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Abstract. The Bisection problem asks for a partition of the vertices
of a graph into two equally sized sets, while minimizing the cut size. This
is the number of edges connecting the two vertex sets. Bisection has
been thoroughly studied in the past. However, only few results have been
published that consider the parameterized complexity of this problem.

We show that Bisection is FPT w.r.t. the minimum cut size if there is an
optimum bisection that cuts into a given constant number of connected
components. Our algorithm applies to the more general Balanced Bisep-
arator problem where vertices need to be removed instead of edges. We
prove that this problem is W[1]-hard w.r.t. the minimum cut size and
the number of cut out components.

For Bisection we further show that no polynomial-size kernels exist
for the cut size parameter. In fact, we show this for all parameters that
are polynomial in the input size and that do not increase when taking
disjoint unions of graphs. We prove fixed-parameter tractability for the
distance to constant cliquewidth if we are given the deletion set. This
implies fixed-parameter algorithms for some well-studied parameters such
as cluster vertex deletion number and feedback vertex set.

1 Introduction

We consider the NP-hard Bisection problem for which the n vertices of a
graph G = (V,E) need to be partitioned into two sets A and B of size at
most dn/2e each ((A,B) is a bisection of G). At the same time the cut size
needs to be minimized. This is the number of edges connecting vertices in A
with vertices in B. Throughout this paper it will be convenient to consider the
decision problem corresponding to Bisection, which is defined as follows.
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Bisection
Input: A graph G and a positive integer k.
Question: Does G have a bisection with cut size at most k?

Bisection is of importance both in theory and practice, and has applications in
divide-and-conquer algorithms [26], computer vision [25], and route planning [12].
We study Bisection from the point of view of parameterized complexity, and
consider several parameters (Table 1) that naturally arise from the known results
for Bisection. That is, we consider a given parameter p of an input instance and
ask whether an algorithm with running time f(p) · nO(1) exists that optimally
solves the problem. Here f(p) is a function that only depends on p. If there is
such an algorithm we say that the problem is fixed-parameter tractable (or FPT
for short) with respect to p.

Bisection has been thoroughly studied in the past. It is known that it is
NP-hard in general [20] and the minimum cut size can be approximated within
a factor of O(log n) [32]. Assuming the Unique Games Conjecture, no constant
factor approximations exist [23]. For special graph classes such as trees [27] and
solid grids [17] the optimum cut size can be computed in polynomial time. For
planar graphs it is still open whether Bisection is NP-hard, but it is known
to be FPT with respect to the cut size [8].

In this paper we show that for general graphs one can find an optimal bisection
in FPT-time with respect to the cut size if there is an optimal bisection that cuts
the graph into a given constant number of connected components. This result is
motivated by the fact that in practice the solutions are typically cut into very
few connected components [2]. Also for random regular graphs the sets A and B
of the optimum bisection are connected with high probability [9]. Our algorithm
is presented for the more general Balanced Biseparator problem, in which
vertices instead of edges need to be removed in order to bisect the graph. To
achieve our result, we generalize the treewidth reduction technique for separation
problems that has been recently introduced by Marx et al. [29]. By adapting
it to the global balancedness constraint, we address an open question by Marx
et al. [30] of whether this is possible. We furthermore observe that Balanced
Biseparator is W[1]-hard with respect to the cut size and the number of cut
out components. Hence, Balanced Biseparator is unlikely to be FPT even
when combining these parameters. This means that to obtain a fixed-parameter
algorithm it is unavoidable to impose some additional constraint. We chose our
condition on having a constant number of cut out connected components in the
optimum solution as a natural candidate, as argued above.

Whether Bisection is FPT with respect to the cut size alone, though, re-
mains open. However, we show that no polynomial-size problem kernels exist
for this parameter, unless coNP ⊆ NP/poly. Hence, it is unlikely that there is
a polynomial-time algorithm that computes an instance of size polynomial in
the cut size and equivalent to the original instance. We prove this by giving a
corresponding result for all parameters that are polynomial in the input size
and that do not increase when taking the disjoint union of graphs. This includes
parameters such as treewidth, minimum cut size, cliquewidth, and more generally
bandwidth (see [5, Theorem 44]).



Table 1. Overview of known and new parameterized results.

Parameter Results for Bisection

cut size FPT for planar graphs [8]
FPT for constant cut out components (Theorem 2)
No poly-size kernel (Theorem 3)
W[1]-hard for Balanced Biseparator (deferred)

treewidth FPT [33, 34]
No poly-size kernel (Theorem 3)

cliquewidth XP (Lemma 3)
No poly-size kernel (Theorem 3)

bandwidth No poly-size kernel (Theorem 3)

feedback vertex set FPT (Corollary 1)

cluster vertex deletion number FPT (Corollary 1)

Some of these parameters have been considered for the Bisection problem
before. For instance, we already mentioned the cut size, and it was shown that the
problem is FPT with respect to treewidth [33, 34]. However, although treewidth
is probably the most widely used graph parameter for sparse graphs, it is not
suitable for dense graphs, although they can also have simple structure. For that
purpose, Courcelle and Olariu [11] introduced the parameter cliquewidth [14].
For this parameter we present an XP algorithm, i.e. an algorithm finding the
optimum solution in time nO(q) if a cliquewidth-q expression for the graph is
given. In fact we obtain an algorithm that shows that Bisection is FPT with
respect to the cliquewidth-q vertex deletion number :4 the number of vertices that
has to be deleted to obtain a graph of constant cliquewidth q. To the best of our
knowledge this parameter has not been considered in the past. The cliquewidth-q
deletion number is a generalization of several well-studied graph parameters like
vertex cover (q = 1) [10], cluster vertex deletion number and cograph vertex
deletion number (q = 2) [11], or feedback vertex set (q = 3) [24] and treewidth-t
vertex deletion set (q = 2t+1 + 1) [11, 18].

In this paper we use standard terminology of graph theory [13]. Due to space
constraints, many proofs are deferred to the full version of the paper.

2 An FPT Algorithm for Cut Size and Constant Number
of Cut Out Components

This section shows that Bisection is FPT with respect to the cut size if there
is an optimum bisection that cuts into at most some given constant number of
connected components. To this end, we show an FPT-algorithm for the more
general problem Balanced Biseparator; to formally define it, we need some
terminology. Let G be a graph and S ⊆ V (G). We call S an A-B-separator if there
are vertex sets A,B ⊆ V (G) such that S,A,B form a partition of V (G), and there

4 Precisely, we need the vertex deletion set to be given to obtain FPT for this parameter.



are no edges between A and B in G. Moreover, we call S balanced if ||A|−|B|| ≤ 1.
We say that G has a balanced separator S if there are sets A,B such that S is a
balanced A-B-separator for G. We say that S is an s-t-separator for vertices s, t
if there are vertex sets A,B ⊆ V (G) such that S is an A-B-separator and s ∈ A
and t ∈ B. We say that an s-t-separator S is inclusion-wise minimal, or just
minimal, if there is no s-t-separator S′ ( S. Finally, we say that S is a c-
component separator for G, if there are c connected components in G − S.
Balanced Biseparator is the following problem:

Balanced Biseparator
Input: A graph G and a positive integer k.
Question: Does G have a balanced separator of size at most k?

Using a reduction from the W[1]-hard problem Cutting ` Vertices [28], one
can show that Balanced Biseparator is W[1]-hard with respect to k and the
number c of cut out components. Hence, an additional constraint like c being
constant is unavoidable to get an FPT-algorithm. Our algorithm for Balanced
Biseparator transfers also to Bisection:

Proposition 1. There is a polynomial-time many-one reduction from Bisec-
tion to Balanced Biseparator such that the desired separator size is at
most one larger than the desired cut size. Furthermore, each bisection with c
connected components for the Bisection instance yields a balanced separator
for the Balanced Biseparator instance whose removal leaves at most c+ 2
connected components and vice-versa.

Proposition 1 implies that Balanced Biseparator is a more general problem
than Bisection. We now outline an FPT algorithm for Balanced Biseparator:
we first observe that a balanced separator consists of minimal s-t-separators
between a collection of “terminal” vertices s, t. The terminal vertices are chosen
one from each of the connected components of the input graph without the
separator. Guessing the terminals, we can reduce Balanced Biseparator to
finding an “almost balanced” separator consisting of vertices contained in minimal
separators. To find such a separator, we generalize the “treewidth reduction”
technique introduced by Marx et al. [29, 30] to graphs with vertex weights.
We obtain an algorithm that constructs a weighted graph G′ that preserves all
inclusion-wise minimal vertex cuts of size at most k between some given terminals,
preserves the weight of the cut out parts, and has treewidth bounded by some
function g(k, c) where c is the number of terminals. Moreover the algorithm
runs in time f(k, c) · nO(1). We then show that Balanced Biseparator is
fixed-parameter tractable with respect to treewidth when fixing the number of
components of the separated graph. The final algorithm guesses the terminals,
reduces the treewidth and then solves the bounded-treewidth problem.

The main ingredient in our FPT algorithm for Balanced Biseparator is a
generalization of the treewidth reduction technique of Marx et al. [30] to graphs
with vertex weights: we aim to construct a graph of bounded treewidth that
preserves all inclusion-wise minimal s-t-separators of a given size. To this end,



we define trimmers. Let G = (V,E) be a graph, k an integer and T ⊆ V . A tu-
ple (G∗, φ) of a graph G∗ = (V ∗, E∗) and a total, surjective, but not necessarily
injective mapping φ : V → V ∗ is called a (k, T )-trimmer of G if the following
holds. (Here, we extend φ(V ) :=

⋃
v∈V φ(v) and φ−1(v) := {v′ | φ(v′) = v}.)

(i) Let S ⊆ V ∗. A set C ⊆ V ∗ is a connected component in G∗ − S if and only
if φ−1(C) is a connected component in G−φ−1(S) (i. e., φ implies a one-to-
one mapping between the connected components of G∗−S and G−φ−1(S)).

(ii) If S is an inclusion-wise minimal s-t-separator for G with |S| ≤ k and s, t ∈
T , then φ(S) = S and φ(S) is an inclusion-wise minimal φ(s)-φ(t)-separator
for G∗.

We obtain the following.

Theorem 1. Let G = (V,E) be a graph. For every constant k ∈ N and constant-
size T ⊆ V , we can compute a (k, T )-trimmer (G∗, φ) for G in O(|V |+ |E|) time
such that the treewidth of G∗ is at most g(k, |T |) for some function g depending
only on k and |T |. Moreover, both φ and φ−1 are linear-time computable with
respect to their output length.

We can now state an algorithm for finding a c-component balanced separator of a
given size. To this end, we first note that Balanced Biseparator is FPT with
respect to treewidth and, thus, gathering the final ingredient for the algorithm.

Lemma 1. Let G be a graph with treewidth ω and integer vertex-weights λ. Let Λ
be the sum of all vertex weights and let c ≥ 2 be an integer. We can find in
ωO(ω) · c2 ·Λ2 ·n time, for all integers 1 ≤ s ≤ Λ, a minimum weight c-component
A-B-separator S with λ(A) = s, or reveal that no such separator exists.

We now arrive at the main theorem of this section.

Theorem 2. Let G be a graph. Given non-negative integers c and k, in h(c, k) ·
nc+3 time we can find a c-component balanced separator for G of size at most k
if it exists. Here, h(c, k) is a function depending only on c and k.

Proof. The algorithm proceeds as follows. For each T ⊆ V (G) of size c we
compute a (k, T )-trimmer (G∗, φ) using Theorem 1. We create a vertex weight
function λ for G∗ by letting λ(v) = |φ−1(v)|. Then, for each s, |V (G)|/2−1−k ≤
s ≤ |V (G)|/2 + k, we compute a minimum-weight c-component A′-B′-separator
for G∗ with λ(A′) = s using Lemma 1. If among these separators there is an
A′-B′-separator S′ with |λ(A′)− λ(B′)| ≤ k − λ(S′) + 1, then we compute S :=
φ−1(S′), A := φ−1(A′), and B := φ−1(B′). Note that, by trimmer property (i),
S is a c-component A-B-separator for G. Moreover, since φ is a total mapping,
||A|−|B|| ≤ k−|S|+1. We move k−|S| vertices from A or B to S such that S is a
c-component balanced separator for G and we output S. Note that, unless |V (G)|
is bounded by a function of k and the problem is trivial, moving the vertices to S
without changing the number of components is always possible, because not every
vertex of a connected component can separate it into multiple ones and there
is always a component of size at least two. If no suitable separator is found, we
output that there is no c-component balanced separator of size at most k for G.



Let S be a c-component balanced separator of size k for G and pick ver-
tices v1, . . . , vc, one from each connected component of G−S. Let us observe that
the above algorithm finds a c-component balanced separator of size at most k. Note
that S is a vi-vj-separator for each 1 ≤ i < j ≤ c. Hence, S contains inclusion-

wise minimal vi-vj-separators Si,j of size at most k. Let Ŝ =
⋃

1≤i<j≤c Si,j , call

a connected component in G− Ŝ odd if it does not contain any vi, and let S̃ be
the union of Ŝ and all odd components. Note that odd components are contained
in S. Hence, S̃ is a c-component Ã-B̃-separator for G with ||Ã|−|B̃|| ≤ k−|S̃|+1
and |V (G)|/2− 1− k ≤ |Ã| ≤ |V (G)|/2 + k. By trimmer property (ii) we have
that φ(Ŝ) = Ŝ is contained in G∗. Thus, by trimmer property (i), φ implies a one-
to-one mapping of connected components C in G− Ŝ and their counterparts φ(C)
in G∗ − Ŝ. In particular, there is such a mapping for all odd connected compo-
nents. Thus, φ(S̃) is a c-component φ(Ã)-φ(B̃)-separator for G∗ and we have
λ(φ(S̃)) = |S̃|, λ(φ(Ã)) = |Ã|, and λ(φ(S̃)) = |S̃|. Hence, an A′-B′-separator S′

for G∗ with λ(S′) ≤ λ(φ(S̃)) and λ(A′) = λ(φ(Ã)) is enumerated by the algorithm
of Lemma 1. Applying the size bounds of Ã, B̃, S̃ we have ||λ(A′)| − |λ(B′)|| ≤
k−|λ(S′)|+1 and |V (G)|/2−1−k ≤ |λ(A′)| ≤ |V (G)|/2+k. Thus, the algorithm
described above finds a c-component balanced separator of size at most k for G.
The proof of the running time bound is deferred to a full version of the paper. ut

3 Incompressibility

Problem kernelization is a powerful preprocessing tool in attacking NP-hard
problems [6, 21]. A reduction to a problem kernel is an algorithm that, given an in-
stance I with parameter p of a parameterized problem, in time polynomial in (|I|+
p) outputs an instance I ′ of the same problem and a parameter p′ such that

i) I is a yes-instance if and only if I ′ is a yes-instance,
ii) |I ′|+ p′ ≤ f(p), where f is a function only depending on p.

The function f is called the size of the problem kernel. It is desirable to find
problem kernels of size polynomial in the parameter p.

In this section, we show that Bisection has no polynomial-size kernel with
respect to any parameter that is polynomial in the input size and does not increase
when taking disjoint unions of graphs. Our result excludes polynomial-size problem
kernels for the parameters treewidth, cut size of the bisection (the “standard
parameter”), cliquewidth, and more generally pathwidth (see [5, Theorem 44]).

Theorem 3. Unless coNP ⊆ NP/poly, Bisection does not have polynomial-size
kernels with respect to any parameter that is polynomial in the input size and
that does not increase when taking disjoint unions of graphs.

For Theorem 3, we first show that a version of Bisection with integer edge
weights does not have a polynomial-size kernel, and then show how to remove the
weights. To prove that Edge-Weighted Bisection does not have a polynomial-
size kernel, it is sufficient to show a cross composition (cf. Bodlaender et al. [7])
from the NP-hard [19] Maximum Cut problem to Edge-Weighted Bisection.



Maximum Cut
Input: A graph G = (V,E) and an integer k.
Question: Is there a partition of V into sets A and B such that at least

k edges have one endpoint in A and one in B?

Lemma 2. There is a cross composition of Maximum Cut to Edge-Weighted
Bisection with respect to any parameter that is polynomial in the input size and
does not increase when taking the disjoint union of graphs.

Showing the cross composition amounts to the following. We give a polynomial-
time algorithm that transforms input instances (G1, k1), . . . , (Gt, kt) of Maxi-
mum Cut into one instance (G∗, k∗) of Edge-Weighted Bisection such that
(G∗, k∗) is a yes-instance if and only if one of the Maximum Cut instances is
and such that k∗ is polynomial in the size of the largest input instance.

Construction 1. The construction resembles the reduction given for the NP-
hardness of Bisection by Garey et al. [20]. To easier present the construction,
without loss of generality we assume that

i) each of the Gi, 1 ≤ i ≤ t, has exactly n vertices and k1 = · · · = kt =: k
(cf. Bodlaender et al. [7]),

ii) 1 ≤ k ≤ n2: if k = 0, all instances are yes-instances, and if k > n2, all
instances are no-instances. Hence, if not 1 ≤ k ≤ n2, we can return a trivial
yes-instance or no-instance of Edge-Weighted Bisection,

iii) t is odd: otherwise, we can add a no-instance to the list of input instances
that consists of the edgeless graph on n vertices.

Since the output graph G∗ will consist of connected components, each having at
most 2n vertices, and since our parameter is polynomial in the input size and does
not increase when taking the disjoint union of graphs, we trivially obtain that
the output parameter is polynomial in n. We create G∗ as follows: for each input
graph Gi = (Vi, Ei), 1 ≤ i ≤ t, add to G∗ the vertices in Vi and a clique V ′i with
|Vi| vertices and edges of weight W := n2 each. All vertices in V ′i are adjacent to
all vertices in Vi in G∗ via an edge of weight W . Now, for each pair v, w ∈ Vi,
add an edge {v, w} to G∗ with weight W if {v, w} /∈ Ei and with weight W − 1
if {v, w} ∈ Ei. We set k∗ := Wn2 − k.

We use Construction 1 to show Lemma 2 and subsequently Theorem 3.

4 FPT for the Cliquewidth-q Vertex Deletion Number

This section shows Bisection to be fixed-parameter tractable with respect to the
number of vertices that have to be removed from a graph to reduce its cliquewidth
to a constant q. Thus, we generalize many well-studied graph parameters like ver-
tex cover (q = 1) [10], cluster vertex deletion number and cograph vertex deletion
number (q = 2) [11], or feedback vertex set (q = 3) [24] and treewidth-t vertex
deletion set [18]. Our definition of cliquewidth is inspired by Hliněný et al. [22].

Let q be a positive integer. We call (G,λ) a q-labeled graph if G is a graph
and λ : V (G)→ {1, 2, . . . , q} is a mapping. The number λ(v) is called label of a
vertex v. We introduce the following operations on labeled graphs:



(1) For every i in {1, . . . , q}, we let •i denote the graph with only one vertex
that is labeled by i (a constant operation).

(2) For every pair of distinct i, j ∈ {1, 2, . . . , q}, we define a unary operator ηi,j
such that ηi,j(G,λ) = (G′, λ), where V (G′) = V (G), and E(G′) = E(G) ∪
{(v, w) | v, w ∈ V, λ(v) = i, λ(w) = j}. In other words, the operator adds all
edges between label-i vertices and label-j vertices.

(3) For every pair of distinct i, j ∈ {1, 2, . . . , q}, we let ρi→j be the unary operator
such that ρi→j(G,λ) = (G,λ′), where λ′(v) = j if λ(v) = i, and λ′(v) = λ(v)
otherwise. The operator only changes the labels of vertices labeled i to j.

(4) Finally, ⊕ is a binary operation that makes the disjoint union, while keeping
the labels of the vertices unchanged. Note explicitly that the union is disjoint
in the sense that (G,λ)⊕ (G,λ) has twice the number of vertices of G.

A q-expression is a well-formed expression ϕ written with these symbols. The
q-labeled graph produced by performing these operations therefore has a vertex
for each occurrence of the constant symbol in ϕ; and this q-labeled graph (and any
q-labeled graph isomorphic to it) is called the value val(ϕ) of ϕ. If a q-expression ϕ
has value (G,λ), we say that ϕ is a q-expression of G. The clique-width of a
graph G, denoted by cwd(G), is the minimum q such that there is a q-expression
of G. We say that a join ηi,j is full if there is no edge between vertices of label i
and j in the labeled graph on which the join is applied.

Proposition 2. For any q-expression for an n-vertex graph there is an equivalent
one which is at most as long as ϕ, contains O(q2 · n) symbols, and for which
every join is full.

In the following, we show how to compute an optimal bisection using the q-
expression of a given graph G. This will naturally also solve the decision problem
Bisection. Let D ⊆ V (G) and ϕ be a q-expression for G \ D, i.e. val(ϕ) =
(G \D,λ). Let A0, B0 be a partition of D. For now, we assume that there are no
edges between A0 and B0. Let ni(ϕ) for i ∈ {1, . . . , q} be the number of vertices of
G\D with label i. For every pair of vectors a = (a1, . . . , aq), b = (b1, . . . , bq) ∈ Nq

with ai + bi = ni(ϕ), let us denote by CutA0,B0(ϕ,a, b) the minimum number of
edges between different parts of a partition (A,B) of V (G) which satisfies the
following conditions: (i) A0 ⊆ A, B0 ⊆ B, (ii) the number of vertices in A \D
and B \ D of label i are ai and bi, respectively. In the following we use xi to
denote the i’th entry in a vector x.

Lemma 3. There is an algorithm that for given G, A0, B0 and ϕ in time
O(n2q · q · |ϕ|) computes all the numbers CutA0,B0

(ϕ,a, b).

Proof. We prove the lemma by induction on the length of the q-expression. By
Proposition 2 we can assume that every join in ϕ is full. If ϕ = •i, then we have
ni(ϕ) = 1 and nj(ϕ) = 0 for every j 6= i. Hence, in each pair of q-dimensional
vectors a, b there is either ai = 1 or bi = 1 and the other numbers are zero.
In this case, there is exactly one partition fulfilling the conditions (i) and (ii),
namely the one which puts the only vertex of G \D to set A or B as required. It
is easy to compute the number of edges between the parts in this partition.



Now, suppose ϕ = ηi,j(ϕ
′). Since ϕ′ is shorter than ϕ, by the induction

hypothesis we can use an algorithm for ϕ′ to store all the results in a ta-
ble CutA0,B0(ϕ′,a, b). Note that val(ϕ′) differs from G\D only in that G\D has
an edge between every vertex of label i and every vertex of label j, while val(ϕ′)
has no such edges (as the join is full). Therefore, every partition (A,B) of G \D
fulfilling the conditions (i) and (ii), is also a partition for val(ϕ′) fulfilling these
conditions, but in G \D there are exactly ai · bj + aj · bi more edges between the
parts. Hence, we can output CutA0,B0

(ϕ,a, b) = CutA0,B0
(ϕ′,a, b)+ai ·bj +aj ·bi.

Next, let us assume that ϕ = ρi→j(ϕ
′), and the table containing the values of

CutA0,B0(ϕ′,a′, b′) is already computed. Note that in G \D there are no vertices
of label i, so we have 0 = ni(ϕ) = ai = bi. On the other hand, some of the vertices
which have label j in G \D had label i in val(ϕ′). A minimal partition for G \D,
a, and b which satisfies the conditions (i) and (ii) is also a partition for val(ϕ′)
which satisfies the conditions (i) and (ii) for some a′, b′, but we don’t know the
distributions of aj to a′j and a′i and of bj to b′j and b′i. Therefore CutA0,B0(ϕ,a, b)
can be computed as min{CutA0,B0(ϕ′,a′, b′)} where the minimum is taken over all
pairs a′, b′ where a′t = at and b′t = bt for every t ∈ {1, . . . , q}\{i, j}; aj = a′j +a′i;
bj = b′j + b′i and a′t + b′t = nt(ϕ

′) for t ∈ {i, j}. As every pair a′, b′ gives rise to
exactly one a, b, all the minima can be computed in one pass over all a′, b′.

Finally, let ϕ = ϕ1 ⊕ ϕ2 and let the values of CutA0,B0
(ϕ1,a1, b1) and

CutA0,B0(ϕ2,a2, b2) be already computed and stored in a table. A minimal parti-
tion for G\D and a, b satisfying the conditions (i) and (ii) also induces partitions
for val(ϕ1) and val(ϕ2), which satisfy the conditions (i) and (ii) for some a1, b1

and a2, b2, but we don’t know the distributions of ai to a1i and a2i and of bi
to b1i and b2i . Moreover, there are no edges between val(ϕ1) and val(ϕ2). Thus
min{CutA0,B0

(ϕ1,a1, b1) + CutA0,B0
(ϕ2,a2, b2)} gives CutA0,B0

(ϕ,a, b), where
the minimum is taken over all a1, b1 and a2, b2 where for every i ∈ {1, . . . , q},
ai = a1i + a2i , bi = b1i + b2i , and ali + bli = ni(ϕ

l) for l ∈ {1, 2}. As every pair of
pairs a1, b1 and a2, b2 gives rise to exactly one pair a, b, all the minima can be
computed in one pass over all combinations of a1, b1 and a2, b2.

Concerning the running time, we again argue by induction to show that
the overall time is O(n2q · q · |ϕ|). If ϕ = •i, then |ϕ| = 1 and the compu-
tation of CutA0,B0 for the only possible pair of q-dimensional vectors takes
O(m+ n) ⊆ O(n2q · q) time. This constitutes the induction basis. Otherwise, for
any sub-expression ϕ′ of a given expression ϕ, the computation of the table for
ϕ′ takes O(n2q · q · |ϕ′|) time by the induction hypothesis. Observe that there
are O(nq) different pairs of q-dimensional vectors a, b with ai + bi = ni(ϕ). If
ϕ = ηi,j(ϕ

′), then the computation for each pair of vectors takes O(q) time. For
ϕ = ρi→j(ϕ

′), one pass through the table of ϕ′ is obviously accomplished in
O(nq) time, spending O(1) time per entry. Since in both cases |ϕ| = |ϕ′|+ 1, this
proves the time bound for ϕ for these expressions. Finally, if ϕ = ϕ1 ⊕ ϕ2 then
the tables for ϕ1 and ϕ2 can be computed in O(n2q · q · (|ϕ1|+ |ϕ2|)) time. Then
we cycle over the entries of both tables and for each combination we spend O(q)
time, so this can be accomplished in O(n2q · q) time. Since |ϕ| = |ϕ1|+ |ϕ2|+ 1,
also in this case the algorithm runs in O(n2q · q · |ϕ|) time. ut



Theorem 4. For G a graph, D ⊆ V (G), and ϕ a q-expression for G\D there is
an O(2|D| · n2q+1q3) time algorithm which computes the optimal bisection of G.

Proof. It is enough to find the minimum of CutA0,B0(ϕ,a, b) over all parti-
tions A0, B0 and pairs of q-dimensional vectors a, b with |A0|+

∑q
i=1 ai equal to

|B0|+
∑q

i=1 bi. Since Lemma 3 only applies when there are no edges between A0

and B0, we delete them and add the number of them to the sum. As the size of
ϕ is O(q2 · n) by Proposition 2, the running time follows from Lemma 3. ut

Given D, an f(q)-expression for G\D can be computed in polynomial time using a
cliquewidth approximation [31]. Thus, Bisection is FPT with respect to the size
of any constant-cliquewidth vertex-deletion set that is obtainable in FPT time.

Corollary 1. Bisection is fixed-parameter tractable with respect to the size of
a feedback vertex set, the size of a cluster vertex deletion set, and the size of a
treewidth-t vertex deletion set.

It is easy to generalize Theorem 4 to Balanced d-Partitioning, where
one searches for a partition into some constant d > 2 many equal-sized parts.
The running time achieved is O(d|D|+1 · n2(d−1)q+1q3). We note that such a
running time bound is tight in the sense that there is no algorithm with running
time f(d, |D|)nO(1) for constant q unless FPT = W[1]: since the deletion of
a feedback vertex set leaves a forest, the resulting graph has clique-width at
most 3 [11]. Thus, if there was an algorithm with the above running time, then
Balanced Partitioning would be fixed-parameter tractable with respect to
the combined parameter size of a minimum feedback vertex set and number of
parts in the partition. However, we can show that this parameter combination
yields a W[1]-hard problem.

5 Conclusion

A natural generalization of the Bisection problem is to partition the graph
into d equally-sized sets, for some arbitrary d instead of only two. This problem
is called Balanced Partitioning and is considerably harder than Bisection.
For instance Balanced Partitioning is hard to approximate even on trees [15].
Nonetheless it is of great importance in applications such as parallel computing [3]
and VLSI circuit design [4]. Due to the hardness results [15] it was asked whether
the problem is FPT for parameters resulting in algorithms useful in practice.
Many of the known results already rule out FPT algorithms for some parameters
such as treewidth or cluster vertex deletion number (Balanced Partitioning
is NP-hard for trees [16] and graphs formed by a disjoint union of cliques [1]). We
addressed this question and were able to show that the problem is W[1]-hard for
the combined parameter cut size, feedback vertex set, treewidth, and number d
of partitions.5 We can, however, show that Balanced Partitioning is FPT
with respect to the vertex cover number.5

5 These results are deferred to a full version.



The main open problem remaining from this paper is the status of the
parameterized complexity of Bisection with respect to the parameter cut
size alone. But also, for the Balanced Partitioning problem, the question
posed by Feldmann [15] of whether practical algorithms beyond the standard
deterministic worst-case scenario exist, remains unanswered.
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