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Abstract

We consider opinion diffusion in binary influence
networks, where at each step one or more agents
update their opinions so as to be in agreement
with the majority of their neighbors. We consider
several ways of manipulating the majority opin-
ion in a stable outcome, such as bribing agents,
adding/deleting links, and changing the order of up-
dates, and investigate the computational complex-
ity of the associated problems, identifying tractable
and intractable cases.

1 Introduction
It is Saturday morning. Alice wakes up, makes herself a cup
of coffee, and logs into her Facebook account. She sees that
her friend Betty has shared yet another news story on dangers
of GMO corn, and there are likes and supportive comments
from a few of their common friends. Alice wonders if per-
haps she should stay away from GMO foods, just in case.
She scrolls down, and sees a comment by her friend Carol on
a post by David. Alice has met David at a party, but has not
added him on Facebook. She hesitates for a moment, then
presses the “Add friend” button. It then occurs to Alice that
she has not seen any posts by Ed in a while. Has he left Face-
book? Is he okay? Alice finds Ed’s page, and realizes that Ed
is still active on Facebook, sharing news of his favorite sports
team and pictures of cats. Alice is not particularly interested
in these posts, but, as she scrolls down the page, she sees that
Ed was in her town a few weeks ago, and was asking if any
of his Facebook friends were around.

The little story above illustrates several important aspects
of social networks. First, we are influenced by opinions of our
friends, and may change our opinion on an issue if a majority
of our friends holds the opposite opinion on that issue. Sec-
ond, social networks are dynamic: new friendships form, and
old friendships deteriorate. Importantly, in case of online so-
cial networks, the algorithms that decide which information
to display to a given user may affect the formation of new
links and disappearance of the existing links: it is possible
that the connection between Alice and David would not form
if Alice was not shown Carol’s comment on David’s post, and

Alice missed a chance to meet up with Ed because she did not
react to his recent posts.

The first of these points is perhaps self-evident, and a num-
ber of formal models of the respective phenomenon, which is
usually referred to as opinion diffusion, have been proposed
in the literature (we point the reader to a recent survey by
Grandi [2017]). There are also several models of how social
networks may evolve; e.g., Alice and David forming a link
is an example of the triadic closure phenomenon [Granovet-
ter, 1973]. However, it is usually assumed that links appear
and disappear organically, based on the network structure and
possibly users’ opinions on issues.

In contrast, motivated by research on bribery and control
in voting theory [see, e.g., Faliszewski and Rothe, 2015], we
take an adversarial perspective: our aim is to understand if, by
making a small number of targeted changes to a network, one
can ensure that a substantial fraction of users holds a partic-
ular opinion on a given issue once the opinion diffusion pro-
cess converges. The specific changes we focus on are bribing
a subset of users to change their opinion and removing links
between users; some of our results also apply to the problem
of adding new links and changing the order in which voters
update their opinions.1 We assume that each elementary op-
eration (bribing a single user, adding/deleting a single link)
has an associated cost, and we ask if the target outcome can
be accomplished within a given budget. For clarity, we focus
on a very simple model, where agents hold binary opinions (0
or 1), the social network is given by an undirected graph, and,
when updating, agents only change their opinion if it differs
from the opinion held by a strict majority of their neighbors.

Now, the details of the opinion diffusion process are im-
portant for our analysis: if all agents can be assumed to
change their opinions in a lockstep (this is usually referred
to as the synchronous model), then the opinion diffusion pro-
cess evolves deterministically (though it is not guaranteed to
converge to a single stable state; rather, it may ‘flick’ with
period 2 [Goles and Olivos, 1980]). However, for a social
network with more than a few users, this assumption is not

1In practice, we do not expect a manipulator to directly add and
remove links or define the update sequence, but a network provider
(as a manipulator) can suggest friends or decide whether and at
which point of time an agent gets to see information. By delay-
ing the display of updates from some users the network effectively
controls the order of updates.
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Figure 1: Influence network with six agents (large graph): The left-
most and rightmost agents have opinion 0 (white) whereas the four
central agents have opinion 1 (black). The small graphs show dif-
ferent possible stable outcomes. Numbers denote steps in which the
respective agents update their opinion, a $-symbol means that the
agent was bribed to change its opinion, and dotted lines indicate
links that have been removed. With no manipulative actions, both
opinions can become uniformly accepted by all agents depending
on the order of updates (small graphs on the left). Opinions may sta-
bilize in a balanced way (small graphs on the right). One can ensure
that opinions stabilize towards the all-1s outcome irrespective of the
order of updates, e.g. by bribing the leftmost agent (bottom left small
graph) or by removing four edges (bottom right small graph).

realistic. On the other hand, with asynchronous updates, the
final outcome may depend on the order of updates. To deal
with this issue, we identify two update sequences that are, in
some sense, extreme: one results in the maximum possible
number of 1s, and the other results in the maximum possible
number of 0s. We show that any update sequence that results
in the maximum number of 1s or 0s produces the same pro-
file of opinions as the two canonical sequences that we con-
sider; that is, the 1-maximizing sequence produces not just
the maximum possible number of 1s, but the maximal set of
users with that opinion. This means that, from the perspec-
tive of a manipulator who (without loss of generality) wants
to maximize the number of 1s in the network, these update se-
quences represent, respectively, the best-case scenario and the
worst-case scenario. Therefore, we focus on the complexity
of achieving a desirable stable outcome by means of chang-
ing a network subject to a budget constraint, with respect to
one of these update sequences. Towards the end of the paper,
we also discuss what can be achieved by altering the update
sequence itself. We refer to Figure 1 for an illustration of our
model, including some manipulative actions.

The bribery problem is closely related to the well-studied
TARGET SET SELECTION problem; we establish a formal
connection between the two problems, which implies a num-
ber of classical worst-case and parameterized hardness results
for our problem. On the other hand, we obtain a polynomial-
time algorithm for the case where the social network is
acyclic. Perhaps less obviously, a similar hardness reduction
works for the link deletion and link insertion problems; the
first of these problems also admits an efficient algorithm for
acyclic networks. Finally, we investigate the case where the
adversary controls the update order (but cannot bribe agents
or remove links). Again, we get a hardness result for the gen-
eral case, but an efficient algorithm for paths and cycles.

Of course, we are not claiming that any of the existing
online social networks aims to promote certain opinions by

means of manipulative actions: most likely, the decisions as
to which posts to show to each user, and in what order, are
made with the aim of enhancing user’s experience. However,
the same mechanisms can be used to facilitate the spread of
a specific opinion across the network, and therefore we feel
that it is important to have a formal model that enables us to
quantify the complexity of manipulative behavior.
Related Work There is a vast literature on various aspects
of opinion diffusion [see, e.g., Grandi, 2017]. In the interest
of space, in what follows we primarily survey results for our
setting, where opinions are binary (1/0, or black/white) and
updated according to the simple majority of neighbors, the
graph is undirected, and agents are unweighted.

For binary opinions, the pioneering work of Goles and
Olivos [1980] shows that a sequence of synchronous updates
always converges to a stable state or cycles with period two.
Their analysis also provides an upper bound of O(n2) on
the number of updates, where n is the number of agents;
this bound was subsequently shown to be essentially tight
[Frischknecht et al., 2013], both for the synchronous model
and for the asynchronous model (in the latter case, the se-
quence of updates is assumed to be selected adversarially).

Our setting is closely related to that of discrete prefer-
ence games [Chierichetti et al., 2013]. In these games, each
agent holds an initial opinion from a finite metric space, and
has to decide which opinion to declare; the agent’s cost is a
weighted sum of the distance between his declared opinion
and his true opinion and the distance between his declared
opinion and those of his neighbors. Specifically, our model
can be seen as a special case of discrete preference games
where the opinion space is binary and agents do not care
about the distance between their declared opinion and their
initial opinion. Chierichetti et al. [2013] describe a linear-
time procedure for finding a Nash equilibrium for binary dis-
crete preference games; this procedure can be viewed as a se-
quence of asynchronous updates and is the basis of our anal-
ysis in Section 3. Discrete preference games have been sub-
sequently studied by other authors; for instance, Auletta et
al. [2015] characterize networks on which the opinion held
by a minority of agents in the initial state may become the
majority opinion in a stable state.

In a somewhat related paper, Yildiz et al. [2013] con-
sider a binary opinion diffusion model that includes “stubborn
agents”, which influence others but do not change their opin-
ions. Influencing the opinion in dynamic networks of agents
at cost is described by Silva [2017], but for non-binary, con-
tinuous opinions. In this setting, optimal manipulation can be
reduced to Knapsack and Mixed-Integer Programming, pro-
viding efficient algorithms for practical instances. The com-
plexity of manipulating a binary opinion diffusion process has
also been considered by Akutsu et al. [2006] in context of
bioinformatics for a much more complex model with node-
individual boolean functions defining whether nodes update
their opinion, leading to NP-hardness even in extremely re-
stricted settings.

Another related problem is TARGET SET SELECTION
(TSS) [Kempe et al., 2005]: Given an undirected graph G,
a threshold function thr : V (G) → N, and an integer h ≥
0, TSS asks whether there is a “target set” V ′ ⊆ V (G)



with |V ′| ≤ h activating all vertices in V , where a ver-
tex v ∈ V (G) \ V ′ is activated when at least thr(v) of v’s
neighbors are active and an active vertex never becomes in-
active; note that in this model the order of updates does not
matter. This problem is computationally hard [Kempe et al.,
2005], even for special graph classes and restricted threshold
functions. For example, Nichterlein et al. [2013] showed that
TSS is W[2]-hard with respect to h even for diameter two,
and Chen [2009] showed hardness of approximation even for
graphs with constant degree and for threshold two. While
TSS is linear-time solvable on trees [Chen, 2009], Ben-Zwi
et al. [2011] showed that TSS is W[1]-hard with respect to
treewidth; however, some tractable cases are identified by
Chopin et al. [2014].

2 Model and Notation
For a positive integer n, we set [n] = {1, . . . , n}. An (undi-
rected) influence network (InfNet) is a pair (G, ◦) where
G = (V (G), E(G)) is a simple, undirected graph with
|V (G)| = n, |E(G)| = m, and ◦ : V (G) → {0, 1} is
an opinion mapping that describes the initial (binary) opin-
ions of all vertices. For simplicity (and visualization) we say
a vertex v is black with respect to an opinion mapping ◦ if
◦(v) = 1 and white otherwise. For a vertex v ∈ V , we denote
by N(v) := {u ∈ V | {u, v} ∈ E} the (open) neighbor-
hood of v, that is, the set of all vertices that are connected
to v by an edge. Let d(u, v) denote the length of the short-
est path between vertices u, v ∈ V (G); the diameter of G is
diam(G) = maxu,v∈V (G) d(u, v). We denote the treewidth
of G by tw(G); this is a parameter measuring how tree-like
G is [Robertson and Seymour, 1986].

3 Update Process
A vertex v in an influence network G may change its opin-
ion during an update step if the opinion of a strict majority of
vertices in N(v) differs from her own opinion. Updates may
be performed synchronously or asynchronously. We describe
the order of updates by a sequence σ of subsets of V ; the
i-th subset consists of vertices that consider changing their
opinions at step i. The update sequence (V (G), . . . , V (G))
models the synchronous update process used, e.g., by Goles
and Olivos [1980]. An asynchronous update process cor-
responds to each subset being a singleton. We denote by
◦[G, σ, z] the opinion mapping resulting from ◦ after z up-
date steps following the sequence σ. We use ◦[G, σ] as short-
cut for the final outcome ◦[G, σ, |σ|]. An opinion mapping ◦
is stable in a network G if no vertex changes its opinion, i.e.,
◦[G, (V (G)), 1] = ◦. A sequence is stable if the correspond-
ing final outcome is stable.
Optimistic and Pessimistic Updates Allowing arbitrary up-
date sequences leads to a huge number of possible outcomes.
If the manipulator does not control the update sequence, it is
natural for him to focus on the best-case and the worst-case
scenarios. We say that an update sequence is optimistic (resp.
pessimistic) if it is stable and maximizes (resp. minimizes) the
number of black vertices in the final state. We will now de-
scribe an algorithm that constructs optimistic and pessimistic

update sequences with very desirable properties; it is inspired
by ideas of Chierichetti et al. [2013].

Proposition 1. For every InfNet (G, ◦) there is an optimistic
(resp. pessimistic) update sequence σ such that (i) σ is asyn-
chronous, (ii) |σ| ≤ 2n, (iii) every vertex changes its opinion
at most twice, (iv) σ can be computed in O(n ·m) time, and
(v) ◦[G, σ] = ◦[G, σ∗] for every other optimistic (resp. pes-
simistic) update sequence σ∗.

Proof. We describe a linear-time algorithm that constructs
the desired optimistic update sequence σ; for the pessimistic
case, one simply has to swap the phases of the algorithm (and
adapt the proof of correctness accordingly). The algorithm
starts with an empty sequence σ and works in two phases.

(1) As long as there is a white vertex v with a majority of
black neighbors, append {v} to the end of σ and flip the
opinion of v.

(2) As long as there is a black vertex v with a majority of
white neighbors, append {v} to the end of σ and flip the
opinion of v.

Property (i) is clear by the definition of the algorithm. Prop-
erties (ii) and (iii) hold since the opinion of each vertex is
flipped at most once in each phase. Property (iv) holds, be-
cause one can find white (resp. black) vertices with a majority
of black (resp. white) neighbors in O(|V (G)| · |E(G)|) time.
It remains to show that property (v) holds, which also proves
that σ is optimistic.

Observe that σ is indeed stable: By the definition of the
second phase, no black vertex has an incentive to change its
opinion. Further, no white vertex has an incentive to change
its opinion at that point, as it has not gained new black neigh-
bors compared to the end of the first phase. Now, consider
an arbitrary optimistic update sequence σ∗. To prove that
◦[G, σ] = ◦[G, σ∗], we show that (1) each vertex that flipped
from white to black under σ∗ also flipped from white to black
under σ and that (2) each vertex that flipped from black to
white under σ is white under ◦[G, σ∗]. As the proofs are sim-
ilar, we only provide the proof for case (1).

Assume towards a contradiction that there is a vertex that
flipped from white to black under σ∗, but not under σ. Let v∗
be the first such vertex in σ∗, that is, v∗ flipped in step `
of σ∗ and all vertices that flipped from white to black in some
step `′ < ` of σ∗ also flipped from white to black under σ.
Then all neighbors of v∗ that are black under ◦[G, σ∗, `′ − 1]
would also be black at the end of the first phase of our algo-
rithm. Hence, a majority of v∗’s neighbors would be black at
the end of the first phase, yet v∗ would not flip; a contradic-
tion with the definition of the first phase.

4 InfNet-Bribery vs. Target Set Selection
We will now formalize the relationship between the problem
of bribing the vertices to change their opinion and TARGET
SET SELECTION. Formally, we consider the following com-
putational problem.

OPTIMISTIC INFNET BRIBERY (OPT-INFNET-BRIB)
Input: An influence network (G, ◦), and two positive in-
tegers k and q.
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Figure 2: Stabilizer gadget for a vertex v ∈ V (G) that has four
neighbors.

Question: Can one change at most k values in ◦ so that∑
v∈V (G) ◦[G, σ](v) ≥ q for every optimistic update se-

quence σ?

PESSIMISTIC INFNET BRIBERY (PESS-INFNET-BRIB) is
defined similarly.

First, observe that TSS with strict majority threshold func-
tions can be seen as a special case of OPT INFNET-BRIB.
Observation 1. Let G be a graph and let k be a positive
integer. Then ((G, ◦), k, |V (G)|) with ◦(v) = 0 for all v ∈
V (G) is in OPT INFNET-BRIB if and only if (G, thr, k) with
thr(v) = d(|N(v)|+ 1)/2e for all v ∈ V (G) is in TSS.

We use the following reduction to show that both OPT and
PESS INFNET-BRIB are at least as hard as TSS with arbitrary
threshold functions in terms of approximability and parame-
terized complexity for several parameters, even if the bribery
goal is to make all vertices black.
Proposition 2. There is a polynomial-time algorithm that
transforms every TSS instance (G, thr, h) into an OPT (resp.
PESS) INFNET-BRIB instance ((G′, ◦), k, q) such that
• (G, thr, h) ∈ TSS if and only if ((G′, ◦), k, q) ∈

OPT (resp. PESS) INFNET-BRIB, and

• k = h, q = |V (G′)|, tw(G′) ∈ O(tw(G)), diam(G′) ≤
diam(G) + 6.

Proof. We describe the reduction for OPT INFNET-BRIB and
then discuss how to extend it for PESS INFNET-BRIB.

Optimistic sequences. We start with the graph G′ = G,
◦(v) = 0,∀v ∈ V (G), k = h, and q = |V (G)|. By Observa-
tion 1, we are done if thr(v) = d(|N(v)|+1)/2e ∀v ∈ V (G).

Let y(v) := thr(v) − d(|N(v)| + 1)/2e. Now, we show
how to fix the construction by appending some dummy ver-
tices to each vertex v ∈ V (G) with y(v) 6= 0. If y(v) > 0,
we add 2y(v) white vertices dw(v, i), i ∈ [y(v)], to V (G′),
for each i ∈ [y(v)] add the edge {v, dw(v, i)} to E(G′),
and increase q by |y(v)|. If y(v) < 0, we add 2|y(v)|
pairs of black vertices db(v, i, 1), db(v, i, 2), i ∈ [y(v)], to
V (G′), for each i ∈ [y(v)] add the edges {v, db(v, i, 1)} and
{db(v, i, 1), db(v, i, 2)} to E(G′), and increase q by 2|y(v)|.

Let us discuss the correctness of the construction for OPT
INFNET-BRIB. Consider a target set V ′ ⊆ V (G). It can
be verified that by bribing all target set vertices, we can en-
sure that all original vertices from V (G) become black when
applying an optimistic update sequence. Clearly, the (white)
dummy vertices will also become black.

For the converse direction, assume that there is an opinion
mapping ◦′ which differs from ◦ in at most k values such that

∑
v∈V (G′) ◦′[G′, σ](v) ≥ q with respect to some optimistic

update sequence σ. Let V ′ = {v ∈ V (G′) | ◦(v) 6= ◦′(v)}
be the set of vertices whose opinion has changed. Now, to
construct a set V ∗ from V ′, we replace each dummy ver-
tex by the respective original vertex (that is, any vertex from
{dw(v, i, 1), db(v, i, 1), db(v, i, 2)}, i ∈ [y(v)] is replaced
y v). It can be verified that such set V ∗ ⊆ V (G) is a target
set for G. Finally, observe that the treewidth is not affected
by appending additional leaves.

Pessimistic sequences. If we use the above reduction, then
the converse direction of the proof still holds. However, brib-
ing all vertices of a given target set does not ensure that
all original vertices from V (G) become black when apply-
ing a pessimistic update sequence since, initially, some of
the target set vertices might have a majority of white neigh-
bors. To ensure that such vertices do not immediately be-
come white, we extend the construction by appending a sta-
bilizer gadget to each non-dummy vertex (see Figure 2): For
each vertex v ∈ V (G) add an activator vertex v∗ as well
as |N(v)| white and |N(v)| black connector vertices. For
each connector vertex w, add edges {v, w} and {v∗, w}. Fur-
thermore, append two additional black leaves to each black
connector vertex and append a path of two black vertices to
each white connector vertex. The stabilizer gadget has three
important properties, which hold under every stable update
sequence. First, no vertex will ever flip (back) from black to
white. Second, the whole gadget becomes black when any of
its white vertices flips. Third, the original vertex attached to
the stabilizer gadget must become black as well if the gadget
becomes black.

Let us discuss the correctness of the modified construction
for PESS INFNET-BRIB. Due to the properties of the stabi-
lizer gadget discussed above, the proof for the converse di-
rection still goes through. Let V ′ ⊆ V (G) be a target set
of size k. By considering the pessimistic update sequence
constructed in Proposition 1, we can verify that bribing all
vertices from V ′′ := {v∗ | v ∈ V ′} will ensure that all ver-
tices from V (G) become black: During the update process,
no black vertex will ever have a majority of white neighbors.
(Indeed, this holds for every stable update sequence.)

Finally, we discuss some parameters of the constructed in-
stance. It can be shown that appending the stabilizer gadgets
does not increase the treewidth by more than a factor of two
(we omit the argument due to space constraints). The diam-
eter is increased by at most 6, since every newly introduced
vertex is at distance at most 3 from some original vertex.

Proposition 2 enables us to transfer many negative hardness
results from TSS to INFNET-BRIB. We concentrate on the
parameterized intractability for the parameters (1) maximum
number of agents to bribe, (2) diameter, and (3) treewidth of
the influence network, because we consider these parameters
to appear most promising for the exploration of tractable spe-
cial cases. We remark that Chen [2009] showed that it is hard
to approximate the size of the target set even for graphs with
maximum degree bounded by a constant and when the thresh-
old of every vertex is two. This translates to hardness of ap-
proximating the number of agents to bribe for INFNET-BRIB
on graphs with maximum degree bounded by a constant.



Corollary 1. OPT (resp. PESS) INFNET BRIBERY is NP-
complete, W[2]-hard parameterized by the number k of ver-
tices to bribe even if the diameter ofG is at most 8, and W[1]-
hard parameterized by the treewidth of the input graph.

Proof. Membership in NP is immediate. All other claims
follow directly from Proposition 2, because TSS is W[2]-hard
with respect to the number h of vertices to activate even for
diameter two [Nichterlein et al., 2013] and W[1]-hard with
respect to treewidth [Ben-Zwi et al., 2011].

Despite these negative results, we can show that INFNET-
BRIB becomes polynomial-time solvable when the influence
network is acyclic. The following theorem relies on a dy-
namic programming algorithm similar to the one in the proof
of Theorem 2 (see Section 5).
Theorem 1. OPT (resp. PESS) INFNET BRIBERY can be
solved in polynomial time for acyclic influence networks.

Theorem 1 is mainly a classification result. It remains open
whether there is a practical, efficient algorithm as for TSS
[Chen, 2009].

5 Controlling Network Links
While computational hardness results for INFNET BRIBERY,
which is very similar to TARGET SET SELECTION, are not
particularly surprising, in this section we show that for a
seemingly significantly less powerful action2, such as remov-
ing a link in a network, similar hardness results hold. For-
mally, we consider the following computational problem.

OPTIMISTIC INFNET UNLINK CONTROL (OPT-
INFNET-UNLINK)
Input: An influence network (G, ◦), and two positive
integers k and q.
Question: Can one remove at most k edges from G so
that

∑
v∈V (G) ◦[G, σ](v) ≥ q for any optimistic update

sequence σ?
PESSIMISTIC INFNET UNLINK CONTROL (PESS-INFNET-
UNLINK) is defined similarly.
Proposition 3. There is a polynomial-time algorithm that
transforms every TSS instance (G, thr, h) into an OPT (resp.
PESS) INFNET-UNLINK instance ((G′, ◦), k, q) such that
(i) (G, thr, h) ∈ TSS if and only if ((G′, ◦), k, q) ∈ OPT
(resp. PESS) INFNET-UNLINK, and (ii) k = h, q = |V (G′)|,
tw(G′) ∈ O(tw(G)), diam(G′) ≤ diam(G) + 6.

Proof Idea. We can use the same construction as used for the
pessimistic case in Proposition 2. To see this, observe two
things. First, to “activate” some vertex v ∈ V (G) and the cor-
responding stabilizer gadget, one can simply remove an edge
between v∗ and one if its white connector vertices. Then,
any stable update sequence will make the whole gadget—and
then also v—become black. Second, when there is a solution
for the INFNET-UNLINK instance that removes an original
edge {u, v}, then one can obtain an alternative solution by
removing an edge between u∗ (resp. v∗) and one of its white
connector vertices.

2For example, with unbounded budget INFNET-BRIB becomes
trivial whereas INFNET-UNLINK remains non-trivial.

Corollary 2. OPT (resp. PESS) INFNET UNLINK CONTROL
is NP-complete, W[2]-hard parameterized by the number k
of vertices to bribe even if the diameter of G is at most 8, and
W[1]-hard parameterized by the treewidth of the input graph.

We mention that by a slight adaption of the stabilizer gad-
get we can obtain the same set of intractability results for the
problem of adding at most k links.

Just as for INFNET-BRIB, we show that INFNET-UNLINK
becomes polynomial-time solvable for acyclic networks.
Theorem 2. OPT (resp. PESS) INFNET-UNLINK can be
solved in polynomial time for acyclic influence networks.

Proof Idea. We describe the main idea of the algorithm and
omit some technical details. Also, to avoid technicalities, we
focus on the optimistic case and assume that the graph is a
tree, which is arbitrarily rooted. (The pessimistic case is very
similar and the extension to forests is straightforward.) The
crucial idea is that we can use property (iii) in Proposition 1
in order to characterize the influence of the root of a subtree
on all of its descendants. To this end, we define a set S =
{b,wb,bw,wbw,w} of five possible states for each vertex
(with respect to our canonical optimistic update sequence):
b The vertex is always black.

wb The vertex flips from white to black.
bw The vertex flips from black to white.
wbw The vertex flips from white to black and back.
w The vertex is always white.

In order to cover the case that the edge between some vertex
and its parent is removed, we annotate each state x ∈ S by an
asterisk. Thus, we end up with a set S∗ := {s, s∗ | s ∈ S} of
ten states when also considering edge removals.

Let table entry T [v, `, sv, sp] contain the maximum number
of black vertices within the subtree rooted in v ∈ V (G) at
the end of an optimistic update process given that the root v
has the state sv ∈ S∗, its parent has state sp ∈ S∗, and we
removed at most ` edges within the subtree.

It is easy to see how to initialize table T by filling in all en-
tries for the leaf nodes. The update process, that is, filling the
entries for non-leaf vertices is non-trivial and relies on solv-
ing an instance of a special case of THREE-DIMENSIONAL
MULTIPLE-CHOICE KNAPSACK (3-MCKP) [Kellerer et al.,
2004]. Given n classes of items, where each item has a three-
dimensional weight and a utility value, 3-MCKP finds a se-
lection of n items, one from each class, which maximizes the
total utility and satisfies a capacity constraint for each weight
dimension.

Let us focus on T [v, `, sv, sp] for some non-leaf v. The
difficulty of computing this table entry lies in the fact that
(i) we have to decide how to distribute the at most ` (resp.
at most ` − 1 if sv ∈ S∗ \ S) edge removals to the chil-
dren of v, and (ii) we have to ensure that the state sv can
indeed be realized. Note that the second part would be easy
if we knew the states of all children of v (the state of v’s par-
ent is fixed as sp). However, we cannot afford to go through
all possible state combinations of the children of v and ways
of distributing the edge removals, because the degree of v is
unbounded. Instead, each possible realization of the subtree



rooted in some child of v can be seen as a potential item for
our knapsack. More precisely, for each child v′ we introduce
a class Xv′ of items. For each `′ ≤ ` and each state s′ ∈ S∗
the classXv′ contains the item x(v′, `′, s′) whose value is de-
fined as T [v′, `′, s′, sv] and whose three-dimensional weight
is as follows: the first dimension is the number of edge re-
movals and has value `′, the second dimension is the color
of v′ at the end of the first phase of the optimistic update
process, and the third dimension is the color of v′ at the end
of the optimistic update process. Herein, black is encoded
by weight 1, white by weight -1, and a disconnected child
by weight 0.5. A capacity constraint on the first dimension
ensures that all edge removals are distributed, and capacity
constraints on the other two dimensions ensure that the state
of v is consistent with the state of its neighbors. Hence, a
solution to our 3-MCKP instance gives as the correct value
of T [v, `, sv, sp]. Note that 3-MCKP with weights encoded
in unary can be solved in polynomial time via dynamic pro-
gramming.

6 Controlling Update Sequences
In the previous sections, we focused on manipulative actions
that aimed to maximize the number of black vertices, and
only considered two specific classes of update sequences (op-
timistic and pessimistic updates). Another interesting ques-
tion is whether we can achieve a specific outcome by allowing
arbitrary update sequences. We restrict ourselves here to the
(seemingly) simpler case where only asynchronous updates
are allowed. Thus, we obtain the following problem.

INFNET ASYNC-UPDATE SEQUENCE (INFNET-ASEQ)
Input: An undirected graph G = (V,E), an initial opin-
ion mapping ◦ : V → {0, 1}, and a stable opinion map-
ping ◦′ : V → {0, 1}.
Question: Is there an asynchronous update sequence σ
such that ◦[G, σ] = ◦′?
It turns out that most of the hardness results that we ob-

tained for INFNET-BRIB also hold for INFNET-ASEQ, even
though INFNET-ASEQ does not even involve a budget, and
INFNET-BRIB becomes trivial with unlimited budget. The
construction behind the following proposition is a non-trivial
extension of the construction in Proposition 3. The high-level
idea is to introduce a gadget that allows up to k of the activa-
tor vertices from the stabilizer gadget to become black before
some part of this new gadget becomes white.

Proposition 4. There is a polynomial-time algorithm that
transforms every TSS instance (G, thr, h) into a INFNET-
ASEQ instance (G′, ◦, ◦′) such that

• (G, thr, h) is in TSS if and only if (G′, ◦, ◦′) is in
INFNET-ASEQ, and

• tw(G′) ∈ O(tw(G)), diam(G′) ≤ diam(G) + 6.

The construction behind Proposition 4 preserves most of
the negative results that we have derived for INFNET-BRIB
and INFNET-UNLINK. However, due to the global activation
gadget that is connected to every stabilizer gadget, it does
not preserve (approximation) hardness for bounded degree.
Further, the diameter of the graph is 12 instead of 8.

G

G′

G′′

Figure 3: Visualization of possible outcomes (G′ and G′′) for some
path G. No vertex that agrees with some neighbor can change its
opinion which implies that no two neighbors can change their opin-
ion (after each other).

Corollary 3. INFNET ASYNC-UPDATE SEQUENCE is NP-
complete even if the diameter of G is at most 12, and W[1]-
hard parameterized by the treewidth of the input graph.

Identifying the first tractable special case, we show that
INFNET-ASEQ becomes linear-time solvable when the de-
gree of every vertex in the network does not exceed two (i.e.,
the network is a collection of paths and cycles). The main
insight is illustrated in Figure 3.

Theorem 3. INFNET ASYNC-UPDATE SEQUENCE can be
solved in linear time if the degree of every vertex in G is at
most two.

7 Conclusion
We have proposed several models of manipulating the pro-
cess of opinion diffusion on social networks. It turns out that
most of the manipulation problems we consider are computa-
tionally hard. This is good news, as computational hardness
provides partial defence against strategic behavior [see, e.g.,
the discussion by Faliszewski and Procaccia, 2010].

It would be interesting to extend our analysis to directed
networks; while the hardness results still hold, for easiness
results the picture is not clear. Control by adding links de-
serves further study as well. For INFNET-ASEQ, we focused
on the question of arriving to a specific combination of opin-
ions. However, there are many other interesting questions
one can ask, such as whether we can achieve a good balance
of opinions in the society (e.g., at least 30% of each color),
or whether we can ensure that each player is exposed to an
opinion that differs from her own (note that maximizing or
minimizing the number of black vertices is easy, as this can
be achieved by optimistic/pessimistic update sequences). In
this context, one can also ask what happens if we allow si-
multaneous updates by arbitrary vertex subsets. We restricted
ourselves to stable update sequences but it could be useful
to omit this assumption. More sophisticated network mod-
els (e.g. including unobservability) would allow us to avoid
full-knowledge assumption. Further, we treat adding and re-
moving links as permanent changes to the network. Instead,
one can allow the manipulator to disable/enable links for a
few steps; indeed, this is something that can be done quite in-
conspicuously in an online social network. One can also ask
what can be accomplished by combining different control ac-
tions in the spirit of Faliszewski et al. [2011].
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