
To appear in Journal of Computer and System Sciences, 2010

Average Parameterization and Partial Kernelization for

Computing Medians✩

Nadja Betzlera,1, Jiong Guob,2, Christian Komusiewicz∗,a,3, Rolf Niedermeiera

aInstitut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2,

D-07743 Jena, Germany
bUniversität des Saarlandes, Campus E 1.4, D-66123 Saarbrücken, Germany

Abstract

We propose an effective polynomial-time preprocessing strategy for intractable
median problems. Developing a new methodological framework, we show that
if the input objects of generally intractable problems exhibit a sufficiently high
degree of similarity between each other on average, then there are efficient exact
solving algorithms. In other words, we show that the median problems Swap

Median Permutation, Consensus Clustering, Kemeny Score, and Ke-

meny Tie Score all are fixed-parameter tractable with respect to the parame-
ter “average distance between input objects”. To this end, we develop the novel
concept of “partial kernelization” and, furthermore, identify polynomial-time
solvable special cases for the considered problems.

Key words: polynomial-time preprocessing, data reduction, fixed-parameter
tractability, rank aggregation, consensus clustering

1. Introduction

In median problems one is given a set of objects and the task is to find
a “consensus object” that minimizes the sum of distances to the given input
objects. Our new approach to solve generally intractable (mostly NP-hard) me-
dian problems considers an average measure for the similarity between the input
objects by summing over all pairwise object distances divided by the number

✩A preliminary version of this work appears in the Proceedings of the 9th Latin American

Theoretical Informatics Symposium 2010, Springer, LNCS, to appear.
∗Corresponding author. Phone: +49-3641-946325. Fax: +49-3641-946322
Email addresses: nadja.betzler@uni-jena.de (Nadja Betzler),

jguo@mmci.uni-saarland.de (Jiong Guo), c.komus@uni-jena.de (Christian Komusiewicz),
rolf.niedermeier@uni-jena.de (Rolf Niedermeier)

1Supported by the DFG, project PAWS, NI 369/10.
2Supported by the DFG Excellence Cluster “Multimodal Computing and Interaction”.
3Supported by a PhD fellowship of the Carl-Zeiss-Stiftung and the DFG, project PABI,

NI 369/7.

Preprint submitted to Elsevier January 14, 2010

To appear in Journal of Computer and System Sciences, 2010

of these pairs. Based on this, we develop an algorithmic framework for show-
ing that if the input objects are sufficiently “similar on average”, then there
are provably effective data reduction rules. In terms of parameterized algorith-
mics [12, 14, 24], this means that we show that the four median problems we
study are fixed-parameter tractable with respect to the parameter “average dis-
tance between input objects”. To the best of our knowledge, this parameter has
only been studied for the Kemeny Score problem [6, 27] by using exponential-
time dynamic programming and search tree methods. This work complements
these results by polynomial-time preprocessing through data reduction.

Marx [22] studies average parameterization for the Consensus Patterns

problem. He also shows fixed-parameter tractability; however in his case the
parameter relates to the solution quality whereas our parameter can be easily
computed without knowing a solution because it directly relates to the input
structure.

Let us briefly discuss the naturalness of average parameterization for two
prominent median problems tackled in this paper. First, consider the NP-hard
Consensus Clustering problem (see, e.g., [23, 2, 8]). Roughly speaking, the
goal here is to find a median partition for a given set of partitions all over the
same base set; this is motivated by the often occurring task to reconcile clus-
tering information [5, 15, 23]. It is plausible that this reconciliation is only
meaningful when the given input partitions have a sufficiently high degree of
average similarity, because otherwise the median partition found may be mean-
ingless since it tries to fit the demands of strongly opposing clustering proposals.
Our algorithms are tailored for being efficient when there is “enough” consensus
in the input. If this is not fulfilled, a standard way of coping with too heteroge-
neous input partitions is to cluster the partitions and then to use Consensus

Clustering in each “cluster of partitions”, where high average similarity is to
be expected [15].

As a second prominent NP-hard problem, we study the computation of Ke-
meny rankings (also known as rank aggregation) arising in the area of voting
(see, e.g., [1, 2, 11, 13, 17]). As Conitzer and Sandholm [10] pointed out, one
potential view of voting is that there exists a “correct” outcome (ranking), and
each voter’s vote corresponds to a noisy perception of this correct outcome (see
[9, 11] for practical studies in this direction). Studying an average parameteriza-
tion with respect to the pairwise distance between input votes naturally reflects
this view on voting. We develop efficient algorithms for computing Kemeny
rankings in case of a reasonably small average distance between votes, again
developing an effective preprocessing technique.

Within our framework, two points deserve particular attention. First, the
identification of polynomial-time solvable special cases of the underlying prob-
lems. Second, a novel concept of kernelization based on polynomial-time data
reduction that does not yield problem kernels in the classical sense of parame-
terized algorithmics but only “partial problem kernels”. Roughly speaking, in
(at least) “two-dimensional” problems as we study here (for instance, one di-
mension being the size of the base set and the other being the number of input
subsets over this base set), this means that at least one dimension can be re-

2

To appear in Journal of Computer and System Sciences, 2010

duced such that its size only depends on the parameter value. This somewhat
“weaker” concept of kernelization promises to be of wider practical use.

On the way to proving our results with respect to the parameter “average
distance”, we introduce another measurement of dissimilarity—the “number of
dirty elements”—which can be considered as an alternative parameterization.
We also show fixed-parameter tractability with respect to this parameterization.
As we will see, both parameterizations are closely related. In comparison, the
“average distance” seems to be the more intuitive and easier to understand
parameter whereas the “dirty element” parameterization seems to yield stronger
results.

Our work is organized as follows. In the next section, we present our al-
gorithmic framework, using the Swap Median Permutation problem [25] as
running example for showing fixed-parameter tractability with respect to the
average swap distance between the input permutations. Our concrete main re-
sults refer to problems in the areas of data clustering and rank aggregation.
More precisely, we study the NP-hard problems Consensus Clustering and
to compute a Kemeny consensus in voting with and without ties. More details
about the studied problems and the corresponding literature are provided in the
respective sections.

We conclude with briefly describing the essential concepts of parameterized
complexity [12, 14, 24] as used in this work. A problem with input instance I
and parameter k is fixed-parameter tractable if it can be solved by an exact
algorithm with running time f(k) · poly(|I|) for some computable function f
only depending on the parameter k. Moreover, a problem with instance (I, k) is
called kernelizable [7, 16] if there is a polynomial-time algorithm that computes
an equivalent instance (I ′, k′) where the size of I ′ is a function of k and k′ ≤ k.
The new instance (I ′, k′) is reduced in size and called problem kernel.

2. Framework and Swap Median Permutation

In this work, we are concerned with consensus problems. Roughly speaking,
the common feature of all these problems is that one is given a number of
combinatorial objects (such as permutations, partitions etc.) over a base set U
and wants to find a median object over U that minimizes the sum of “distances”
to all input objects.

The general outline of our framework reads as follows.

Step 1. Identify a polynomial-time solvable special case. This is done by
defining a “dirtiness” concept for elements from the base set U and proving
that an instance of the underlying consensus problem can easily be solved when
the input objects do not induce any dirty elements.
Step 2. Show that the number of dirty elements from U is bounded from
above by a polynomial only depending on the average distance between the
given combinatorial objects.
Step 3. Develop polynomial-time data reduction rules which shrink the number
of non-dirty elements from U , generating an equivalent problem instance of

3

To appear in Journal of Computer and System Sciences, 2010

smaller size. Then show that the number of non-dirty elements in the reduced
instance can be bounded from above by a polynomial only depending on the
number of dirty elements and, thus, also the average distance.
Step 4. Make use of the fact that the desired median combinatorial object can
be found in a running time only depending on the number of elements in U ,
and not depending on the number of combinatorial objects.

When applicable, this framework yields fixed-parameter tractability with re-
spect to both parameters “average distance” and “number of dirty pairs”. In
general, fixed-parameter tractability would also follow for non-polynomial func-
tions in Steps 2 and 3, but all our results provide polynomial bounds. A special
feature of our framework is that in Step 3 we perform a partial kernelization,
a concept that should be of general interest. Herein, the term “partial” refers
to the fact that only the size of the base set is reduced, but not the number of
input objects.

To illustrate our framework for efficiently solving “similar-on-average” me-
dian problems, we use the Swap Median Permutation problem (SMP for
short) as a running example.4 Herein, the combinatorial objects are permuta-
tions over the set {e1, . . . , em}; the distance between two permutations is the
swap distance defined as follows: A swap operation interchanges two elements
of a permutation. Thus, swapping ei and ej in the identity permutation

e1 · · · ei−1 ei ei+1 · · · ej−1 ej ej+1 · · · em

leads to
e1 · · · ei−1 ej ei+1 · · · ej−1 ei ej+1 · · · em.

The minimum number of swaps needed to transform a permutation π1 into a
permutation π2 (or vice versa) is called the swap distance between π1 and π2,
denoted by dist(π1, π2). Concerning notation, we follow Popov [25]. The formal
problem definition of SMP reads as follows:

Input: A set of permutations {π1, π2, . . . , πn} over {e1, e2, . . . , em}.
Output: A median permutation π with minimum distance

∑n
i=1 dist(π, πi).

The average swap distance d for an input instance of SMP is defined as

d :=
(

∑

i6=j

dist(πi, πj)
)

/(n · (n − 1)).

The computation of the swap distance between two permutations can be
carried out in O(nm) time [3] by exploiting the tight relation between swap
distances and permutation cycles. Given two permutations π1 and π2 of a set U ,
a permutation cycle of π1 with respect to π2 is a subset of π1 whose elements,
compared to π2, trade positions in a circular fashion. In particular, an element e
having the same position in both π1 and π2 builds a cycle by itself. For example,

4We remark that the question of the NP-hardness of SMP seems unsettled, cf. [25].

4

To appear in Journal of Computer and System Sciences, 2010

with respect to permutation e1e2e3e4e5e6, permutation e3e5e1e4e6e2 has three
permutation cycles (e1, e3), (e4), and (e2, e5, e6). With respect to π2, the cycle
representation of π1 as a product of disjoint permutation cycles is unique (up to
the ordering of the cycles) and can be computed in O(m2) time [3]. The central
observation behind the swap distance computation made by Amir et al. [3] is
as follows: The swap distance between π1 and π2 is m − c(π1), where c(π1) is
the number of permutation cycles in π1 with respect to π2.

First, according to Step 1, we need to define “dirty” elements. A dominating

position of an element e is a position such that e occurs at this position in
more than n/2 input permutations. An element is called dirty if it has no
dominating position; otherwise, it is called non-dirty. Lemma 1 not only leads
to the polynomial-time solvability of the special case but also is crucial for the
correctness of a data reduction rule used in Step 3. In the following, we use π[i]
to denote the element at position i of a permutation π.

Lemma 1. Every median permutation places the non-dirty elements according

to their dominating positions.

Proof. Let π be a median permutation where a non-dirty element e does not
take its dominating position i, say e has position j in π with i 6= j. Now
consider the permutation π′ obtained from π by swapping e and π[i]. We show
that π′ has smaller distance to the input permutations than π. Let rπ(πl)
be the cycle representation of an input permutation πl with respect to π and
let rπ′(πl) be the one with respect to π′. Since i is the dominating position
of e, we have more than n/2 input permutations πl with e = πl[i]. Then,
compared to rπ(πl), we create in rπ′(πl) a new permutation cycle consisting
only of e for each πl by swapping e to position i. Moreover, in rπ(πl) of each
of these permutations πl, e and πl[i] are in the same permutation cycle. Thus,
we increase the number of permutation cycles by at least one in rπ′(πl) for
each πl. For each of the remaining less than n/2 input permutations πl, we
have dist(π′, πl) ≤ dist(π, πl) + 1, because dist(π, π′) = 1. Altogether, π′ has a
distance to the input permutations smaller than the one π has.

Lemma 2. SMP without dirty elements can be solved in O(nm) time.

Proof. Due to Lemma 1 and the observation that the dominating positions of the
elements can be easily computed in O(nm) time, the claim directly follows.

Next, according to Step 2, we have to bound the number of dirty elements.

Lemma 3. Given an SMP-instance with average swap distance d, there are less

than 4d dirty elements.

Proof. For each dirty element e, let {i1, i2, . . . , il}, l ≤ n, be the set of positions
where e occurs in the input permutations. For 1 ≤ j ≤ l, let occ(ij) denote the
number of input permutations π with π[ij] = e. Thus, Σl

j=1occ(ij) = n and,

since e is dirty, occ(ij) ≤ n/2 for 1 ≤ j ≤ l. Overall, there are Σl
j=1(occ(ij) ·

5

To appear in Journal of Computer and System Sciences, 2010

(n− occ(ij)))/2 pairs of input permutations such that, for each of these pairs π
and π′, posπ(e) 6= posπ′(e) with posπ(e) denoting the position of e in π. This
sum is always greater than n2/4. Moreover, for each of these pairs π and π′, e is
contained in a size-at-least-two permutation cycle of π with respect to π′. Since
every permutation cycle with size k needs exactly k− 1 swap operations to sort
the elements in it [3] and one swap operation can sort at most two elements,
we need altogether more than (x/2) · (n2/4) swap operations to sort the dirty
elements for all pairs of input permutations, where x denotes the number of
dirty elements. Dividing this number of operations by n · (n−1)/2 (note that in
our definition of average distance we count every pair twice, and hence divide
by n · (n− 1) instead) yields a lower bound on the average swap distance, which
is then more than x/4, showing the claim.

According to Step 3, the number of non-dirty elements needs to be bounded.
To this end, we present the following data reduction rule.

Reduction Rule. In each of the input permutations, swap all non-dirty ele-

ments to their dominating positions. Remove all non-dirty elements.

Lemma 4. The data reduction rule above yields an equivalent SMP-instance

with at most 4d elements, and it can be executed in O(nm) time.

Proof. According to Lemma 1, each non-dirty element should take its dominat-
ing position. Thus, we can already count the number of swap operations needed
to sort them in the input permutations, that is, to swap them to their domi-
nating positions. Since each swap operation can sort only one element and the
dirty elements cannot occupy the dominating positions of non-dirty elements
in any median permutation, swapping non-dirty elements does not affect the
dirty elements. Thus, the reduction rule is correct. The bound on the size of
the reduced instance derives from Lemma 3. The O(nm) running time can be
achieved by iterating over all elements. For each non-dirty element e, swapping e
to its dominating position in one input permutation needs constant time.

Finally, according to Step 4, it remains to observe that for the median per-
mutation we clearly have O((⌈4d⌉)!) possibilities. Hence, simply testing all of
them and taking a best one, we obtain the following proposition.

Proposition 1. Swap Median Permutation is fixed-parameter tractable

with respect to the parameter average swap distance as well as with respect to

the number of dirty elements.

3. Consensus Clustering

Our second application of the framework deals with the NP-hard Consensus

Clustering problem. It arises in attempts to reconcile clustering information.
The goal is to find a median partition for a given set of partitions, which all are
over the same base set. The problem is defined as follows.

6

To appear in Journal of Computer and System Sciences, 2010

Input: A set C = {C1, . . . , Cn} of partitions over a base set S.
Output: A partition C of S with minimum distance

∑

Ci∈C dist(C, Ci).

Consensus Clustering was introduced in the area of clustering of gene ex-
pression data [23]. Its NP-hardness was shown by Křivánek and Morávek [21]
and later also by Wakabayashi [28]. Bonizzoni et al. [8] showed that Consen-

sus Clustering is APX-hard even if the input consists of only three partitions,
whereas the maximization version has a polynomial-time approximation scheme
(PTAS). For the minimization version of Consensus Clustering, the best ap-
proximation factor achievable in polynomial time is 4/3 [2]. Various heuristics
for Consensus Clustering have been experimentally evaluated [5, 15].

Following Goder and Filkov [15], we call two elements a, b ∈ S co-clustered

with respect to a partition C if a and b occur together in a subset of C and anti-

clustered if a and b occur in different subsets of C. Given a set C of partitions,
we denote with co(a, b) the number of partitions in C in which a and b are co-
clustered and with anti(a, b) the number of partitions in C in which a and b are
anti-clustered. Define the distance dist(Ci, Cj) between two input partitions Ci

and Cj as the number of unordered pairs {a, b} of elements from the base set S
such that a and b are co-clustered in one of Ci and Cj and anti-clustered in the
other. Our parameter d denoting the average distance of a given Consensus

Clustering instance is then defined as

d :=
(

∑

Ci,Cj∈C

dist(Ci, Cj)
)

/
(

n · (n − 1)
)

.

Our overall goal is to show that Consensus Clustering is fixed-parameter
tractable with respect to the average distance d. To this end, we follow the
framework presented in Section 2. Recall that Step 1 was to identify a polynomial-
time solvable special case using a dirtiness concept.

Definition 1. A pair of elements a, b ∈ S is called a dirty pair a#b of a set C
of n partitions if co(a, b) ≥ n/3 and anti(a, b) ≥ n/3. Moreover, the predicate
(ab) is true iff co(a, b) > 2n/3, and the predicate a ↔ b is true iff anti(a, b) >
2n/3.

To show that an input instance of Consensus Clustering without dirty
pairs is polynomial-time solvable, we need the following.

Lemma 5. Let {a, b, c} be a set of elements where a and c do not form a dirty

pair. Then, (ab) ∧ (bc) ⇒ (ac) and a ↔ b ∧ (bc) ⇒ a ↔ c.

Proof. Since a and c do not form a dirty pair, by definition, c can only be co-
clustered with a in either less than one third of the partitions or more than
two thirds of the partitions. However, since (ab) and (bc), this implies that
c has to be co-clustered with a in more than one third of all partitions, thus
implying (ac). The argumentation for a ↔ b and (bc) implying a ↔ c works in
an analogous manner.

7

To appear in Journal of Computer and System Sciences, 2010

Proposition 2. Consensus Clustering without dirty pairs is solvable in

polynomial time.

Proof. Let C be an optimal solution, that is, C is a partition of S with minimum
distance to the input partitions. It suffices to show that in C the following two
statements are true.

1. If (ab), then a and b are co-clustered in C.

2. If a ↔ b, then a and b are anti-clustered in C.

Clearly, since there are no dirty pairs, any pair a, b ∈ S must fulfill either (ab)
or a ↔ b. Hence, the two statements directly specify for each element from S
in which subset in C it will end up.

To prove the first statement, suppose that there is an optimal solution C not
fulfilling it. Then, there must exist two subsets Si and Sj in C with a ∈ Si and
b ∈ Sj . One can further partition both Si and Sj into each time two subsets.
More specifically, let S1

i := {x ∈ Si : (ax)} and S2
i := Si \ S1

i . The sets S1
j

and S2
j are defined analogously with respect to b. In this way, by replacing Si

and Sj with S1
i ∪S1

j , S2
i , and S2

j , one obtains a modified partition C′. Consider

any x ∈ S1
i and any y ∈ S2

i . Then, x ↔ y follows from (ax), a ↔ y, and
Lemma 5. The same is true with respect to S1

j and S2
j . Moreover, if x ∈ S1

i

and y ∈ S2
j , this means that (ax) and b ↔ y, implying by Lemma 5 and using

(ab) that x ↔ y. It remains to consider x ∈ S1
i and y ∈ S1

j . Then, again the
application of Lemma 5 yields (xy). Thus, C′ is a better partition than C is
because in C′ now (ab) holds for all elements a, b ∈ S1

i ∪ S1
j (without causing

any increased cost elsewhere). This contradicts the optimality of C, proving the
first statement. The second statement is proved analogously.

As required by Step 2 of the framework in Section 2, the next lemma esti-
mates the number of dirty pairs with the help of the average distance d.

Lemma 6. An input instance of Consensus Clustering with average dis-

tance d contains less than 9d/4 dirty pairs.

Proof. We claim that every dirty pair a#b contributes more than 4n2/9 to the
overall distance

∑

Ci,Cj∈C dist(Ci, Cj). Given that, the statement of Lemma 6

follows by observing that
∑

Ci,Cj∈C dist(Ci, Cj) = d·n·(n−1). Hence, it remains
to prove the claim.

To prove the claim, first recall that for every dirty pair co(a, b) ≥ n/3 and
anti(a, b) ≥ n/3. Clearly, co(a, b) + anti(a, b) = n. To show that a dirty pair
a#b contributes more than 4n2/9 to the overall distance, note that any pair
makes the contribution co(a, b) · (n − co(a, b)) + anti(a, b) · (n − anti(a, b)) =
2 · co(a, b) · anti(a, b). It is easy to see that under the given constraints then the
minimum contribution is greater than 2 · (n/3) · (2n/3) = 4n2/9.

Step 3 of our framework now calls for a polynomial-time data reduction
that reduces the number of elements that do not appear in any dirty pair. We
call these elements non-dirty elements and all other elements dirty elements.

8

To appear in Journal of Computer and System Sciences, 2010

Roughly speaking, the aim of our reduction rule is to find subsets of S that
contain many non-dirty elements that are all co-clustered in more than 2n/3
input partitions. If these subsets are too large, then we can reduce the instance.
In order to find such subsets, we describe a partition of S that is based on its
non-dirty elements. In the following, let S1 denote the non-dirty elements of S,
and S2 the dirty elements. First, we describe a partition P1 = {S1

1 , . . . , Sl
1}

of S1 into equivalence classes according to the non-dirty pairs in S1. Then, we
show that these equivalence classes also induce a partition of S2.

For each equivalence class Si
1 ∈ P1, we demand

• ∀a ∈ Si
1 ∀b ∈ Si

1 : (ab) and

• ∀a ∈ Si
1 ∀b ∈ S \ Si

1 : a ↔ b.

Observe that, by Lemma 5, the partition P1 of S1 that fulfills these requirements
is well-defined, since the predicate (ab) describes a transitive relation over S1.
Using P1, we define the subsets Si

2 of S2 as follows:

Si
2 := {a ∈ S2 | ∃b ∈ Si

1 : (ab)}.

Informally, each Si
2 is the set of elements a ∈ S2 that are often co-clustered with

at least one element b ∈ Si
1. We also define one additional set S0

2 that contains
all elements a ∈ S2 such that there is no b ∈ S1 for which (ab) holds.

Finally, we obtain a set of subsets P = {S0, S1, . . . , Sl} of S by setting Si =
Si

1 ∪ Si
2 for 1 ≤ i ≤ l and S0 = S0

2 . We call this set of subsets non-dirty-based.
The following lemma shows that P is indeed a partition of S, and also provides
some further structural properties of P .

Lemma 7. Let P = {S0, S1, . . . , Sl} be a non-dirty-based set of subsets of S
constructed as described above. Then, P is a partition of S, and for each Si ∈ P
it holds that

• ∀a ∈ Si ∀b ∈ S : (ab) ⇒ b ∈ Si and

• ∀a, b ∈ Si, i ≥ 1 : (ab) ∨ a#b.

Proof. First, we show that P is a partition. By Lemma 5, it is easy to verify
that the claim holds for the partition P1 of S1. By definition,

⋃l
i=0 Si

2 = S2.
We now show that for each a ∈ S2 there is exactly one set Si

2 that contains a,
and, thus, that P is a partition of S. By definition, S0 does not overlap with
any other set Si, i ≥ 1. Now, suppose that there are two sets Si

2, i ≥ 1,
and Sj

2 , j ≥ 1, j 6= i, that contain a. Then there are two elements b ∈ Si
1

and c ∈ Sj
1 such that (ab) and (ac) holds. Since P1 is a partition of S1, we

have c /∈ Si
1 and thus also b ↔ c. But then it follows from Lemma 5 that b ↔ a

holds (since we have b ↔ c and (ca)). This clearly contradicts (ab). We have
thus shown that P is a partition of S.

We now show that for each Si ∈ P it holds that ∀a ∈ Si∀b ∈ S : (ab) ⇒
b ∈ Si. Suppose that there is a pair of elements a ∈ Si and b ∈ Sj , j 6= i, for
which (ab) holds. By definition, this can be only the case if a ∈ S2 and b ∈ S2.

9

To appear in Journal of Computer and System Sciences, 2010

Without loss of generality, assume that i ≥ 1. This means that there is some
element c ∈ Si

1 with (ac). However, by Lemma 5, then also (cb) must hold. This
contradicts b /∈ Si.

Finally, we show that for each Si ∈ P , i ≥ 1, it holds that ∀a, b ∈ Si :
(ab) ∨ a#b. Suppose that there is some Si containing two elements a and b
for which a ↔ b holds. By definition of Si

1, one of a and b must be from Si
2,

say a ∈ Si
2, and there must be some c ∈ Si

1 such that (ac) holds. By Lemma 5,
we have c ↔ b. This means, however, that, also by Lemma 5, we have b ↔ d
for all d ∈ Si

1. This contradicts b ∈ Si.

Informally, Lemma 7 says that inside any Si ∈ P we have only pairs that
are co-clustered in more than 2n/3 input partitions or dirty pairs; between two
subsets Si ∈ P and Sj ∈ P we have only dirty pairs or pairs that are anti-

clustered in more than 2n/3 input partitions. Clearly, the elements in Si
1 then

are co-clustered in more than 2n/3 partitions with all elements in Si and are
anti-clustered in more than 2n/3 partitions with all elements in S \ Si. This
means that an Si with too many elements in Si

1 is forced to become a set of an
optimal partition. With the subsequent data reduction rule, we remove these
sets from the input.

We introduce the following notation for subsets of S. For some set E ⊆ S,
we denote with dp(E) the dirty pairs among the elements of E, that is, for a
dirty pair a#b we have a#b ∈ dp(E) if a ∈ E and b ∈ E. Analogously, for two
sets E ⊆ S and F ⊆ S, we define dp(E, F) as the set of dirty pairs between E
and F , that is, for a dirty pair a#b we have a#b ∈ dp(E, F) if a ∈ E and b ∈ F
or vice versa.

Reduction Rule. Let P be a non-dirty-based partition of S. If there is some Si ∈
P such that

|Si
1| > | dp(Si)| + | dp(Si, S \ Si)|,

then output Si as one of the sets of the solution and remove the elements of Si

from all input partitions.

Lemma 8. The data reduction rule above is correct.

Proof. Let Si be as described in the reduction rule. We show that every optimal
partition C contains one set Cj such that Si = Cj . In the following, we call
the subsets of S in a partition C of S clusters. For our proof, we only consider
clusters Cj that contain at least one element of Si. In what follows, we partition
each such Cj into four subsets. Figure 1 shows these sets and their relation to Si.

• Cj
1 := {a ∈ Cj ∩Si | ∀b ∈ Cj \Si : a ↔ b} contains those elements from Si

that do not appear in dirty pairs with elements from Cj \ Si.

• Cj
2 := {a ∈ Cj ∩ Si | ∃b ∈ Cj \ Si : a#b} contains the (dirty) elements

from Si that form a dirty pair with some element from Cj \ Si.

• Cj
3 := Cj ∩ {a ∈ S \ Si | ∃b ∈ Si ∩ Cj : a#b} contains the elements

of Cj \ Si that form a dirty pair with some element from Si ∩ Cj .

10

To appear in Journal of Computer and System Sciences, 2010

Si Cj

Cj
1

Cj
2 Cj

3 Cj
4

Figure 1: The subsets of a cluster Cj with respect to the set Si as defined in
the proof of Lemma 8. Solid edges are between elements a and b for which (ab)
holds; dashed edges are between elements that form a dirty pair; elements a
and b for which a ↔ b holds have no edge between them.

• Cj
4 := Cj \ (Cj

1 ∪ Cj
2 ∪ Cj

3) contains all other elements.

We prove our claim in three steps. First, we show that |Cj
1 | ≥ |Cj

2 | implies Cj =

(Cj
1 ∪ Cj

2). Then, we show that there is exactly one Cj with Cj = (Cj
1 ∪ Cj

2).

Finally, we show that in an optimal partition, there is no Cj with |Cj
1 | < |Cj

2 |.
The first two claims show that there is exactly one cluster Cj with Cj ⊆ Si.
The third claim shows that there can be no other clusters that have nonempty
intersection with Si. Altogether, this means that in an optimal clustering there
is exactly one cluster Cj with Cj ∩ Si 6= ∅, which proves the correctness of the
reduction rule.

Now, we show that in an optimal partition C, there is no Cj such that |Cj
1 | ≥

|Cj
2 | and Cj 6= (Cj

1∪Cj
2), since for any partition C that contains such a cluster Cj

there is an alternative partition C′ that has lower cost and is constructed as
follows: replace the cluster Cj by two new clusters Cj

1 ∪ Cj
2 and Cj

3 ∪ Cj
4 .

We now show that C′ has lower cost than C. Let d(C) denote the cost of the
partition C, and let d(C′) be the cost of the partition C′. Clearly, the costs of C
and C′ differ only in the costs for the pairs that contain one element from Cj

1∪Cj
2

and one from Cj
3∪Cj

4 . For each pair of elements a ∈ Cj
1∪Cj

2 and b ∈ Cj
3∪Cj

4 , C′

saves a cost of anti(a, b) compared to C, since these two elements now appear in
different clusters. However, this means that C′ has an additional cost of co(a, b)
for each such pair. Note that, by definition, the following holds:

• (ab) ⇒ (co(a, b) − anti(a, b) > n/3),

• a ↔ b ⇒ (anti(a, b) − co(a, b) > n/3), and

• a#b ⇒ (| anti(a, b) − co(a, b)| ≤ n/3).

11

To appear in Journal of Computer and System Sciences, 2010

Overall, the cost difference between C and C′ is then

d(C) − d(C′) =
∑

a∈Cj
1
∪Cj

2

∑

b∈Cj
3
∪Cj

4

anti(a, b) − co(a, b)

(∗)
>

∑

a∈Cj
1

∑

b∈Cj
3

n

3
−

∑

a∈Cj
2

∑

b∈Cj
3

n

3

(∗∗)

≥ 0.

Inequality (∗) follows from the following four facts:

1. ∀a ∈ Cj
1 ∪ Cj

2∀b ∈ Cj
4 : a ↔ b,

2. ∀a ∈ Cj
1∀b ∈ Cj

3 : a ↔ b,

3. ∀a ∈ Cj
2∀b ∈ Cj

3 : a ↔ b ∨ a#b, and

4. Cj
2 ∪ Cj

3 ∪ Cj
4 6= ∅.

Inequality (∗∗) follows from the fact that |Cj
1 | ≥ |Cj

2 |. Thus, we have shown

that in an optimal partition there can be no clusters Cj with |Cj
1 | ≥ |Cj

2 |

and Cj 6= (Cj
1 ∪ Cj

2). Hence, we can have clusters Cj of two types, those

with Cj = (Cj
1 ∪ Cj

2) and those with |Cj
1 | < |Cj

2 |.
Next, we show that in an optimal solution, there is exactly one cluster

with Cj = (Cj
1 ∪ Cj

2). Let Ciso be the set of clusters Cj with Cj = (Cj
1 ∪ Cj

2).
Let C be a partition that creates more than one cluster in Ciso. We show
that there is an alternative partition C′ that merges two clusters of Ciso to a
new cluster and that has lower cost than C. First, there must be two clus-
ters Cj ∈ Ciso and Cl ∈ Ciso such that |(Cj ∪Cl)∩S1| > dp(Cj ∪Cl), because,
otherwise, the union of all clusters in Ciso has more dirty pairs than non-dirty
elements. However, this is also the case for all other clusters Ch, since for these
clusters we have |Ch

1 | < |Ch
2 |, which means that then Si has more dirty pairs

than non-dirty elements, contradicting the precondition of the reduction rule.
Our alternative partition C′ merges Cj and Cl into a new cluster Cj ∪Cl. Oth-
erwise, it does not differ from C. The costs of C and C′ differ only with respect
to pairs that contain one element a ∈ Cj and one element b ∈ Cl. For each
pair, putting the elements in the same cluster instead of two different clusters
saves co(a, b) and costs anti(a, b). The cost difference between C and C′ is thus

d(C) − d(C′) =
∑

a∈Cj

∑

b∈Cl

co(a, b) − anti(a, b)

(∗)

≥
∑

a∈(Cj∪Cl)∩S1

n

3
− | dp(Cj , Cl)| ·

n

3

(∗∗)
> 0.

Inequality (∗) follows from the two facts

1. ∀a ∈ Cj∀b ∈ Cl : (ab) ∨ a#b and

12

To appear in Journal of Computer and System Sciences, 2010

2. ∀a ∈ (Cj ∪ Cl) ∩ S1∀b ∈ Cj ∪ Cl : (ab).

Inequality (∗∗) follows from the fact that |(Cj ∪ Cl) ∩ S1| > dp(Cj ∪ Cl).
Hence, partition C is clearly not optimal. We have thus shown that in an optimal
partition there is at most one cluster Cj with Cj = (Cj

1 ∪ Cj
2), and possibly

some other clusters Cl with |Cl
1| < |Cl

2|. Furthermore, by the precondition
of the reduction rule, this means that there must be exactly one cluster Cj

with Cj = (Cj
1 ∪ Cj

2) in an optimal partition C.
We complete the proof of the correctness of the reduction rule by showing

that in an optimal partition there is no cluster Cl with |Cl
1| < |Cl

2|. Let Cj

be the cluster with Cj = (Cj
1 ∪ Cj

2). We show that an optimal partition C
never contains a cluster Cl with |Cl

1| < |Cl
2|, since then we can obtain a better

partition C′ by removing Cl
1∪Cl

2 from Cl and merging Cl
1∪Cl

2 and Cj into a new
cluster Cj ∪ Cl

1 ∪ Cl
2. First, observe that, by the precondition of the reduction

rule, we have |(Cj∪Cl)∩S1| > dp(Cj∪Cl)+dp(Cj∪Cl, S\(Cj∪Cl)). Otherwise,
we would have |Si∩S1| < dp(Si)+dp(Si, S \Si), since already Cj ∪Cl

1∪Cl
2 has

less non-dirty elements than dirty pairs, and for each other cluster Ch from D,
there are more dirty pairs than non-dirty elements (since |Ch

1 | < |Ch
2 |). We now

compare the cost of C with the cost of C′. First, the costs have changed for
pairs with a ∈ Cj and b ∈ Cl

1 ∪ Cl
2, where in C′ we have—compared to C—an

additional cost of anti(a, b) and save a cost of co(a, b), since a and b are now
in the same clusters. Second, the costs have changed for pairs a ∈ Cl

1 ∪ Cl
2

and b ∈ Cl
3 ∪ Cl

4, where in C′ we have—compared to C—an additional cost
of co(a, b) and save a cost of anti(a, b). Overall, the cost difference is

d(C) − d(C′) =
∑

a∈Cj

∑

b∈Cl
1
∪Cl

2

co(a, b) − anti(a, b)

+
∑

a∈Cl
1
∪Cl

2

∑

b∈Cl
3
∪Cl

4

anti(a, b) − co(a, b)

(∗)
> −| dp(Cj , Cl ∩ Si)| ·

n

3
+

∑

a∈Cj∩S1

∑

b∈Cl
1
∪Cl

2

n

3

− | dp(Cj
2 , Cj

3)| ·
n

3
+

∑

a∈Cl
1

∑

b∈Cl
3
∪Cl

4

n

3

(∗∗)

≥
n

3
· (|Cj ∩ S1| · |C

l
1 ∪ Cl

2| + |Cl
1| · |C

l
3 ∪ Cl

4|)

−
n

3
· (| dp(Cj , Cl ∩ Si)| + | dp(Cl

2, C
l
3)|)

(∗∗∗)
> 0.

Inequality (∗) follows from the following facts:

1. ∀a ∈ Cj∀b ∈ Cl
1 ∪ Cl

2 : (ab) ∨ a#b,

2. ∀a ∈ Cl
1∀b ∈ Cl

3 ∪ Cl
4 : a ↔ b, and

3. ∀a ∈ Cl
2∀b ∈ Cl

3 ∪ Cl
4 : a ↔ b ∨ a#b.

13

To appear in Journal of Computer and System Sciences, 2010

Inequality (∗∗) is straightforward, and inequality (∗ ∗ ∗) follows from the fact
that |(Cj ∪ Cl

1) ∩ S1| > dp(Cj ∪ Cl
1 ∪ Cl

2) + dp(Cj ∪ Cl
1 ∪ Cl

2, S \ (Cj ∪ Cl
1 ∪

Cl
2)). An optimal partition thus does not contain a cluster Cl with |Cl

1| < |Cl
2|.

Therefore, an optimal partition contains exactly one cluster Cj that contains
all the elements from Si and no other elements, proving the correctness of the
reduction rule.

In the following theorem, we combine Steps 3 and 4 of our framework: we
show that exhaustively applying the reduction rule yields an equivalent in-
stance whose number of elements is less than 9d, and that this implies the
fixed-parameter tractability of Consensus Clustering.

Theorem 1. 1. Each instance of Consensus Clustering can be reduced

in polynomial time to an equivalent instance with less than 9d elements in

the base set. A resulting reduced instance contains only dirty elements.

2. Consensus Clustering is fixed-parameter tractable with respect to the

average distance d between the input partitions as well as with respect to

the number of dirty elements.

Proof. Clearly, the reduction rule can be performed exhaustively in polynomial
time. Therefore, consider an instance I that is reduced with respect to the
reduction rule. With S1 we denote the non-dirty elements of I, and with S2

we denote the elements of S that appear in dirty pairs. By Lemma 6, the
number of dirty pairs in I is less than 9d/4. Hence, the size of the set S2

containing the elements appearing in dirty pairs is less than 9d/2. It remains
to bound the number of non-dirty elements. For this, consider the non-dirty
based partition P of S. Since the reduction rule cannot be applied, the number
of non-dirty elements of each set Si ∈ P is bounded by the number of dirty
pairs that contain at least one element from Si. The overall size of the set |S1|
containing the non-dirty elements can thus be bounded by

|S1| ≤
∑

Si∈P

(dp(Si) + dp(Si, V \ Si)) < 9d/2.

The second inequality stems from the fact that we have at most 9d/4 dirty pairs
and that the dirty pairs between different sets Si, Sj ∈ P have to be counted
twice. Hence, a reduced instance contains at most |S1| + |S2| < 2 · (9d/2) <
9d elements. We can solve Consensus Clustering by trying all possible
partitions (whose number is clearly a function of d), computing their costs in
polynomial time, and then outputting the best partition.

4. Kemeny Rankings

In the third application of our framework, we investigate the problem of
finding a “consensus ranking”, that is, a so-called Kemeny ranking [18]. We
first consider the NP-hard Kemeny Score problem and, second, the somewhat
harder to attack generalization Kemeny Tie Score.

14

To appear in Journal of Computer and System Sciences, 2010

4.1. Kemeny Score

Kemeny’s voting scheme can be described as follows. An election (V, C)
consists of a set V of n votes and a set C of m candidates. A vote is a preference
list of the candidates, that is, a permutation on C. For instance, in the case
of three candidates a, b, c, the order c > b > a would mean that candidate c
is the best-liked and candidate a is the least-liked for this voter. A “Kemeny
consensus” is a preference list that is “closest” with respect to the so-called
Kendall-Tau distance to the preference lists of the voters. For each pair of
votes v, w, the Kendall-Tau distance (KT-distance for short) between v and w,
also known as the inversion distance between two permutations, is defined as

dist(v, w) =
∑

{a,b}⊆C

dv,w(a, b),

where the sum is taken over all unordered pairs {a, b} of candidates, and dv,w(a, b)
is 0 if v and w rank a and b in the same order, and 1 otherwise. Using divide-
and-conquer, the KT-distance can be computed in O(m · log m) time [20].
The score of a preference list l with respect to an election (V, C) is defined
as

∑

v∈V dist(l, v). A preference list l with the minimum score is called a Ke-

meny consensus of (V, C) and its score
∑

v∈V dist(l, v) is the Kemeny score

of (V, C). The Kemeny Score problem is defined as follows:

Input: An election (V, C).
Output: A Kemeny consensus l with minimum score

∑

v∈V dist(l, v).

To show our results, it will be useful to decompose the Kemeny score of a
preference list into “partial scores”. More precisely, for a preference list l and a
candidate pair {a, b}, the partial score of l with respect to {a, b} is

sl({a, b}) :=
∑

v∈V

dv,l(a, b).

The partial score of l with respect to a subset P of candidate pairs is sl(P) :=
∑

p∈P sl(p).
Bartholdi et al. [4] showed that the decision version of Kemeny Score is

NP-complete, and it remains so even when restricted to instances with only
four votes [13]. The Kemeny score can be approximated to a factor of 8/5
by a deterministic algorithm [29] and to a factor of 11/7 by a randomized al-
gorithm [2]. A polynomial-time approximation scheme (PTAS) for Kemeny

Score is provided by Kenyon-Mathieu and Schudy [19]. However, its running
time is impractical. Conitzer et al. [11] performed computational studies for the
efficient exact computation of a Kemeny consensus, using heuristic approaches
such as greedy and branch-and-bound. Schalekamp and van Zuylen [26] ex-
perimentally evaluated the quality of different approximation algorithms and
heuristics. Hemaspaandra et al. [17] provided further exact classifications of
the computational complexity of Kemeny elections. More specifically, whereas
Kemeny Score is NP-complete, they provided PNP

‖ -completeness results for
other, more general versions of the problem.

15

To appear in Journal of Computer and System Sciences, 2010

For an election (V, C), the average KT-distance d, the average parameteri-
zation for Kemeny Score, is defined as

d :=
(

∑

v,w∈V,v 6=w

dist(v, w)
)

/(n(n − 1)).

The Kemeny Score problem is known to be fixed-parameter tractable with
respect to the parameter d [6, 27]. The currently fastest algorithm is a branching
algorithm running in 5.823d · poly(n, m) time [27]. We extend these results by
showing that the approach presented in Section 2 can be applied to Kemeny

Score.
To identify a polynomial-time solvable special case as described in Step 1

of our framework, it is crucial to develop a concept of dirtiness.5 For Kemeny

Score this is realized as follows. Let (V, C) denote an election. An unordered
pair of candidates {a, b} ⊆ C with neither a > b nor a < b in more than 2/3 of
the votes is called a dirty pair and a and b are called dirty candidates. All other
pairs of candidates are called non-dirty pairs, and candidates that appear only
in non-dirty pairs are called non-dirty candidates. Note that with this definition
a non-dirty pair can also be formed by two dirty candidates. Let D denote the
set of dirty candidates and nd denote the number of dirty pairs in (V, C). For
two candidates a, b, we write a >2/3 b if a > b in more than 2/3 of the votes.
We say that a and b are ordered according to the 2/3-majority in a preference
list l if a >2/3 b and a > b in l.

Proposition 3. Kemeny Score without dirty pairs is solvable in polynomial

time.

Proof. For an input instance (V, C) of Kemeny Score without dirty pairs, we
show that the preference list “induced” by the 2/3-majority of the candidate
pairs is optimal.

First, we show by contradiction that there is a preference list l2/3 where
for all candidate pairs {a, b} with a, b ∈ C and a >2/3 b, one has a > b.
Assume that such a preference list does not exist. Then, there must be three
candidates a, b, c ∈ C that violate transitivity, that is, a >2/3 b, b >2/3 c,
and c >2/3 a. Since a >2/3 b and b >2/3 c, there must be at least n/3 votes
with a > b > c. Since a and c do not form a dirty pair, it follows that a >2/3 c,
a contradiction.

Second, we show by contradiction that l2/3 is optimal. Assume that there is
a Kemeny consensus l with a non-empty set P of candidate pairs that are not or-
dered according to the 2/3-majority; that is, P := {{c, c′} : c > c′ in l and c′ >2/3

c}. All candidate pairs that are not in P are ordered equally in l and l2/3. Thus,
the partial score with respect to them is the same for l and l2/3. For every can-
didate pair {c, c′} ∈ P , the partial score sl({c, c′}) is more than 2n/3 and the

5In earlier work on Kemeny Score [6] the term “dirty” is used in a different way to obtain
fixed-parameter tractability results with respect to other parameters. In contrast to our
framework, the previous results for the parameterization by the average KT-distance [6, 27]
do not classify the candidates into different groups.

16

To appear in Journal of Computer and System Sciences, 2010

partial score sl2/3
({c, c′}) is less than n/3. Thus, the score of l2/3 is smaller than

the score of l, a contradiction to the optimality of l.

Following Step 2 of our framework, the next lemma shows how the number
of dirty pairs and, thus, also the number of dirty candidates, is bounded from
above by a function linear in the average KT-distance d.

Lemma 9. Given an instance of Kemeny Score with average KT-distance d,
there are less than 9d/2 dirty pairs.

Proof. For an election (V, C) with average KT-distance d, let i denote the num-
ber of dirty pairs. Every dirty pair {a, b} ⊆ C contributes more than n/3 · 2n/3
to the overall sum of KT-distances. Recall that

d =





∑

v,w∈V

dist(v, w)



 /(n(n − 1)) =





∑

{c,d}⊆C

∑

v,w∈V

dv,w(c, d)



 /(n(n − 1)).

Thus,

d >
1

n(n − 1)
· i ·

n

3
·
2n

3
>

2

9
· i ⇔

9

2
· d > i.

The following three lemmas establish the basis for a polynomial-time data
reduction rule as required in Step 3 of our framework. The basic idea is to con-
sider the order that is induced by the 2/3-majorities of the non-dirty pairs and
then to show that a dirty candidate can only “influence” the order of candidates
that are not “too far away” from it in this order. Then, it is safe to remove
non-dirty candidates that cannot be influenced by any dirty candidate.

Lemma 10. For an election containing nd dirty pairs, in every Kemeny consen-

sus at most nd non-dirty pairs are not ordered according to their 2/3-majorities.

Proof. For an election (V, C) with nd dirty pairs, let l be a Kemeny consensus
with P := {{c, c′} : c > c′ in l and c′ >2/3 c} and |P | > nd. Then, we show
that l cannot be optimal.

Let l2/3 denote a preference list with c > c′ for all pairs with c >2/3 c′ and the
remaining dirty pairs are ordered arbitrarily. This can be done without violating
transitivity. More precisely, due to Proposition 3, all non-dirty candidates can
be ordered according to the 2/3-majority. Analogously, one can show that every
dirty candidate can be ordered according to the 2/3-majority with respect to all
non-dirty candidates and that two dirty candidates that form a non-dirty pair
do not violate transitivity if ordered according to the 2/3-majority of this pair.
Since the remaining dirty pairs can be ordered arbitrarily, they can be ordered
without violating transitivity as well.

We show that score(l) > score(l2/3). Let CP denote the set of all pairs of
candidates of C, that is, CP := {{c, c′} : c, c′ ∈ C, c 6= c′}, and DP denote the

17

To appear in Journal of Computer and System Sciences, 2010

set of all dirty pairs in (V, C). Then, score(l) and score(l2/3) can be decomposed
into partial scores depending on candidate pairs of P , DP , and CP \(DP ∪ P):

score(l) = sl(P) + sl(DP) + sl(CP \(DP ∪ P))

Now, consider score(l) − score(l2/3). Since all pairs p ∈ CP \(DP ∪ P) are
ordered according to the 2/3-majority in l and in l2/3, the partial scores for
them are equal. The partial score for every non-dirty pair is more than 2n/3
if it is not ordered according to the 2/3-majority, and less than n/3 otherwise.
Together with the fact that for a dirty pair the difference of the partial scores
of the two possible orders is at most n/3, one has

sl(DP) − sl2/3
(DP) ≥ −|DP | · n/3,

and
sl(P) − sl2/3

(P) > |P | · n/3.

Since |P | > |DP |, it follows that score(l)−score(l2/3) > n/3 > 0 and, thus, l can-
not be optimal.

In the following, we show that the bound on the number of “incorrectly”
ordered non-dirty pairs from Lemma 10 can be used to fix the relative order of
two candidates forming a non-dirty pair. For this, it will be useful to have a
concept of distance of candidates with respect to the order induced by the 2/3-
majority. For an election (V, C) and a non-dirty pair {c, c′}, define dist(c, c′) :=
|{b ∈ C : b is non-dirty and c >2/3 b >2/3 c′}| if c >2/3 c′ and dist(c, c′) := |{b ∈
C : b is non-dirty and c′ >2/3 b >2/3 c}| if c′ >2/3 c.

Lemma 11. Let (V, C) be an election and let {c, c′} be a non-dirty pair. If

dist(c, c′) ≥ nd, then in every Kemeny consensus c > c′ iff c >2/3 c′.

Proof. Let l be a preference list such that there is a non-dirty pair {c, c′} with
c > c′ in l, c′ >2/3 c, and dist(c, c′) ≥ nd. We show that l cannot be a Kemeny
consensus. Since dist(c, c′) ≥ nd, there are at least nd non-dirty candidates e
with c′ >2/3 e >2/3 c. Since c > c′ in l, these candidates e cannot be ordered
according to the 2/3-majority with respect to c or c′ in l. Hence, there are at
least nd pairs formed by the candidates e and c or c′ in l, which, together with
the pair {c, c′}, give more than nd non-dirty pairs that are not ordered according
to the 2/3-majority. This contradicts Lemma 10 and l cannot be optimal.

Finally, the next lemma enables us to fix the position in a Kemeny consensus
for a non-dirty candidate that has a large distance to all dirty candidates.

Lemma 12. If for a non-dirty candidate c it holds that dist(c, cd) > 2nd for all

dirty candidates cd ∈ D, then in every Kemeny consensus c is ordered according

to the 2/3-majority with respect to all candidates from C.

18

To appear in Journal of Computer and System Sciences, 2010

Proof. Assume that there is a non-dirty candidate c with dist(c, cd) > 2nd for
all cd ∈ D and that there is a preference list l with e > c for a candidate e
with c >2/3 e. Then, we show that l cannot be optimal.

Since dist(c, cd) > 2nd for all dirty candidates cd ∈ D, it follows from
Lemma 11 that all dirty candidates must be ordered according to the 2/3-
majority with respect to c. Thus, e must be a non-dirty candidate. Due to
Lemma 11, dist(e, c) < nd. Since for all cd ∈ D one has dist(c, cd) > 2nd, it
follows from dist(e, c) < nd that dist(e, cd) > nd for all cd ∈ D as well. Thus,
in a Kemeny consensus, e must be ordered according to the 2/3-majority with
respect to all dirty candidates due to Lemma 11. For a candidate cd ∈ D
one has c >2/3 cd iff e >2/3 cd since for all cd ∈ D one has dist(c, cd) > 2nd

and dist(e, c) < nd. Hence, there is no dirty candidate cd ∈ D with e > cd > c
in l, that is, all candidates fi, i = 1, . . . , s, with e > fi > · · · > fs > c in l must
be non-dirty. Then, analogously to the proof of Proposition 3, one can show
that ordering c, e, f1, . . . , fs according to the 2/3-majority gives a consensus
with score less than the score of l. Thus, l cannot be optimal.

The correctness of the following data reduction rule follows directly from
Lemma 12. It is not hard to verify that it can be carried out in O(n ·m2) time.

Reduction Rule. For an election with nd dirty pairs, let c be a non-dirty

candidate with dist(c, cd) > 2nd for all cd ∈ D. Let Cl := {c′ ∈ C : c′ >2/3 c}
and Cr := {c′ ∈ C : c >2/3 c′}. Delete c and reorder every vote such that

Cl > Cr and the order of the candidates within Cl and Cr remains unchanged.

In the following, we show that after exhaustively applying the reduction rule,
the number of non-dirty candidates is bounded by a quadratic function of d.

Theorem 2. Each instance of Kemeny score with average KT-distance d can

be reduced in polynomial time to an equivalent instance with at most 9d+162 ·d2

candidates and with at most xd + 32x2
d candidates with xd denoting the number

of dirty candidates.

Proof. Consider an instance of Kemeny Score with average KT-distance d.
According to Lemma 9, there are at most 9d/2 dirty pairs and, thus, at most
9d dirty candidates. For every non-dirty candidate who is not deleted after
exhaustively applying the reduction rule, there must be a dirty candidate cd

with dist(c, cd) ≤ 2nd ≤ 9d. Thus, for every dirty candidate there can be
at most 2 · 9d = 18d non-dirty candidates that are not deleted. Then, in total,
there can be at most 9d ·18d ≤ 162d2 non-dirty candidates left. Thus, a reduced
instance can consist of at most 9d + 162d2 candidates.

4.2. Kemeny Tie Score

A practically relevant extension of Kemeny Score is Kemeny Tie Score [1,
17]. Here, one additionally allows the voters to classify sets of equally liked can-
didates, that is, a preference list is no longer defined as a permutation of the
candidates, but for two (or more) candidates a, b one can have a = b. The

19

To appear in Journal of Computer and System Sciences, 2010

term dv,w(a, b) that denotes the contribution of the candidate pair {a, b} to
the KT-distance between two votes v and w is modified as follows [17]. One
has dv,w(a, b) = 2 if a > b in v and b > a in w, dv,w(a, b) = 0 if a and b are
ordered in the same way in v and w, and dv,w(a, b) = 1, otherwise. In the
literature there are different demands for the consensus itself. For example,
Hemaspaandra et al. [17] allow that the consensus list can contain ties as well
whereas Ailon [1] requires the consensus list to be a “full ranking”, that is, a
permutation of the candidates. We consider here the more general setting of
Hemaspaandra et al. [17]. Note that Kemeny Tie Score does not only gener-
alize Kemeny Score but also includes other interesting special cases such as
p-ratings and top-m lists [1].

Regarding the complexity of Kemeny Tie Score, clearly all hardness re-
sults for Kemeny Score carry over. Regarding algorithmic results, this is
only true for some of them. In particular, previous approaches [6, 27] only pro-
vide fixed-parameter tractability with respect to the average KT-distance for
Kemeny Score. In contrast, the question of fixed-parameter tractability of
Kemeny Tie Score with respect to the average KT-distance has been open so
far. Here, we answer this question positively by showing that the new method
for partial kernelization introduced in Section 2 also applies to Kemeny Tie

Score.
To apply Step 1 of our framework, we extend the definition of dirtiness as

given for Kemeny Score. For an instance with ties, we say a =2/3 b if a = b in
more than 2n/3 votes. Then, a pair of candidates a, b is dirty if neither a >2/3 b
nor a =2/3 b nor a <2/3 b. We use a ≥2/3 b to denote (a >2/3 b) ∨ (a =2/3 b).

Proposition 4. Kemeny Tie Score without dirty pairs is solvable in polyno-

mial time.

Proof. The basic idea of the proof is the same as for Proposition 3: Show by
contradiction that all pairs of candidates must be ordered according to their 2/3-
majorities. For ties, this leads to an extensive case distinction for all possible
orders of two candidates a and b.

Case I: a >2/3 b. a) Assume that a = b in a preference list l. Then, we
show that l cannot be a Kemeny consensus. Let T denote the set of candidates
that are tied with a and b in l. If T is empty, then replacing a = b by a > b
obviously gives a consensus with lower score. In the following, we describe how
to order the candidates of T such that we have a > b and the partial score with
respect to candidate pairs inside T ∪ {a, b} is smaller than the partial score of l
with respect to the same set of pairs.

Similarly to the proof of Proposition 3, we can show that there is no can-
didate c ∈ C with c ≥2/3 a and c ≤2/3 b. Hence, the candidates of T can be
partitioned into three groups:

• Tl := {c ∈ T : c ≥2/3 a and c >2/3 b},

• Tm := {c ∈ T : a >2/3 c and c >2/3 b}, and

• Tr := {c ∈ T : a >2/3 c and b ≥2/3 c}.

20

To appear in Journal of Computer and System Sciences, 2010

For a subset C′ ⊆ C and a candidate a ∈ C\C′, we write a = C′ if a is tied with
all candidates in C′. We show that the partial score of Tl = a > Tm > b = Tr

(new) is smaller than the partial score of a = b = T (old).
The considered partial scores can be decomposed such that they depend

on the relative order between subsets of candidates. More precisely, for two
subsets C′, C′′ ⊆ C, C′×C′′ denotes all pairs {c′, c′′} of candidates with c′ ∈ C′

and c′′ ∈ C′′. Then, the partial scores depend on

s({a} × Tl) + s({a} × ({b} ∪ Tm ∪ Tr)) + s({b} × Tr) + s({b} × (Tl ∪ Tm))

+s(Tl × Tm) + s(Tl × Tr) + s(Tm × Tr)

and the relative order between the candidates within the Tm, Tl and Tr. Since
in both considered orders the candidates within these subsets are tied, there is
no different partial score for the corresponding pairs.

Now, we compare the “old” with the “new” partial score showing that the
new partial score is smaller. All candidates of Tl are tied with a in the new
and in the old consensus. All candidates of {b} ∪ Tm ∪ Tr are tied with a in
the old consensus and are beaten by a in the new consensus. Since for all these
candidates we have that a is better in more than two third of the input votes,
the score of the new consensus is smaller with respect to them.

All candidates of Tr are tied with b in the new and in the old consensus. All
candidates of Tl ∪ Tm are tied with b in the old consensus and better than b in
the new consensus. Since every such candidate is better than b in more than two
third of the input votes, the score of the new consensus is smaller with respect
to them.

It remains to consider the order between the candidates of the different
subsets:

1. Tl, Tm: For every tl ∈ Tl and for every tm ∈ Tm, we have that tl is better
than or equal to a in more than two thirds of the votes whereas a is strictly
better than tm in more than two thirds of the votes. It follows that tl must
be better than tm in at least one third of the votes and, thus, in more than
two thirds of the votes.

2. Tl, Tr: (analogous to 1.)

3. Tm, Tr: For every tr ∈ Tr and for every tm ∈ Tm, we have that b is better
than or equal to tr in more than two thirds of the votes whereas tl is
strictly better than b in more than two thirds of the votes. It follows that
tl is better than tr in more than two third of the votes and the new score
is smaller.

Case Ib) a >2/3 b and there is a consensus with a < b: This case can be
excluded in analogy to Case Ia) with T containing all candidates c with b ≥ c ≥ a
in the consensus.

Case II) a =2/3 b: We show that a consensus with a > b cannot have
minimum score. Partition the set of candidates C\{a, b} into the following
three subsets:

21

To appear in Journal of Computer and System Sciences, 2010

• Cl := {c ∈ C\{a, b} : c >2/3 a and c >2/3 b},

• Cm := {c ∈ C\{a, b} : c =2/3 a and c =2/3 b}, and

• Cr := {c ∈ C\{a, b} : c <2/3 a and c <2/3 b}.

The remaining possibilities are “d ≥2/3 a and d <2/3 b”, “d ≤2/3 b and
d >2/3 a”, or “a >2/3 d and d >2/3 b”, for d ∈ C \ {a, b}. All of them can
be excluded by simple counting arguments. Let S denote the set of candidates
between a and b in the consensus, that is, S := {s ∈ C : a ≥ s ≥ b} in the
consensus. We partition S into the three subsets, Sl := Cl ∩ S, Sm := Cm ∩ S,
and Sr := Cr ∩ S.

Now, we show that the following order gives a consensus with smaller score:

Sl > a = Sm = b > Sr.

Similarly to Case Ia) the partial score can be decomposed into s({a} × {b}) +
s({a, b}×Sr)+s({a, b}×Sm)+s({a, b}×Sl)+s(Sl×Sm)+s(Sl×Sr)+s(Sm×Sr).
Then, a simple calculation shows that the new score is smaller than the old
one.

For Kemeny Tie Score we can bound the number of candidates by a func-
tion only depending on the average KT-distance by proving lemmas analogous
to Lemmas 9-12. In what follows, we only describe the differences.

The “tie-variant” of Lemma 10 says that there are at most 5 · nd (instead
of nd) non-dirty pairs that are not ordered according to their 2/3-majorities in
a Kemeny consensus. The reason is that within the otherwise analogous proof
we now use sl(DP)− sl2/3

(Dp) ≥ −|Dp| · 5/3 ·n. The factor 5/3 ·n is due to the
fact that the difference of the partial scores for two possible orders of a dirty
pair is only bounded by 5/3 · n.

Next, it is crucial to adapt the distance function between two candidates
appropriately. More precisely, for two candidates a, b with a ≥2/3 b, one defines

dist(a, b) := |{c ∈ C : a ≥2/3 c ≥2/3 b and c is non-dirty}|.

Then, Lemmas 11 and 12 can be directly transferred to the case with ties simply
replacing nd by 5nd (due to the variant of Lemma 10). This results in the
following reduction rule:

Reduction Rule. Let c be a non-dirty candidate with dist(c, cd) > 10nd for

all cd ∈ D. Let Cl := {c′ ∈ C : c′ >2/3 c}, Cm := {c′ ∈ C : c′ =2/3 c},
and Cr := {c′ ∈ C : c >2/3 c′}. Delete c and reorder every vote such that

Cl > Cm > Cr and the order of the candidates within Cl, Cm, and Cr remains

unchanged.

Regarding the last step of our framework, it is known that Kemeny Tie Score

is fixed-parameter tractable with respect to the number of candidates. More
specifically, the reduced instances can be solved by a dynamic programming

22

To appear in Journal of Computer and System Sciences, 2010

algorithm with running time 2m · poly(n, m) [6]. Altogether, this leads to the
following theorem.6

Theorem 3. 1. Each instance of Kemeny Tie Score with average KT-

distance d can be reduced in polynomial time to an equivalent instance with

at most O(d2) candidates and at most O(x2
d) candidates for an instance

with xd dirty candidates.

2. Kemeny Tie Score is fixed-parameter tractable with respect to the aver-

age KT-distance d as well as with respect to the number of dirty candidates.

5. Conclusion

In this work, we focussed on the efficient computation of “small” partial
kernels. The corresponding fixed-parameter tractability results were derived in
a straightforward way. It remains a task for future research to improve these
brute-force algorithms (operating on the kernelized instances) by more sophisti-
cated approaches. More specifically, in case of Kemeny Score one may employ
fixed-parameter algorithms with respect to different parameterizations [6, 27]
whereas in case of Consensus Clustering no non-trivial exact algorithm
seems to be available so far.

In applications one can easily determine the average distance and the num-
ber of dirty elements of the considered median problem and then decide whether
the developed fixed-parameter algorithm should replace the otherwise used al-
gorithm. Other related parameterizations which can not be easily computed
“in advance” refer to distance measures from the input objects to the solution.
Among these, our results directly extend to the parameter “maximum distance
of the input objects from the solution” since this parameter is an upper bound
for the average distance. In contrast, the “average distance of the input objects
from the solution” is clearly a lower bound for the “average distance between
the input objects”. Hence, it is an interesting open question to investigate the
parameterized complexity with respect to this parameter.

Based on ongoing experimental evaluations, we are confident that the devel-
oped efficient data reduction rules and the ensuing fixed-parameter tractability
results will prove practical usefulness in real-world applications.

References

[1] N. Ailon. Aggregation of partial rankings, p-ratings, and top-m lists. Al-

gorithmica, 2008. Available electronically. 2, 19, 20

[2] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent infor-
mation: ranking and clustering. Journal of the ACM, 55(5), 2008. Article
23 (October 2008), 27 pages. 2, 7, 15

6 Recall that in contrast to Kemeny Score without ties, for Kemeny Tie Score the
fixed-parameter tractability with respect to the average KT-distance has been open so far.

23

To appear in Journal of Computer and System Sciences, 2010

[3] A. Amir, Y. Aumann, G. Benson, A. Levy, O. Lipsky, E. Porat, S. Skiena,
and U. Vishne. Pattern matching with address errors: rearrangement dis-
tances. Journal of Computer and System Sciences, 75(6):359–370, 2009. 4,
5, 6

[4] J. Bartholdi III, C. A. Tovey, and M. A. Trick. Voting schemes for which
it can be difficult to tell who won the election. Social Choice and Welfare,
6:157–165, 1989. 15

[5] M. Bertolacci and A. Wirth. Are approximation algorithms for consensus
clustering worthwhile? In Proc. 7th SDM, pages 437–442. SIAM, 2007. 2,
7

[6] N. Betzler, M. R. Fellows, J. Guo, R. Niedermeier, and F. A. Rosamond.
Fixed-parameter algorithms for Kemeny rankings. Theoretical Computer

Science, 410(45):4554–4570, 2009. 2, 16, 20, 23

[7] H. L. Bodlaender. Kernelization: New upper and lower bound techniques.
In Proc. 4th IWPEC, volume 5917 of Lecture Notes in Computer Science,
pages 17–37. Springer, 2009. 3

[8] P. Bonizzoni, G. D. Vedova, R. Dondi, and T. Jiang. On the approximation
of correlation clustering and consensus clustering. Journal of Computer and

System Sciences, 74(5):671–696, 2008. 2, 7

[9] V. Conitzer. Computing Slater rankings using similarities among candi-
dates. In Proc. 21st AAAI, pages 613–619. AAAI Press, 2006. 2

[10] V. Conitzer and T. Sandholm. Common voting rules as maximum likelihood
estimators. In Proc. 21st UAI, pages 145–152. AUAI Press, 2005. 2

[11] V. Conitzer, A. Davenport, and J. Kalagnanam. Improved bounds for
computing Kemeny rankings. In Proc. 21st AAAI, pages 620–626. AAAI
Press, 2006. 2, 15

[12] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999. 2, 3

[13] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation
methods for the Web. In Proc. 10th WWW, pages 613–622, 2001. 2, 15

[14] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
2, 3

[15] A. Goder and V. Filkov. Consensus clustering algorithms: Comparison and
refinement. In Proc. 10th ALENEX, pages 109–117. SIAM, 2008. 2, 7

[16] J. Guo and R. Niedermeier. Invitation to data reduction and problem
kernelization. ACM SIGACT News, 38(1):31–45, 2007. 3

24

To appear in Journal of Computer and System Sciences, 2010

[17] E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of Kemeny
elections. Theoretical Computer Science, 349:382–391, 2005. 2, 15, 19, 20

[18] J. Kemeny. Mathematics without numbers. Daedalus, 88:571–591, 1959.
14

[19] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In
Proc. 39th STOC, pages 95–103. ACM, 2007. 15

[20] J. Kleinberg and E. Tardos. Algorithm Design. Addison Wesley, 2006. 15

[21] M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree clus-
tering. Acta Informatica, 23(3):311–323, 1986. 7

[22] D. Marx. Closest substring problems with small distances. SIAM Journal

on Computing, 38(4):1382–1410, 2008. 2

[23] S. Monti, P. Tamayo, J. P. Mesirov, and T. R. Golub. Consensus clustering:
A resampling-based method for class discovery and visualization of gene
expression microarray data. Machine Learning, 52(1–2):91–118, 2003. 2, 7

[24] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006. 2, 3

[25] V. Y. Popov. Multiple genome rearrangement by swaps and by element
duplications. Theoretical Computer Science, 385(1-3):115–126, 2007. 3, 4

[26] F. Schalekamp and A. van Zuylen. Rank aggregation: together we’re strong.
In Proc. 11th ALENEX, pages 38–51. SIAM, 2009. 15

[27] N. Simjour. Improved parameterized algorithms for the Kemeny aggrega-
tion problem. In Proc. 4th IWPEC, volume 5917 of LNCS, pages 312–323.
Springer, 2009. 2, 16, 20, 23

[28] Y. Wakabayashi. The complexity of computing medians of relations. Re-

senhas, 3(3):323–350, 1998. 7

[29] A. van Zuylen and D. P. Williamson. Deterministic pivoting algorithms for
constrained ranking and clustering problems. Mathematics of Operations

Research, 34:594–620, 2009. 15

25

	Introduction
	Framework and Swap Median Permutation
	Consensus Clustering
	Kemeny Rankings
	Kemeny Score
	Kemeny Tie Score

	Conclusion

