
Programming by Optimisation Meets
Parameterised Algorithmics:

A Case Study for Cluster Editing

Sepp Hartung1? and Holger H. Hoos2

1Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Berlin, Germany
sepp.hartung@tu-berlin.de

2Department of Computer Science, University of British Columbia, Vancouver, Canada
hoos@cs.ubc.ca

Abstract. Inspired by methods and theoretical results from parame-
terised algorithmics, we improve the state of the art in solving Cluster
Editing, a prominent NP-hard clustering problem with applications in
computational biology and beyond. In particular, we demonstrate that
an extension of a certain preprocessing algorithm, called the (k + 1)-data
reduction rule in parameterised algorithmics, embedded in a sophis-
ticated branch-&-bound algorithm, improves over the performance of
existing algorithms based on Integer Linear Programming (ILP) and
branch-&-bound. Furthermore, our version of the (k+1)-rule outperforms
the theoretically most effective preprocessing algorithm, which yields a
2k-vertex kernel. Notably, this 2k-vertex kernel is analysed empirically for
the first time here. Our new algorithm was developed by integrating Pro-
gramming by Optimisation into the classical algorithm engineering cycle
– an approach which we expect to be successful in many other contexts.

1 Introduction

Cluster Editing is a prominent NP-hard combinatorial problem with important
applications in computational biology, e.g. to cluster proteins or genes (see the
recent survey by Böcker and Baumbach [6]). In machine learning and data
mining, weighted variants of Cluster Editing are known as Correlation
Clustering [4] and have been the subject of several recent studies (see, e.g.,
[8, 12]). Here, we study the unweighted variant of the problem, with the goal of
improving the state of the art in empirically solving it. Formally, as a decision
problem it reads as follows:

Cluster Editing
Input: An undirected graph G = (V,E) and a positive integer k ∈ N.
Question: Is there a set of at most k edge insertions and deletions that

transform G into a cluster graph, that is, a graph in which
each connected component is a complete graph?

? Major parts of this work were done during a research visit of SH at the Uni-
versity of British Columbia in Vancouver (Canada), supported by a “DFG
Forschungsstipendium” (HA 7296/1-1).



Cluster Editing corresponds to the basic clustering setting in which pairwise
similarities between the entities represented by the vertices in G are expressed by
unweighted edges, and the objective is to find a pure clustering, in the form of a
cluster graph, by modifying as few pairwise similarities as possible, i.e., by remov-
ing or adding a minimal number of edges. Notably, this clustering task requires
neither the number of clusters to be specified, nor their sizes to be bounded.

Related Work. The Cluster Editing problem is known to be APX-hard [10]
but can be approximated in polynomial time within a factor of 2.5 [25]. Fur-
thermore, various efficient implementations of exact and heuristic solvers have
been proposed and experimentally evaluated (see the references in [6]). These
methods can be divided into exact algorithms, which are guaranteed to find
optimal solutions to any instance of Cluster Editing, given sufficient time, and
inexact algorithms, which provide no such guarantees, but can be very efficient
in practice. State-of-the-art exact Cluster Editing algorithms are based on
integer linear programming (ILP) or specialised branch-&-bound methods (i.e.,
search tree) [6, 7]. Theoretically, the currently best fixed-parameter algorithm runs
in O(1.62k + |G|) time and it is based on a sophisticated search tree method [5].

Our work on practical exact algorithms for Cluster Editing makes use
of so-called data reduction rules [11, 16, 17, 19] – preprocessing techniques
from parameterised algorithmics that are applied to a given instance with the
goal of shrinking it before attempting to solve it. Furthermore, when solving
the problem by a branch-&-bound search, these data reduction rules can be
“interleaved” [23], meaning that they can be again applied within each recursive
step. If after the exhaustive application of data reduction rules the size of
the remaining instance can be guaranteed to respect certain upper bounds,
those instances are called problem kernels [14, 23]. Starting with an O(k2)-
vertex problem kernel [17], the best state-of-the-art kernel for Cluster Editing
contains at most 2k-vertices [11].

Our Contribution. Starting from a search tree procedure originally developed
for a more general problem called M -Hierarchical Tree Clustering (M -Tree
Clustering) [20], and making heavy use of data reduction rules, we developed a
competitive state-of-the-art exact solver for (unweighted) Cluster Editing.1

To achieve this goal, and to study the practical utility of data reduction rules
for Cluster Editing, we employed multiple rounds of an algorithm engineering
cycle [24] that made use of the Programming by Optimisation (PbO) paradigm [21].
In a nutshell, PbO is based on the idea to consider and expose design choices dur-
ing algorithm development and implementation, and to use automated methods
to make those choices in a way that optimises empirical performance for given
use contexts, characterised by representative sets of input data.

We show that, using a clever implementation of a well-known (from a theoret-
ical point of view, out-dated) reduction rule, called (k + 1)-Rule, we can achieve
improvements over existing state-of-the-art exact solvers for Cluster Editing
on challenging real-world and synthetic instances. For example, for the synthetic

1 Notably, our implementation is still able to solve M -Tree Clustering. However, here
our focus is on improving over state-of-the-art exact solvers for Cluster Editing.
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data with a timeout of 300 s our so-called Hier solver times out only on 8 % of
the 1476 instances, while the best previously known solver has a rate of 22 %.
Furthermore, we demonstrate that on the hardest instances the (k + 1)-Rule
dominates on aggregate all other data reduction rules we considered, and that
using the best known data reduction rules [9, 11] (yielding the best known kernel
of size 2k) does not yield further significant improvements.

Achieving these results involved multiple rounds of optimizing the implemen-
tation of the (k + 1)-Rule as well as the use of automated algorithm configuration
tools in conjunction with a new method for selecting the sets of training instances
used in this context. It is based on the coefficient of variation of the running time
observed in preliminary runs, which we developed in the context of this work,
but believe to be more broadly useful.

Overall, our work demonstrates that the adoption of the Programming by
Optimisation paradigm, and in particular, the use of automated algorithm config-
uration methods can substantially enhance the “classical” algorithm engineering
cycle and aid substantially in developing state-of-the-art solvers for hard combi-
natorial problems, such as Cluster Editing. We note that a similar approach
has been taken by de Oca et al. [13] to optimise a particle swarm optimization
algorithm.

2 Preliminaries

We use standard graph-theoretic notations. All studied graphs are undirected
and simple without self-loops and multi-edges. For a given graph G = (V,E) with
vertex set V and edge set E, a set consisting of edge deletions and additions over V
is called an edge modification set. For a given Cluster Editing-instance (G, k)
an edge modification set S over V is called a solution, if it is of size at most k and
transforms G into a cluster graph, which we denote by G⊗ S. For convenience,
if two vertices {u, v} are not adjacent, we call {u, v} a non-edge.

It is well-known that a graph G = (V,E) is a cluster graph if, and only if, it is
conflict-free, where three vertices {u, v, w} ⊆ V form a conflict if {u, v}, {v, w} ∈
E, but {u,w} /∈ E – in other words, a conflict consists of three vertices with two
edges and one non-edge. We denote by C(G) the set of all conflicts of G. Branching
into either deleting one of the two edges in a conflict or adding the missing edge is
a straight-forward search tree-strategy that results in a O(3k + |V |3) algorithm to
decide an instance ((V,E), k) [17]. This algorithm can be generalised to M -Tree
Clustering [20] and is the basic algorithm implemented in our Hier solver.

Parametrised Algorithmics. Since our algorithm makes use of data reduction
rules known from parametrised algorithmics, and Cluster Editing has been
intensely studied in this context, we briefly review some concepts from this
research area (see [14, 23]). A problem is fixed-parameter tractable (FPT) with
respect to a parameter k if there is a computable function f such that any
instance (I, k), consisting of the “classical” problem instance I and parameter k,
can be exactly solved in f(k) · |I|O(1) time. In this work k always refers to the
“standard” parameter solution size.
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The term problem kernel formalizes the notion of effective and (provably)
efficient preprocessing. A kernelization algorithm reduces any given instance (I, k)
in polynomial time to an equivalent instance (I ′, k′) with |I ′| ≤ g(k) and k′ ≤ g(k)
for some computable function g. Here, equivalent means that (I, k) is a yes-
instance if, and only if, (I ′, k′) is a yes-instance. The instance (I ′, k′) is called
problem kernel of size g. For example, the smallest problem kernel for Cluster
Editing consists of at most 2k vertices [11]. A common way to derive a problem
kernel is by the exhaustive application of data reduction rules. A data reduction
rule is a polynomial-time algorithm which computes for each instance (I, k)
an equivalent reduced instance (I ′, k′) and it has been applied exhaustively if
applying it once more would not change the instance.

PbO and Automated Algorithm Configuration. Programming by Optimi-
sation (PbO) is a software design approach that emphasises and exploits choices
encountered at all levels of design, ranging from high-level algorithmic choices
to implementation details [21]. PbO makes use of powerful machine learning
and optimisation techniques to find instantiations of these choices that achieve
high performance in a given application situation, where application situations
are characterised by representative sets of input data, here: instances of the
Cluster Editing problem. In the simplest case, all design choices are exposed
as algorithm parameters and then optimised for a given set of training instances
using an automated algorithm configurator. In this work, we use SMAC [22] (in
version 2.08.00), one of the best-performing general-purpose algorithm configura-
tors currently available. SMAC is based on sequential model-based optimisation, a
technique that iteratively builds a model relating parameter settings to empirical
performance of a given (implementation of a) target algorithm A, here: our
Cluster Editing solver Hier, and uses this model to select promising algorithm
parameter configurations to be evaluated by running A on training instances.

By following a PbO-based approach, using algorithm configurators such
as SMAC, algorithm designers and implementers no longer have to make ad-
hoc decisions about heuristic mechanisms or settings of certain parameters.
Furthermore, to adapt a target algorithm to a different application context, it is
sufficient to re-run the algorithm configurator, using a set of training instances
from the new context.

We note that the algorithm parameters considered in the context of automated
configuration are different from the problem instance features considered in
parameterised algorithmics, where these features are also called parameters.

3 Our Algorithm

Basic Algorithm Design. The algorithm framework underlying our Hier solver
is outlined in Algorithm 2; the actual implementation has several refinements of
this three-step approach, and many of them are exposed as algorithm parameters
(in total: 49) to be automatically configured using SMAC.

Given a graph G as input for the optimization variant of Cluster Editing,
we maintain a lower and upper bound, called kLB and kUB, on the size of an
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ALGORITHM 2: Pseudo code of our Hier solver.

1 Algorithm Hier ()
Input: Graph G.
Output: The size kOPT of a minimum edge modification set S such that G⊗ S is

a cluster graph.
33 Compute a lower bound kLB ≤ kOPT

55 Compute an upper bound kOPT ≤ kUB

77 while kLB < kUB do
8 if decisionSolver(G, kLB)=YES then
9 return kLB

10 else
11 increase kLB //details are subject to two algorithm parameters
12 end

13 end

1 Procedure decisionSolver(G, k)
Input: Graph G and integer k.
Output: YES/NO whether there is a size-at-most-k edge modification set for G.

2 (G, k)← Apply data reduction rules to (G, k)
3 if LP-based lower bound on modification cost for G > k then return NO
4 {u, v, w} ← a conflict in G
5 if {u, v} is unmarked ∧ decisionSolver (G−uv, k− 1) =YES then return YES
6 else Mark edge {u, v} unmodifiable
7 if {v, w} is unmarked ∧ decisionSolver (G− vw, k − 1) =YES then return

YES
8 else Mark edge {v, w} unmodifiable
9 if decisionSolver(G + uw, k − 1) =YES then return YES

10 else return NO

optimal solution for G. As long as lower and upper bound are not equal, we call
our branch-&-bound search procedure (Line 8) to decide whether (G, kLB) is a
yes-instance. At the heart of our solver lies the following recursive procedure
for solving the (decision variant) Cluster Editing-instance (G, kLB). First,
a set of data reduction rules is applied to the given instance (see Line 2 in
decisionSolver). Next, a lower bound is computed on the size of a minimum
solution using our LP-based lower bound algorithm. If this lower bound is
larger than k, then we abort this branch, otherwise we proceed with the search.
Afterwards, if there are still conflicts in the resulting graph, one of these is chosen,
say {u, v, w}. Then the algorithm branches into the three possibilities to resolve
the conflict: Delete the edge {u, v}, delete {v, w}, or add the edge {u,w}.

On top of this, if the branch of deleting edge {u, v} has been completely
explored without having found any solution, then in all other branches this
edge can be marked as unmodifiable (the branch for deleting {v, w} is handled
analogously). Moreover, in all three recursive steps, the (non-)edge that was
introduced to solve the conflict {u, v, w} gets marked as unmodifiable. Further-
more, the choice of the conflict to resolve prefers conflicts involving unmodifiable
(non-)edges, since this reduces the number of recursive calls by one or, in the
best case, completely determines how to resolve the conflict. Combining this with
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solving “isolated” conflicts is known to reduce the (theoretical) time complexity
from O(3k + |V |3) to O(2.27k + |V |3) [17]. Our empirical investigation revealed
that this improvement is also effective in practice.

Data Reduction Rules. In total, we considered seven data reduction rules
and implemented them such that each of them can be individually enabled or
disabled via an algorithm parameter. We first describe three rather simple data
reduction rules. First, there is a rule (Rule 2 in Hier) that deletes all vertices
not involved in any conflict (see [20] for the correctness). A second simple rule
(Rule 4 in Hier) checks all sets of three vertices forming a triangle, and in case
two of the edges between them are already marked as unmodifiable it also marks
the third one (deleting this edge would result in a unresolvable conflict). The last
simple rule (Rule 6 in Hier) checks each conflict and resolves it in case of there is
only one way to do this as a result of already marked (non-)edges.

We describe the remaining “sophisticated” data reduction rules in chronologi-
cal order of their invention. Each of it either directly yields or is the main data
reduction rule of a problem kernel.

(k + 1)-Rule: Gramm et al. [17] provide a problem kernel of size O(k3) that
can be computed in O(n3) time. More specifically, the kernel consists of at most
2k2 + k vertices and at most 2k3 + k2 edges. At the heart of this kernel lies the
following so-called (k + 1)-Rule (Rule 1 in [17]):

Given a Cluster Editing-instance (G, k), if there are two vertices {u, v}
in G that are contained in at least k + 1 conflicts in C(G), then in case
of {u, v} /∈ E add the edge {u, v} and otherwise delete the edge {u, v}.

The (k + 1)-Rule is correct, since a solution that is not changing the (non-)edge
{u, v} has to resolve all the ≥ k+1 conflicts containing {u, v} by pairwise disjoint
edge modifications; however, this cannot be afforded with a “budget” of k.

We heuristically improved the effectiveness of the (k + 1)-Rule by the fol-
lowing considerations: For a graph G denote by C({u, v}) ⊆ C(G) all conflicts
containing {u, v}. If |C({u, v})| ≥ k + 1, then the (k + 1)-Rule is applicable. Oth-
erwise, let Cu,v(G) ⊆ C(G) \ C({u, v}) be all conflicts that are (non-)edge-disjoint
with C({u, v}), meaning that any pair of vertices occurring in a conflict in Cu,v(G)
does not occur in a conflict in C({u, v}). By the same argument as for the correct-
ness of the (k + 1)-Rule, it follows that if any lower bound on the number of edge
modifications needed to solve all conflicts in Cu,v(G) plus |C({u, v})| exceeds k,
then the (non-)edge {u, v} needs to be changed (all these conflicts require pairwise
disjoint edge modifications). We use our heuristic algorithm described below to
compute a (heuristic) lower bound on the modification cost of Cu,v(G).

As our experimental analysis reveals, the heuristically improved version of
the (k + 1)-Rule is the most successful one in Hier. Its operational details are
configurable by three algorithm parameters (not counting the parameters to
enable/disable it), and we implemented two different versions of it (Rule 0 & 1 in
Hier). These versions differ in their “laziness”: Often it is too time consuming to
exhaustively apply the (k + 1)-Rule, as any edge modification requires an update
on the lower bound for Cu,v(G). In addition to various heuristic techniques, we
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implemented a priority queue that (heuristically) delivers the (non-)edges that
are most likely reducible by the (k + 1)-Rule.

O(M ·k)-vertex kernel: There is a generalisation of Cluster Editing called
M -Tree Clustering, in which the input data is clustered on M levels [2]. The
parametrised complexity of M -Tree Clustering has been first examined by Guo
et al. [20], who introduced a (2k · (M + 2))-vertex kernel which is computable
in O(M · n3) time. This kernel basically corresponds to a careful and level-wise
application of the 4k-vertex kernel by Guo [19] for Cluster Editing. The
underlying technique is based on so-called critical cliques – complete subgraphs
that have the same neighbourhood outside and never get split in an optimal
Cluster Editing-solution. We refer to Guo et al. [20] for a detailed description
of the implemented O(M · k) kernel (Rule 3 in Hier).

2k-vertex kernel: The state-of-the-art problem kernel for Cluster Editing
has at most 2k-vertices and is based on so-called edge-cuts [11]. In a nutshell,
for the closed neighbourhood Nv of each vertex v, the cost of completing it to
a complete graph (adding all missing edges into Nv) and cutting it out of the
graph (removing all edges between a vertex in Nv and a vertex not in Nv) is
accumulated. If this cost is less than the size of Nv, then Nv is completed and cut
out. This kernel has been generalised to M -Tree Clustering without any increase
in the worst-case asymptotic size bound [9]. We implemented this kernel in its
generalized form for M -Tree Clustering (Rule 7), but omitted a rule that basically
merges Nv after it has been completed and cut out of the graph; although this
rule is necessary for the bound on the kernel size, as it removes vertices from the
graph, Hier will not deal with these vertices again and thus simply ignores them.

Lower- and Upper-Bound Computation. We implemented two lower-bound
algorithms (LP-based and heuristic) and one upper-bound heuristic. Our prelimi-
nary experiments revealed that high-quality lower- and upper-bound algorithms
are a key ingredient for obtaining strong performance in our Cluster Editing
solver. In total, these algorithms expose twenty-two algorithm parameters that
influence their application and behaviour.

LP-based lower bound computation: We implemented the ILP-formulation
for M -Tree Clustering proposed by Ailon and Charikar [3], which corresponds
to the “classical ILP-formulation” for Cluster Editing in case of M = 1 [6].
The formulation involves a 0/1-variable for each vertex of the graph and a cubic
number of constraints. Our LP-based lower bound algorithm simply solves the
relaxed LP-formulation where all variables take real values from the interval
[0, 1], which provides a lower bound on any ILP-solution. If after having solved
the relaxed LP-formulation the time limit (set via an algorithm parameter) has
not been exceeded, then we require a small fraction of the variables to be 0/1-
integers and try to solve the resulting mixed-integer-linear-program (MIP) again.
Surprisingly, to obtain optimal integer solutions, in many cases, one only needs
to require a small fraction of the variables (≈ 10%) to be 0/1-integers. Using this
mechanism, we are frequently able to provide optimal bounds on the solution size,
especially for small instances where the LP-formulation can be solved quickly.
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Heuristic lower bound computation: Given a set of conflicts C (not neces-
sarily all, as in the application of the (k + 1)-Rule), our second lower bound
algorithm heuristically determines a maximum-size set of independent conflicts
based on the following observation. Consider the conflict graph for C, which
contains a vertex for each conflict in C and an edge between two conflicts if they
have a (non-)edge in common. A subset of vertices is an independent set if there
is no edge between any two vertices in it. Similarly to the correctness argument
for the (k + 1)-Rule, it follows that the size of an independent set in the conflict
graph of C is a lower bound on the number of edge modifications needed to
resolve all conflicts in C. Computing a maximum-size independent set in a graph
is a classical NP-hard problem, and we thus implemented the commonly known
“small-degree heuristic” to solve it: As long as the graph is not empty, choose one
of the vertices with smallest degree, put it into the independent set and delete it
and all its neighbours. We apply this small-degree heuristic multiple times with
small (random) perturbations on the order in which the vertices get chosen (not
necessarily a smallest degree vertex is chosen, but only one with small degree).
In total, there are four algorithm parameters which determine the precise way in
which the order is perturbed and how often the heuristic is applied.

Heuristic upper bound computation: Given a graph G and the set of con-
flicts C(G) in G, we use the following heuristic algorithm to compute an upper
bound on the minimum modification cost for G. The score of an (non-)edge
is the number of its occurrences in C(G), and the score of a conflict is simply
the maximum over the scores of all its modifiable (non-)edges. The algorithm
proceeds as follows: While there are still conflicts in C(G), choose a conflict with
highest score in C(G) and among the modifiable (non-)edges change (delete if it
is an edge otherwise add) one of those with highest score. Furthermore, mark
the corresponding (non-)edge as unmodifiable. Before solving the next conflict,
we exhaustively apply Rule 6, which solves all conflicts for which two of its
(non)-edges have been marked as unmodifiable.

In our implementation, the score of an edge is randomly perturbed, and thus
we run the algorithm described above multiple times and return the minimum
over all these runs. The time limit for this computation as well as the maximum
number of rounds are exposed as algorithm parameters.

4 Experimental Results

Algorithms and Datasets. We compare our solver, Hier, with two other exact
solvers for (weighted) Cluster Editing: The Peace solver by Böcker et al. [7]
applies a sophisticated branching strategy based on merging edges, which yields a
search tree of size at most O(1.82k). This search tree algorithm is further enhanced
by a set of data reduction rules that are applied in advance and during branching.
Böcker et al. [7] compared the empirical performance of Peace against that
obtained by solving an ILP-formulation (due to Grötschel and Wakabayashi [18])
using the commercial CPLEX solver 9.03. In August 2013, a new version 2.0
of this ILP-based approach has become available, which now directly combines
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data reduction rules with an ILP-formulation. We refer to this solver as Yoshiko2

(developed by G. Klau and E. Laude, VU University Amsterdam).
We compare our algorithm to Peace and Yoshiko (version 2.0) on the synthetic

and biological datasets provided by Böcker et al. [7]. The (unweighted) synthetic
dataset consists of 1475 instances that are generated from randomly disturbed
cluster graphs with 30-1040 vertices (median: 540) and densities of 11-99%. These
instances have been observed to be substantially harder than the biological
dataset, which consists of 3964 instances that have been obtained from a protein
similarity network.3 The number of vertices in the biological dataset range from 3
to 3387, but the median is only 10, and thus, most instances are rather easy.
Since the biological instances are weighted Cluster Editing-instances and Hier
is restricted to unweighted Cluster Editing (as a result of its ability to solve
the general M -Tree Clustering problem), we transformed them into unweighted
instances by setting edges only for the c% of the pairs with highest weight
(corresponds to highest similarity). Using three different values of c = 33, 50,
and 66, we obtained 11 889 biological instances in total.

Implementation and Execution Environment. All our experiments were
run on an Intel Xeon E5-1620 3.6 Ghz machine (4 Cores + Hyper-Threading)
with 64 GB memory under the Debian GNU/Linux 6.0 operating system, with a
time limit of 300 s per problem instance. Our Hier solver was implemented in Java
and is run under the OpenJDK runtime environment in version 1.7.0 25 with
8 GB heap space. We use the commercial Gurobi MIP solver in version 5.62 to
compute our LP-based lower bound [1]. The source code along with the scenario
file used for configuration with SMAC is freely available.4 For Yoshiko, we used the
binary provided by the authors, and we compiled Peace using the provided Make
file with gcc, version 4.7.2. Our Hier solver sets up parallel threads for computing
the lower and upper bounds, but otherwise runs in only one thread. Peace uses
a single thread, while Yoshiko makes extensive use of the parallel processing
capabilities of the CPU (according to its output, Yoshiko sets up 8 threads). All
running times were measured in wall-clock seconds.

Results for Synthetic Dataset. Table 1 and the scatter plots in Figure 1 pro-
vide an overview of our experimental findings on the synthetic dataset. Hier-OptS
refers to Hier with the best configuration found by SMAC. Before discussing how
we obtained this configuration we first discuss the performance of Hier’s default
configuration (always referred to simply as Hier) to that of Yoshiko and Peace.

As can be seen from these results, Hier clearly outperforms both Yoshiko and
Peace (see columns 4-6 in Table 1). Furthermore, it seems that search-tree based
algorithms, such as Peace and Hier, generally perform better than the ILP-based
Yoshiko-solver. We suspect that this is mainly due to the instance sizes which
are considerably larger than for the biological dataset. As can be seen in the top
left scatter plot in Figure 1, Peace is on average faster than Hier for instances

2 http://www.mi.fu-berlin.de/w/LiSA/YoshikoCharles
3 We removed the largest instance with 8836 vertices from the dataset. It is more than

two times larger than the second largest instance and could not be solved.
4 http://fpt.akt.tu-berlin.de/cluEdit/
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Table 1: Running time (wall time in s) comparison of four different solvers on the
synthetic dataset (performance on disjoint training and test instances).

training (#=196) test (#=953)
Hier Hier-OptS Peace Yoshiko Hier Hier-OptS Hier-OptS-Rule7

Par-10 187.4 127.2 662.2 904.1 255.2 252.7 265.8
Mean 49.7 30.7 92.8 142.0 45.6 40.2 42.0

Median 28.4 7.5 26.4 96.6 18.6 10.1 9.6
% Timeouts 5.1% 3.6% 21.1 % 28.2 % 7.8 % 7.9 % 8.3 %

solvable within ≤ 25 s by both solvers. However, the higher the time required by
both solvers, the more Hier starts to dominate on average, and, of course, its
overall success is heavily due to the smaller timeout-rate of 7.8 % (Peace: 21 %).

The bottom two scatter plots in Figure 1 show that Hier-OptS clearly domi-
nates Yoshiko and Peace on most instances (also on instances solvable in a couple
of seconds). We obtained Hier-OptS by using SMAC; however, not by a single
“shot”, but rather by using SMAC repeatedly within an algorithm engineering
cycle. This means that we performed multiple rounds of tweaking the implemen-
tation, testing it, and analysing it on our experimental data. Therein, in each
round we performed multiple SMAC runs in order to analyse not only the default
configuration of our current solver but also its optimized variant. We then used an
ablation analysis [15] to further pinpoint the crucial parameter adjustments made
by SMAC. This was important, because it revealed which algorithm parameters –
and thus, which parts of the algorithm – are particularly relevant for the overall
performance of our solver. For example, we learned that by allowing more time
for the application of our original implementation of the (k + 1)-Rule, we can
reduce the number of timeouts. We thus spent serious effort on tweaking the
implementation of the (k + 1)-Rule and making more of its details accessible to
get optimized by SMAC. Of course, if one parameter setting clearly had been
identified by SMAC to be beneficial, then we adjusted the default values of this
parameter for the next round. This is the main reason why the final default
configuration of Hier is already quite competitive (for example, we started with
a version of Hier that had more than 30 % timeouts on the synthetic data).

In each round of the algorithm engineering cycle, we performed at least five
independent SMAC runs, each with a wall-clock time limit of 36 hours and a cut-
off time of 300 s per run of Hier. In each SMAC run about 160–200 configurations
were evaluated and about 1200–1500 runs of Hier have been performed. We
not only started SMAC from the default configuration, but also with the best
configuration that had been obtained in previous runs (we obtained our final
best configuration from one of these runs). We chose a validation set of 368
instances uniformly at random from the entire synthetic dataset, and we selected
the best configurations from multiple SMAC runs based on their performance
on this set. Our training set was initially also chosen uniformly at random
from the entire synthetic data set. However, we found that SMAC found better
configurations when selecting the training set as follows: We had, from multiple
rounds of the algorithm engineering cycle, multiple performance evaluations for
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Fig. 1: Scatter plots of the running time of all solvers on the test instances of the
synthetic dataset (full synthetic set minus training and validation instances). Timeouts
(> 300 s) are plotted at 360 s.

default and optimised configurations, and we observed that on many instances,
these running times did not vary. More specifically, there were many instances
whose solving times only seemed to improve due to some general improvements
(e. g. parallelizing the lower and upper bound computation) but appeared to be
almost entirely uncorrelated with algorithm parameters. Surprisingly, this was
true not only for rather quickly solvable instances, where one would expect only
minor differences, but also for harder instances. For example, we found instances
that were almost completely unaffected by the data reduction rules and that were
solved by exploring a (more less constant) number of search-tree nodes. In light
of this observation, we computed for each instance the coefficient of variation
(standard deviation divided by the mean) of the running times measured for
different configurations we had run on it. We then selected only the instances
with the highest coefficient of variation into a training set of size 196.

As can be seen in the top right scatter plot in Figure 1, the configura-
tion Hier-OptS clearly dominates Hier on average. Furthermore, according to
columns 6 and 7 in Table 1, although Hier-OptS improves the timeout-rate only
slightly from 5.1 % to 3.6 % (on training data), the mean and PAR-10 run-
ning times are considerable smaller and the median is less than half.5 Notably,
Hier-OptS enables the (k + 1)-Rule but disables all other data reduction rules.
While this was already observed for Rule 3 (computing the O(M · k) kernel) in

5 PAR-10 is the average with timeouts counted as 10 times the cut-off time.
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Table 2: Running time (wall time in s) comparison of five solvers on the biological dataset
with different “density” parameters c. The median of all solvers is less than 0.2 s.

Peace Hier Hier-OptB Yoshiko Yoshiko &Hier-OptB
c 33 50 66 33 50 66 33 50 66 33 50 66 33 50 66

Par-10 109 124 126 101 94.9 84.4 78.8 78.1 65.8 72.8 82.1 66.4 68.7 68.8 53.0
Mean 11.9 13.9 14 11.2 11.1 10.1 9.3 9.3 8.6 8.8 9.9 8.5 8.1 8.2 6.7

Timeouts 142 161 164 132 123 109 102 101 84 94 106 85 89 89 68

previous studies [20], this was surprising for Rule 7, which computes the 2k-vertex
kernel [9]. The last column in Table 1 provides the results for Hier-OptS with
Rule 7 enabled. Interestingly, while it slightly decreases the running time (mean
and PAR-10) due to slightly more timeouts, the median is even lower than for
Hier-OptS. This shows that Rule 7, in principle, reduces the running time on
many instances, but the cost of applying it is overall not amortised by its benefits.

Results for Biological Dataset. Our experimental findings for the biological
dataset are summarized in Table 2 and in the scatter plots in Figure 2.

Unlike for the synthetic dataset, the ILP-based solver Yoshiko clearly outper-
forms Peace and Hier. However, comparing results for the latter two revealed that
Hier is still better than Peace (see the upper-right plot in Figure 2), especially,
on harder instances. In general, since the median of the running times is pretty
small (for Hier ≤ 0.18 s and for Peace and Yoshiko even ≤ 0.01 s), we suspect
that our Hier solver suffers from the fact that on extremely easy instances the
initialization cost of the Java VM dominates the running time.

While the default configuration of Hier is not competitive with Yoshiko, our
SMAC-optimized configuration, called Hier-OptB, considerably closes this gap.
Although, being greatly slower for density value c = 33, Hier-OptB clearly beats
Yoshiko for c = 50 and even slightly for c = 66. The bottom right plot in Figure 2
stresses this point by clearly demonstrating that starting from instances that
require at least 10 s on both solvers, Hier-OptB begins to dominate on average.
This behaviour goes together with the observations that can be made from
directly comparing Hier-OptB with Hier (see the bottom-left plot in Figure 2): For
instances up to 1 s, Hier and Hier-OptB roughly exhibit the same performance, but
the higher the running times get, the clearer Hier-OptB is dominating on average.
We suspect that this is mainly caused by an algorithm parameter adjustments
made in Hier-OptB that heavily increases the time fraction spend to compute the
initial lower bound. While easy instances do not largely benefit from computing
a slightly better lower bound, on large instances this might save expensive calls
of the search-tree solver for the decision variant. Even better performance can be
obtained by running Hier-OptB and Yoshiko in parallel on the same instances, as
evident from the bottom right plot of Figure 2. To demonstrate the potential of
this approach, the last column in Table 2 shows the running times of a virtual
solver that takes the minimum of Yoshiko and Hier-OptB for each instance.

To obtain Hier-OptB, SMAC was used in the same way as for the synthetic
data, but could typically perform about 7500 algorithm runs and evaluate 3500

12



0.1

1

10

100

300

0.1 1 10 100 300

Y
os
hi
ko

[w
al
l
ti
m
e
in

s]

Peace [wall time in s]

0.1

1

10

100

300

0.1 1 10 100 300

P
ea
ce

[w
al
l
ti
m
e
in

s]

Hier [wall time in s]

0.1

1

10

100

300

0.1 1 10 100 300

H
ie
r-
O
pt

B
[w
al
l
ti
m
e
in

s]

Hier [wall time in s]

0.1

1

10

100

300

0.1 1 10 100 300

Y
os
hi
ko

[w
al
l
ti
m
e
in

s]

Hier-OptB [wall time in s]

Fig. 2: Scatter plots of the running time of all solvers on the biological dataset (point
colour/value for c: black/33, blue/50, red/66). Timeouts (> 300 s) are plotted at 360 s.

different configurations, because the instances tend to be easier. Due to the
small median running time, we once again selected the training set based on
the coefficient of variation but only among those instances, where at least one
previous run needed at least 0.5 s. On the 327 training instances, the PAR-10
running time value of Hier is 850 s and could be improved to 149 s for Hier-OptB.
This improvement was mainly due to a reduction in the number of timeouts
from 90 down to 12.

We note that Hier-OptB enables all data reduction rules, except the two
simple Rules 4 & 6. However, Rule 7 (computing the 2k-vertex kernel) is also
almost disabled, since it is applied only in every 88th recursive step (adjusted
by an algorithm parameter) of the search tree. For all other enabled rules, this
“interleaving constant” is at most 13. Overall, having a more heterogeneous set
of data reductions seems to be important on the biological dataset, but not for
synthetic data, where only the (k + 1)-Rule was enabled. Our default Hier enables
all rules except Rules 4 and 7.

Finally, to investigate to which extent the difference in the use of parallel
processing capabilities of our CPU between Yoshiko and Hier affect our results, we
conducted the following experiment: For the biological dataset and c = 33 (where
Yoshiko performed better than Hier-OptB) we computed for each instance that
could be solved by both solvers the maximum of their running times. According
to these, we then sorted the instances in descending order and performed on the
instances with number 1-100 and 301-400 another run of Yoshiko and Hier-OptB,
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Table 3: Running time (wall time in s) comparison of Yoshiko and Hier-OptB on biological
data for multi- vs single-threaded execution on our multi-core CPU.

multi-threaded single thread
Hier-OptB Yoshiko Hier-OptB Yoshiko

Mean running time, instances 1-100 39.9 44.9 76.1 70.0
Mean running time, instances 301-400 1.7 0.4 3.7 0.8

Timeouts 0 0 7 4

were we restricted the CPU to run in single-threaded mode. Table 3 shows the
results of this experiment. To our surprise, despite of the different ways the
solvers explicitly use parallel resources, their performance slows down only by
a factor of less than two when restricted to sequential execution. The reasons
for this unexpected result, especially for the CPLEX-based Yoshiko solver, are
somewhat unclear and invite further investigation.

5 Conclusions & Future Work

We have shown how, by combining data reduction rules known from parameterised
algorithmics with a heuristically enhanced branch-&-bound procedure, we can
solve the NP-hard (unweighted) Cluster Editing problem more efficiently in
practice than the best known approaches known from the literature. This success
was enabled by integrating Programming by Optimisation into the classical
algorithm engineering cycle and, as a side effect, lead to a new method for
assembling training sets for effective automated algorithm configuration.

It would be interesting to see to which extent further improvements could be
obtained by automatically configuring the LP solver used in our algorithm, or the
MIP solver used by Yoshiko. Furthermore, we see potential for leveraging the com-
plementary strengths of the three algorithms studied here, either by means of per-
instance algorithm selection techniques, or by deeper integration of mechanisms
gleaned from each solver. We also suggest to study more sophisticated methods,
such as multi-armed bandit algorithms, to more fine-grainely determine in which
depths of the search tree a data reduction rule should be applied. Finally, we see
considerable value in extending our solver to weighted Cluster Editing, and
in optimising it for the general M -Hierarchical Tree Clustering problem.
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