seem to be well-motivated.

Fourth, can we avoid Integer Linear Programs for showing fixed-parameter tracta-
bility with respect to the parameter number n of votes and provide direct combinato-
rial algorithms beating the ILP-based running times? In this context, the exponential
lower bound on the number of proposals in ballots accepted by society from Section 3
might be relevant.

Fifth, it remains a puzzling open question whether MAJORITYWISE ACCEPTED
BALLOT parameterized by bmax is fixed-parameter tractable when the agenda set is
empty—we could only show W[1]-hardness for instances with a non-empty agenda set.

Finally, our studies and results basically focused on “single parameterizations”,
yielding several hardness results. In future studies, in the spirit of multivariate com-
plexity analysis [Fellows et al. 2013; Niedermeier 2010] one may try to extend the
range of tractable cases by studying parameter combinations.
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