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Abstract We propose new practical algorithms to find maximum-cardinality k-plexes

in graphs. A k-plex denotes a vertex subset in a graph inducing a subgraph where

every vertex has edges to all but at most k vertices in the k-plex. Cliques are 1-

plexes. In analogy to the special case of finding maximum-cardinality cliques, finding

maximum-cardinality k-plexes is NP-hard. Complementing previous work, we develop

exact combinatorial algorithms, which are strongly based on methods from parameter-

ized algorithmics. The experiments with our freely available implementation indicate

the competitiveness of our approach, for many real-world graphs outperforming the

previously used methods.
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1 Introduction

To efficiently find maximum-cardinality cliques in graphs is a major challenge for al-

gorithmic graph theory and accompanying algorithm engineering efforts (cf. DIMACS

challenge (DIMACS, 1995)). The corresponding Maximum Clique problem is NP-hard

and neither effective approximation nor parameterized approaches exist that allow for

efficient algorithms with provable performance bounds. Hence, the use of heuristic
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approaches always has been an important tool for practical solutions of Maximum

Clique. The concept of cliques, however, has been criticized for its overly restrictive

nature asking for complete subgraphs. A more relaxed concept of a dense subgraph has

been introduced by Seidman and Foster (1978) with the notion of k-plexes. A 1-plex is

the same as a clique. For k ≥ 1, a k-plex of a graph G = (V,E) is a vertex set S ⊆ V

such that in the induced subgraph G[S] every vertex has degree at least |S| − k. Un-

fortunately, finding maximum-cardinality k-plexes turns out to be computationally

basically as hard as clique detection is (Balasundaram et al., 2009; Komusiewicz et al.,

2009). Thus, recently the development of practical (heuristic) algorithms for k-plex

detection has received some interest (Balasundaram et al., 2009; McClosky and Hicks,

2010; Wu and Pei, 2007). In this work, we contribute novel tools for the efficient detec-

tion of maximum-cardinality k-plexes. Other than the cited previous work (where Wu

and Pei (2007) deal with k-plex enumeration), our algorithms draw on methods from

parameterized algorithmics (Niedermeier, 2006).

The decision problem Maximum k-Plex for an integer k ≥ 1 is defined as follows.

Maximum k-Plex

Input: An undirected graph G = (V,E) and a nonnegative integer p.

Question: Is there a k-plex S ⊆ V of size at least p?

In our experiments we actually choose to maximize the value of p. Recent work on

clique finding has exploited the close connection (indeed, duality) between Maximum

Clique and the Minimum Vertex Cover problem (Abu-Khzam et al., 2004, 2007;

Chesler et al., 2005). We follow the same spirit here and make use of the duality between

Maximum k-Plex and the Bounded-Degree-d Vertex Deletion problem (d-BDD

for short):

Bounded-Degree-d Vertex Deletion

Input: An undirected graph G = (V,E) and a nonnegative integer p.

Question: Is there a vertex set S ⊆ V of size at most p making G[V \ S] a

graph of maximum degree d?

Clearly, we are interested in minimizing the value p. The point is that an n-vertex

graph has a k-plex of size p if and only if its complement graph has a solution set for

d-BDD of size n− p with d := k − 1. We experimentally exploit this close connection

by making use of fixed-parameter tractability results for d-BDD (Fellows et al., 2010;

Komusiewicz et al., 2009) and adding some new results.

Known Results. The k-plex concept was introduced by Seidman and Foster (1978) in

the context of social network analysis. Maximum k-Plex is NP-complete, which fol-

lows directly from the duality between Maximum k-Plex and d-BDD; d-BDD is NP-

complete due to a general framework by Lewis and Yannakakis (1980). Balasundaram

et al. (2009) also gave a direct NP-completeness proof by reduction from Maximum

Clique. Concerning parameterized complexity, it is known that Maximum k-Plex

is W[1]-hard with respect to the parameter p (Komusiewicz et al., 2009). There is

also related work in the context of graph-based data clustering employing the k-plex

concept (Guo et al., 2010; van Bevern et al., 2011).

Balasundaram et al. (2009) presented a 0/1 integer linear program for Maximum

k-Plex, generalizing a known formulation for the special case Maximum Clique. In

addition, they carried out a polyhedral study of the problem and discussed a branch-

and-cut implementation as the basis of computational tests. McClosky and Hicks (2010)

described combinatorial algorithms for Maximum k-Plex, both of heuristic (without
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provable guarantees on the solution quality) and exact nature. Their heuristic algo-

rithms are based on certain upper and lower bounds for vertex coloring and their

exact algorithms are based on adapting known algorithms for Maximum Clique. In-

dependently, Trukhanov (2008) performed similar studies as part of his PhD thesis. All

these authors implemented their algorithms and did computational experiments with

real-world and artificial graph instances. These three experimental studies serve as

comparison points with our implementation. Wu and Pei (2007) gave an algorithm to

enumerate all maximal k-plexes in a graph, also accompanied by experimental studies.

As mentioned before, an alternative route to solving Maximum k-Plex is to do a

“detour” via d-BDD in the complement graph. This is our approach, which, thus, can

also be interpreted as work on d-BDD. Concerning d-BDD, Nishimura et al. (2005)

presented a depth-bounded search tree yielding a solving algorithm running in O((d+

p)p+3 · p + n · (d + p)) time. Subsequently, an improved simple search tree algorithm

running in O((d+ 2)p · (d+ p)2 + n · (d+ p)) time was described (Komusiewicz et al.,

2009). Moreover, there is a generalization of a local optimization algorithm for Vertex

Cover by Nemhauser and Trotter (1975), which yields an almost linear problem kernel

for d-BDD, that is, a problem kernel of O(p1+ǫ) vertices for any constant ǫ > 0

(Fellows et al., 2010).1 Very recently, Chen et al. (2010) presented a 37p-vertex problem

kernel and a size-O(3.24p) search tree for the special case 2-BDD. The search tree and

kernelization results all imply the fixed-parameter tractability of d-BDD with respect

to the parameter p in case of constant d-values. Interestingly, this is the best one can

hope for because in case of unbounded d-values the problem is W[2]-complete (Fellows

et al., 2010).

Finally, we remark that the task to generate a maximum-degree-d graph by a min-

imum number of vertex deletions is equivalent to finding a so-called d-dependent set

of maximum size (Djidev et al., 1992; Dessmark et al., 1993). In recent work (Bal-

asundaram et al., 2010) this is also referred to as the problem of finding maximum-

cardinality co-(d+ 1)-plexes.

Our Contributions. On the theoretical side, we provide an improved depth-bounded

search tree for 1-BDD (the search tree has size O(2.31p) instead of previouslyO(3p) (Ko-

musiewicz et al., 2009)) and an algorithm for 1-BDD based on iterative compression

(exponential factor 2p). By duality, these algorithms can be used for finding 2-plexes. A

side result—perhaps of independent interest—is a linear-time algorithm for Maximum

Matching for bipartite graphs in which the vertices of one partite set have degree at

most two. We also present a quickly computable O(p(p+d)d)-vertex problem kernel for

d-BDD—the running time is O(n · (p+d)). Moreover, we provide several very effective

heuristics (still yielding optimal solution sets) helping to significantly boost the per-

formance of the underlying fixed-parameter algorithms in applications. We perform a

number of computational studies, comparing with previous work (Balasundaram et al.,

2009; McClosky and Hicks, 2010; Trukhanov, 2008) on exact solutions for k-plex finding

which mainly rely on integer linear programming and branch-and-bound. For several

real-world graphs, we mostly achieved speedups by orders of magnitude when com-

pared to the previous work. Our corresponding software (implemented using Objective

Caml) is open source and freely available (see Section 5).

1 The original statement of the result in the conference version (Fellows et al., 2009) is
flawed. A corrected version with the results as described here is given in (Moser, 2009) and in
the journal version (Fellows et al., 2010).
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Organization of the Paper. In Section 2, we provide some concepts and notions used

throughout the work. Then, we describe the general algorithmic approach to find max-

imum k-plexes by solving d-BDD (Section 3). After that, we give improved algorithms

for 1-BDD (Section 4). Then, we describe our implementation (Section 5) and the

corresponding experiments (Section 6). We conclude the paper with a brief outlook

(Section 7).

2 Preliminaries

In this paper, all graphs are simple and undirected. Throughout our work, n denotes

the number of vertices in a graph. For a graph G = (V,E) and a vertex set S ⊆ V , we

write G[S] to denote the graph induced by S in G, that is, G[S] := (S, {e ∈ E | e ⊆ S}).
For a vertex v ∈ V , we write G − v instead of G[V \ {v}] and for a vertex set S ⊆ V

we write G − S instead of G[V \ S]. We define N(v) := {u ∈ V | {u, v} ∈ E},
N [v] := N(v) ∪ {v}; the degree of a vertex v is |N(v)|. If every vertex in G has degree

at most d, then we say that G has maximum degree d. A vertex set S ⊆ V is a bdd-d-set

if G − S has maximum degree d. For a graph G = (V,E), an edge subset M ⊆ E is

called a matching if the edges in M are pairwise disjoint. A matching M is maximal if

there exists no edge e ∈ (E \M) such that M ∪ {e} is a matching. A matching M is

maximum if there exists no larger matching. The Maximum Matching problem is to

compute a maximum matching in a given graph.

A parameterized problem is a language L ⊆ Σ∗×N. A parameterized problem L is

fixed-parameter tractable if it can be decided in f(p) · |I |O(1) time whether (I, p) ∈ L,

where f is a computable function depending only on the parameter p (Downey and Fel-

lows, 1999; Flum and Grohe, 2006; Niedermeier, 2006). Problem kernelization is a core

tool to develop parameterized algorithms (Bodlaender, 2009; Guo and Niedermeier,

2007; Hüffner et al., 2008; Niedermeier, 2006). A kernelization is often described with

a set of data reduction rules that are applied to the problem instance (I, p) and that

change this instance into a smaller instance I ′ with parameter p′ ≤ p in polynomial

time such that (I, p) is a yes-instance if and only if (I ′, p′) is a yes-instance. An in-

stance to which none of a given set of data reduction rules applies is called reduced with

respect to the rules. We call a reduced instance problem kernel if it has size f(p) for a

function f depending only on p. We also employ search trees for our fixed-parameter

algorithms. Search tree algorithms work in a recursive manner. The number of recur-

sion calls is the number of nodes in the according tree. This number is governed by

linear recurrences with constant coefficients. These can be solved by standard math-

ematical methods (Niedermeier, 2006). If the algorithm solves a problem instance of

size s and calls itself recursively for problem instances of sizes s− d1, . . . , s− di, then

(d1, . . . , di) is called the branching vector of this recursion. It corresponds to the re-

currence Ts = Ts−d1
+ · · · + Ts−di

for the asymptotic size Ts of the overall search

tree.

3 Basic Algorithms

Our approach to compute maximum-cardinality k-plexes makes use of the duality be-

tween Maximum k-Plex and d-BDD (see Section 1). Therefore, the first step is to
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compute the complement of the input graph.2 Then, the second step is to solve d-BDD

on this complement graph for d := k− 1. Finally, the minimum bdd-d-set is translated

back into a maximum k-plex in the input graph.

In the following, we assume that graph G is the input to d-BDD. We suppose

that the parameter p denoting the number of allowed vertex deletions is given (see

Section 5 for details on how p is obtained). Our main algorithm to solve d-BDD uses

a bounded search tree and polynomial-time data reduction rules interleaving with the

search tree. In general, the branching strategy of the search tree algorithm chooses a

vertex v of degree at least d+1, and then branches into the subcases of deleting v and

every possibility of deleting all but d neighbors of v. We refer to this by saying that the

strategy branches on v and N(v). In practice, it is favorable to delete many vertices in

each branching step, that is, v should be a vertex of high degree.

In the next subsections, we first describe the data reduction rules applied in each

search tree node (Subsection 3.1) and then the search tree algorithm itself (Subsec-

tion 3.2).

3.1 Data Reduction Rules

The best known problem kernel for d-BDD in terms of (asymptotic) kernel size is an

“almost linear” problem kernel of O(p1+ǫ) vertices for any constant ǫ > 0 (Fellows et al.,

2010). However, preliminary experiments showed that the corresponding kernelization

algorithm often fails to significantly reduce the graphs we considered (basically due to

the constant in the kernel size and because the parameter p is not very small). For this

reason, we use a modified heuristic version of the corresponding data reduction rule.

Before getting into more detail, we describe some further simple data reduction rules.

The following algorithm comprises several data reduction rules and maintains a

set S which is used to store the vertices that are assumed to be in an optimal bdd-d-

set.

Reduction Rule 1 (high-degree rule) If a vertex v has degree more than d + p,

then delete v from G, add v to S, and decrease p by one.

For the correctness of this rule, observe that v 6∈ S would imply that more than p

neighbors of v have to be in S, a contradiction, since |S| ≤ p.

Reduction Rule 2 (low-degree rule) If there is a vertex v such that each vertex

in N [v] has degree at most d, then delete v from G.

This rule is obviously correct as no minimum-cardinality solution would contain v, and

the neighbors of v still have bounded degree d after the deletion of v.

Reduction Rules 1 and 2 can be used to show a simple quadratic-vertex problem

kernel. Note that the running time is “almost linear”, whereas the known O(p1+ǫ)-

vertex kernel for any constant ǫ > 0 only runs in O(n4 ·m) time (Fellows et al., 2010).

Theorem 1 Bounded-Degree-d Vertex Deletion admits a problem kernel con-

taining O(p · (p+ d) · d) vertices, which can be computed in O(n · (p+ d)) time.

2 Note that we avoid a potentially quadratic blow-up of the edge number in the complement
graph by only simulating rather than constructing it.
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Proof Consider a graph G that is reduced with respect to Reduction Rule 1 and Re-

duction Rule 2. Assume that S is a size-p bdd-d-set of the reduced graph. Due to

Reduction Rule 1, each vertex has degree at most d+ p. Therefore, |N(S)| ≤ p(d+ p).

Since S is a bdd-d-set, each vertex in D := N(S) has degree at most d in G−S. Thus,

for F := N(D) \ S we know that |F | ≤ p(d+ p)d. Due to Reduction Rule 2, there are

no further vertices outside S ∪D ∪ F , that is, S ∪D ∪ F contains all vertices of the

reduced instance, yielding the claimed bound p+ p(d+ p) + p(d+ p)d = O(p(p+ d)d)

on the number of vertices in the reduced instance.

To show the running time, we use that a yes-instance contains at most n(p+d) edges.

Assume for the purpose of contradiction that (G, p) is a yes-instance and G contains

more than n(p+d) edges. Then,G contains an induced subgraph of minimum degree d+

p + 1: simply delete all vertices of degree at most d + p from G. This removes at

most n(d+p) edges and, hence, after the deletion of all vertices of degree at most d+p,

there remains an induced subgraph of G of minimum degree d+p+1. In this subgraph

of minimum degree d+ p+1, assuming that any vertex is not in a bdd-d-set S implies

that more than p of its neighbors have to be in S. Thus, there is no bdd-d-set of size

at most p in this graph, and the graph G is a no-instance.

Next, we show the running time. First, the algorithm tests whether |E(G)| >
n(p + d), and, if so, aborts and returns “no-instance”. The test can be performed

in O(n(p+d)) time. Otherwise, proceed by iterating over all vertices and deleting them

if they have degree greater than p+d. Hence, it takes O(|V (G)|+|E(G)|) = O(n(p+d))

time in total in order to apply Reduction Rule 1.

Likewise, iterating over all vertices, checking the condition in Reduction Rule 2,

and deleting the corresponding vertices, can be done in O(n(p+ d)) time. ⊓⊔

We did not include Reduction Rule 2 in the implementation as preliminary experiments

showed that it has almost no effect in practice or may even slow down the algorithm.

Two more reduction rules we considered follow.

Reduction Rule 3 (degree-one rule) If a vertex v ∈ V has at least d+1 degree-one

neighbors, then delete v from G, add v to S, and decrease p by one.

Concerning the correctness of Reduction Rule 3, observe that at least v or one of its

degree-one neighbors has to be in an optimal solution. If a degree-one neighbor w of v

is in an optimal bdd-d-set S but v 6∈ S, then one can simply remove w from S and

add v to it, obtaining a bdd-d-set of the same size. Therefore, it is safe to assume

that an optimal solution contains v. Moreover, an exhaustive application of Reduction

Rule 3 only takes linear time. We omit the straightforward details.

The final data reduction rule, called BDD-NT rule, is a heuristic version of an

O(p1+ǫ)-vertex kernelization (Fellows et al., 2010). The core of this kernelization is

the algorithm FindExtremal. The input for FindExtremal is a graph G = (V,E)

and a bdd-d-set X. For d ≤ 1, if |V \ X| > (d + 1)2 · |X|, then FindExtremal

returns in O(n3 ·m) time two vertex subsets A′ ⊆ X and B′ ⊆ V \ X. The sets A′

and B′ have the property that for vertices in A′ it can already be decided to put

them into the solution set, and vertices in B′ can be ignored for finding a solution

and B′ is not empty (thus, we have a guarantee that a data reduction rule based on

FindExtremal will successfully reduce the graph). Thus, assuming that X is given,

one can simply test whether the condition |V \ X| > (d + 1)2 · |X| is fulfilled, and

if so, apply FindExtremal. The resulting set A′ can be safely assumed to be in a

minimum-cardinality bdd-d-set of G, and we can add A′ to the solution set S and
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Algorithm: BddReduction (G,X, p)

Input: A graph G = (V,E), a bdd-d-set X for G, and an integer p ≥ 0.

Output: A reduced instance (G, p), a modified bdd-d-set X for G, a set S of vertices

that have already been deleted by some data reduction rule.

1 S ← ∅
2 repeat

3 while ∃v ∈ V : deg(v) > d+ p ⊲ High-degree rule

4 G← G− v; X ← X \ {v}; S ← S ∪ {v}; p← p− 1

5 while ∃v ∈ V : v has at least d+ 1 deg-1 neighbors ⊲ Degree-1 rule

6 G← G− v; X ← X \ {v}; S ← S ∪ {v}; p← p− 1

7 if |N(X)| > (d+ 1) · |X| then
8 call BDD-NT rule to obtain vertex sets A′ and B′

9 G← G− (A′ ∪B′); X ← X \A′; S ← S ∪A′; p← p− |A′|
10 until none of the rules applies.

11 return G, p,X, S

Fig. 1: Pseudo-code of the basic algorithm exhaustively applying the data reduction

rules.

delete A′ from G, decreasing the parameter by |A′|. The vertices in B′ do not have to

be considered and can be deleted from the graph. Basically, the same principle works

for d ≥ 2 using the condition |V \X| = ω(|X|1+ǫ).

Unfortunately, for the graphs we experimented with (see Section 6), the constant

hidden in the O-notation of the kernel size bound turns out to be too big. The larger

constant compared to the case d ≤ 1 is due to the fact that FindExtremal is based

on stars3 with d+1+⌈|X|ǫ⌉ leaves for d ≥ 2 instead of d+1 leaves as in the case d ≤ 1.

However, referring to Fellows et al. (2010) for the details, FindExtremal can compute

two sets A′ and B′ with the above-mentioned properties also if one only uses stars with

d+1 leaves for d ≥ 2. The drawback of such stars is that then the returned set B′ might

be empty (and thus we have no provably effective reduction rule anymore). By prelim-

inary experiments, we found out that in practice it is very likely that FindExtremal

terminates outputting two non-empty sets A′ and B′ with the above-mentioned prop-

erties if |N(X)| > (d + 1) · |X|, using stars with d + 1 leaves for any constant d. We

used this approach for our experiments, although one can construct instances where

this adapted heuristic version would not reduce the graph.

Recall that the main algorithmic approach is a search tree interleaving with the

data reduction rules. For the interleaving with the search tree, we initially compute a

(d + 2)-approximate solution X, and then start branching, always keeping X up-to-

date, that is, if a vertex is deleted from the graph, then also delete it from X. Then,

in each search tree node simply test whether |N(X)| > (d + 1) · |X|, and, if so, then
apply the modified FindExtremal as described above to compute A′ and B′ and use

these sets to reduce the graph.

Figure 1 presents the pseudo-code of the implemented exhaustive data reduction

based on the three stated data reduction rules. We apply the data reduction rules

exhaustively in each search tree node in the given order. The reason for this order

is that the high-degree rule turns out to be the most effective in terms of number of

3 A star is a tree where all of the vertices but one are leaves.
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deleted vertices and, at the same time, it can be implemented to run very efficiently. The

other two rules are less effective in general, and the BDD-NT rule is rather expensive

in terms of running time, so it is the last rule that is considered.

3.2 Search Tree Algorithm

As outlined in the beginning of the section, the algorithmic strategy is to apply a

search tree algorithm interleaving with the above data reduction rules. Additionally,

we use heuristic tricks to speed up the algorithm. These tricks are described in Sub-

section 3.2.1, followed by a pseudo-code description of the entire search tree algorithm

in Subsection 3.2.2.

3.2.1 Heuristic Improvements

While branching, the search tree algorithm maintains a bdd-d-set X which is based

on a (d + 2)-approximate solution.4 This vertex set X gives an upper bound on the

size of a minimum-cardinality bdd-d-set. When a vertex is deleted in the course of the

branching, the bdd-d-setX is updated accordingly. First, we describe a heuristic, called

“guided branching”, which tries to select vertices to branch on such that X becomes

small very quickly in the course of the branching process. Second, we describe two

heuristics used to compute lower bounds on the size of a minimum bdd-d-set.

Guided Branching. The guided branching heuristic aims to “guide” the search tree

algorithm to select vertices to branch on such that a bdd-d-set X becomes small very

quickly in the branching process. There are two reasons why X should be small:

1. The set X is an upper bound on the size of a minimum-cardinality bdd-d-set and

can be used to speed up the search, e.g., by setting p := |X| if |X| < p in some

search tree node.

2. The BDD-NT rule is based on X; the BDD-NT rule can only be effective if X is

small compared to N(X) (we only apply the BDD-NT rule if |N(X)| > (d+1) · |X|,
see also Figure 1).

In order to faster decrease the size of X, it can be useful to branch on v and only

a subset of N(v). To this end, for a vertex v of maximum degree we branch on v

and N(v) ∩ X if |N(v) ∩ X|/|N(v)| > 0.9 (the value 0.9 has shown good results in

preliminary experiments); otherwise, we simply branch on v and N(v). This “90%-

condition” prevents that the algorithm branches on N(v)∩X if it is too small; in this

case, the benefit of reducing only X does not outweigh the less effective branching on v

and N(v) ∩X compared with branching on v and N(v).

Edge-Count Test. The edge-count test checks whether the given d-BDD instance is a

no-instance. The test counts how many edges can be deleted from the graph G = (V,E)

by at most p vertex deletions based on the vertex degree distribution of the graph. If

there are too few such edges, then the graph cannot be turned into a graph with

maximum degree d by at most p vertex deletions. The number of edges m′ that can

4 This (d+2)-approximate solution can be found by greedily computing a maximal collection
of vertex-disjoint copies of stars with (d + 1) leaves.
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Algorithm: BddSolve (G,X, p)

Input: A graph G = (V,E), a bdd-d-set X for G, and an integer p ≥ 0.

Output: A minimum-cardinality bdd-d-set S for G with |S| ≤ p, or “no-instance”.

1 G, p,X, S ← BddReduction(G,X, p) ⊲ Also see Figure 1

2 if p < 0 then return “no-instance”

3 l ← greedily computed lower bound on the size of a minimum bdd-d-set.

4 if p < l or edge-count test tells “no-instance” then return “no-instance”

5 if maximum degree of G is d then return S

6 Among all vertices of maximum degree, choose a vertex v.

7 if |N(v) ∩X| > d and |N(v) ∩X|/|N(v)| > 0.9 then

8 for all size (|N(v) ∩X| − d)-subsets C ⊆ N(v) ∩X do

9 call BddSolve (G−C,X \ C, p− |C|) ⊲ Branch on N(v) ∩X

10 call BddSolve (G− v,X \ {v}, p− 1) ⊲ . . . and v.

11 else branch analogously to lines 9–10 on N(v) and v.

12 if all recursive calls of BddSolve returned “no-instance” then

13 return “no-instance”

14 else return S ∪ S′, where S′ is a smallest set returned by the BddSolve calls.

Fig. 2: Pseudo-code of the basic search tree algorithm incorporating data reduction

rules to compute a minimum bdd-d-set.

be removed by p vertex deletions is computed by sorting the vertices of G by non-

decreasing degree and summing up the degrees of the first p vertices in this order.

Then, one tests whether m −m′ > dn/2. If so, then (G, p) is a no-instance, since the

minimum number of edges remaining in the graph after at most p vertex deletions is

greater than the maximum number of edges that are allowed in an n-vertex graph of

maximum degree d.

Lower Bound Heuristic. In order to derive a lower bound on the size of a bdd-d-set, we

greedily compute a packing of vertex-disjoint stars with d+1 leaves. Since an optimal

bdd-d-set has to contain at least one vertex of each star, the number of stars is a lower

bound.

3.2.2 Algorithmic Details

Figure 2 gives the pseudo-code of the basic search tree algorithm to compute a minimum

bdd-d-set of size at most p for a graph, including the data reduction rules and the

heuristic improvements. The algorithm branches at most p times yielding a worst-case

search tree size of O((d+2)p). This upper bound corresponds to the case that in each

branching step the set N ′ := N(v) ∩X has size d+ 1 and the algorithm branches into

the case of deleting v and into d+ 1 cases of deleting a vertex in N ′.

In each search tree node, we kernelize the instance before branching, using the

simple O(p2)-vertex problem kernel (Theorem 1). In total, this yields a running time

of O((d + 2)p · p2 + n(p+ d)). An improved interleaving of the depth-bounded search

tree with a problem kernel (see Niedermeier and Rossmanith (2000)) yields a running

time of O((d + 2)p + n(p+ d)).

Theorem 2 Bounded-Degree-d Vertex Deletion can be solved in O((d + 2)p +

n · (p+ d)) time.
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This is slightly better than the (very similar) previous best-known algorithm for d-

BDD with O((d+2)p · (d+ p)2 + n · (d+ p)) running time (Komusiewicz et al., 2009),

but which, in contrast to our algorithm, is also capable of enumerating all minimal

solution sets.

4 Improved Algorithms for Bounded-Degree-1 Vertex Deletion

In this section, we describe improved algorithms for 1-BDD, which corresponds to the

practically relevant special case Maximum 2-Plex (see Section 1).

4.1 Search Tree Algorithm

Compared to Theorem 2, we give a more refined branching strategy with an improved

search tree size of O(2.31p). We refrain from conceivable further asymptotic improve-

ments in order to keep the algorithm efficient and easy to implement.

Theorem 3 Bounded-Degree-1 Vertex Deletion can be solved in O(2.31p +

pn) time.

Proof We start with considering a vertex v of degree t > 1. As a necessary condition

to transform the graph into one with maximum vertex degree one, either v needs to be

deleted or all but one of its neighbors. Let N(v) = {u1, . . . , ut}. We branch into the

following t+ 2 subcases:

1. Delete v from G and decrease p by one.

2. Delete N(v) from G and decrease p by |N(v)|.
3. For each ui ∈ N(v), 1 ≤ i ≤ t, delete N ′ := (N(v) \ {ui}) ∪ (N(ui) \ {v}) from G

and decrease p by |N ′|.

The correctness of this branching can be seen as follows. First, clearly in each subcase

v either gets deleted (case 1) or it gets maximum degree one (degree zero in case 2 and

degree one in case 3). Second, the branching covers all possibilities how v can be made

a maximum-degree-one vertex: one can keep at most one vertex from N(v) (case 3),

the rest has to be deleted. If ui is the neighbor that shall not be deleted, then clearly all

vertices from N(v) \ {ui} have to be deleted and all neighbors of ui except for v (that

is, (N(ui)\{v}) have to be deleted. The case of deleting all of N(v) (case 2) also needs

to be considered, otherwise one would miss the situation that all of v’s neighbors have

to be deleted for reasons lying outside the neighborhood of v. One obtains a branching

into t+ 2 cases with the corresponding branching vector

(1, t, t− 1 + |N(u1) \N [v]|, . . . , t− 1 + |N(ut) \N [v]|).

It is not hard to check5 that the worst-case branching vector occurs for t = 2 and

|N(u1)\N [v]| = |N(u2)\N [v]| = 1, yielding (1, 2, 2, 2) with the branching number 2.31.

In analogy to the search tree algorithm for d-BDD for general d (Subsection 3.2.2) we

can interleave the search tree with problem kernelization, which results in O(2.31p+pn)

running time in total. ⊓⊔

5 We omit some details here; basically, one can argue that for t = 2 cases where |N(u1) \
N [v]| = 0 are actually easier (often avoiding branching at all) and t > 2 gives branching vectors
with smaller branching numbers.
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4.2 Iterative Compression

In this section, we present an asymptotically improved algorithm for 1-BDD using the

iterative compression technique (see (Guo et al., 2009) for a survey on this technique)

running in O(2p · p2 + pn) time.

The general idea behind our iterative compression is as follows. Start with V ′ = ∅
and S = ∅; clearly, S is a bdd-1-set for G[V ′]. Iterating over all graph vertices, step

by step add one vertex v /∈ V ′ from V to both V ′ and S. Then, S is still a bdd-1-set

for G[V ′], although possibly not a minimum one. One can, however, obtain a minimum

one by applying a compression routine. It takes a graph G and a bdd-1-set S for G,

and returns a minimum-cardinality bdd-1-set for G. Since eventually V ′ = V , one

obtains an optimal solution for G once the algorithm returns S. Hence, the main task

is to design a compression routine. Consider a smaller bdd-1-set S′ as a modification

of a larger bdd-1-set S for the graph G = (V,E). This modification retains some

vertices Y ⊆ S as part of the solution set, while the other vertices in X := S \ Y are

replaced by new vertices X′ from V \ S, where |X′| < |X|. The idea is to try by brute

force all 2|S| − 1 nontrivial partitions of S into these two sets Y and X. For each such

partition, the vertices from Y are immediately deleted, since we already decided to put

them into the smaller bdd-1-set. Now, the task is either to find a bdd-1-set X′ of size

less than |X| for the remaining graph, where X′ and X are disjoint, or to prove that

no such X′ exists. We call this remaining task Disjoint Compression Task. One

requirement for the existence of a disjoint bdd-1-set X′ is that G[X] has maximum

degree one. (If G[X] has not, every bdd-1-set for G has to contain a vertex of X,

thus there is no disjoint bdd-1-set.) This requirement can be verified in linear time.

Therefore, in the following we assume that it is satisfied.

For the compression routine, let G = (V,E) andX ⊆ V with G−X being a graph of

maximum vertex degree one. Let R := V \X. The general outline of the compression

routine reads as follows. First, compute a set X1 ⊆ R of vertices that necessarily

belong to the disjoint solution by applying a series of polynomial-time executable data

reduction rules. Then, compute a set X2 ⊆ (R \X1) such that X′ := X1 ∪X2 forms

a minimum-cardinality solution. If in this process one encounters a situation showing

that the given instance has no solution, then return “no-instance”. Next, we describe

the four data reduction rules. Initially, set X1 := ∅.

1. For each edge {u, v} in G[X], set X1 := X1 ∪ (R ∩ (N(u) ∪N(v))), delete u and v

from G and X, and delete R ∩ (N(u) ∪N(v)) from G and R.

2. Delete each vertex u ∈ R that is adjacent to more than one vertex in X from G

and R and set X1 := X1 ∪ {u}.

3. For each edge {u, v} in G[R] such that N({u, v}) = {w}, choose a vertex x ∈ {u, v}
that is adjacent to w, set X1 := X1 ∪ {x}, and delete x from G and R.

4. Delete isolated vertices in R and isolated edges in G[R] from G and R.

The correctness of the first two data reduction rules is due to the fact that each P3

(that is, a three-vertex path) intersecting with X in two vertices can only be destroyed

if the third vertex (from R) is in X1. The third reduction rule is correct because the

only neighbor of {u, v} is the vertex in N({u, v}) = {w} ⊆ X, thus {u, v, w} induces

either a triangle (K3) or a P3. As a consequence, it is optimal to add to X1 a vertex

from {u, v} that is adjacent to w. The fourth reduction rule is obviously correct, as

an optimal solution would never contain isolated vertices or a vertex from an isolated

edge.
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X

R

(a) Graph G with vertex set X, prepro-
cessed by the four data reduction rules.

Y

X

(b) Corresponding Maximum Matching

instance.

Fig. 3: ReducedDisjoint Compression Task instance (a) together with a correspond-

ing Maximum Matching instance (b). The bold edges in the Maximum Matching

instance form a maximum matching M . The black vertices in G are the vertices of a

minimum-cardinality bdd-1-set X2, X2 ∩X = ∅, corresponding to M .

These reduction rules can be applied exhaustively in O(n + m) time if they are

applied in the given order: To apply the first reduction rule, iterate through each edge

in G[X] and delete its neighbors in R, taking O(n + m) time in total. Then, for the

second rule, simply check for each vertex u in R whether there are at least two neighbors

in X, and if so, delete u, which takes O(n+m) for all vertices in R. To apply the third

rule, iterate over each edge {u, v} in G[R] and test whether the neighborhood of {u, v}
contains only one vertex; if so, either u or v is deleted. In total, this takes O(n +m)

time. The fourth rule clearly takes O(n+m) time. It is important to observe that after

one particular reduction rule has been exhaustively applied, there can never again

occur a situation where the same rule could be applied again. This guarantees that

after applying the rules in their given order (the order is important, e.g., applying the

fourth rule before the others could lead to an instance that contains isolated vertices

or edges), the instance is reduced with respect to the four data reduction rules.

After these rules have been exhaustively applied, if |X1| > |X|, then stop and

return “no-instance”. Otherwise, compute a minimum-cardinality setX2 such thatX1∪
X2 is a minimum-cardinality bdd-1-set as follows.

In the following, assume that G, X, and R are reduced with respect to the above

data reduction rules, that is, none of the rules can be applied anymore. The following

properties of G, X, and R are important for the subsequent arguments.

P1 The graph G[R] consists of isolated vertices and edges (because X is a bdd-1-set),

P2 X forms an independent set (first reduction rule),

P3 each vertex in R is adjacent to exactly one vertex in X (reduction rules two, three,

and four), and

P4 each vertex in X is adjacent to at most one endpoint of each edge in G[R] (P3 and

third reduction rule).

An example of an instance with these properties is given in Figure 3a. Observe that for

each edge in G[R] at least one of its endpoints must belong to the new solution X′ in

order to obstruct all P3’s. Moreover, for each vertex v ∈ X, all but at most one neighbor

must belong to X′. An optimal solution fulfilling these constraints can be easily found

by reduction toMaximum Matching in bipartite graphs; the corresponding Maximum

Matching instance is constructed by contracting every edge in R, and a maximum

matching M in that instance directly corresponds to a solution X2 in G (see Figure 3b

for an example). Obviously, the input instance (G, p) is a yes-instance for 1-BDD if

and only if |X1|+ |X2| ≤ |X|.
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Fig. 4: A cycle C with vertices of degree two (“inner vertices”) and vertices of degree

at least two (“exits”). In this example, any maximum matching M can contain at most

four exits, and any matching edge that contains an inner vertex also contains an exit.

Hence, taking every second edge on C into the matching is always optimal. The bold

edges show such a matching on C.

It remains to show the running time to solve the matching instance. Observe that

in the Maximum Matching instance the vertices in one partite set have maximum

degree two. Such an instance can be solved in linear time:

Lemma 1 In a bipartite graph B with partite vertex sets X and Y such that the

vertices in Y have maximum degree two, Maximum Matching can be solved in linear

time.

Proof The following is a description of an algorithm that finds a maximum matching M

in B. It starts with an empty set M and then adds edges to it as follows.

First of all, one can safely assume that an edge incident to a degree-one vertex

is always contained in a maximum matching. Therefore, in a first step, find in linear

time all degree-one vertices. Then, repeat the following until there are no more degree-

one vertices. Choose a degree-one vertex u, add its incident edge {u, v} to M , and

remove u and v from B. Removing v may imply that some of its neighbors obtain

degree one. Hence, the set of degree-one neighbors is updated accordingly. The whole

process of removing all degree-one vertices takes linear time since it takes O(deg(v))

time to update the set of degree-one neighbors if v is removed.

The remaining graph has minimum degree two. Hence, each connected component

contains a cycle. The connected components and a cycle in each of it can be found

in linear time with depth-first search: Traverse a connected component in depth-first

order, constructing a depth-first tree. If a vertex is discovered twice in the traversal, a

cycle has been found and can be explicitly constructed by backtracking on the branches

of the depth-first tree. A vertex is discovered twice in a depth-first search if and only

if there is a cycle in the graph and the process of backtracking takes linear time.

From now on, let B′ be a connected component with partite vertex sets X′ ⊆ X

and Y ′ ⊆ Y and let C be a cycle in B′. Obviously, C has even length because B′ is

bipartite. Since the graph has minimum degree two, the vertices in Y ′ have degree ex-

actly two, and, therefore, every second vertex on C has degree exactly two. Moreover,

every vertex in D := N(V (C)) is from Y ′ and has degree two. There exists a maxi-

mum matching M that contains every second edge on C; any maximum matching M ′

without this property can be easily converted into a maximum matching of the same

size with this property (see Figure 4). Thus, we add every second edge on C to M

and remove V (C) from B′. After that, the neighbors D of the removed cycle have
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degree one, and, therefore, we can apply the process above of removing all degree-one

vertices. This process will remove the whole connected component B′ for the following

reason. Let v ∈ D and let w be its neighbor (we assume that C has been removed).

Since v ∈ Y ′, it follows that w ∈ X′, and since the process of removing degree-one ver-

tices will remove w, the degree-two neighbors of w will obtain degree one. By applying

this argument inductively, it is clear that the process of removing degree-one vertices

will remove every vertex w′ for which there exists a path between v and w′ in B′.

Thus, eventually, all vertices in the connected component B′ are removed. Clearly,

deleting V (C) takes linear time, and, as explained above, the subsequent removal of

degree-one vertices also takes linear time. ⊓⊔

Using this linear-time algorithm to solve the Maximum Matching instance, the Dis-

joint Compression Task for 1-BDD can be solved in linear time.

Theorem 4 Bounded-Degree-1 Vertex Deletion can be solved in O(2p ·p2+pn)

time.

Proof By Theorem 1, we obtain anO(p2)-vertex problem kernel for 1-BDD (with O(p4)

edges) in O(pn) time. To this kernel, we apply the BDD-NT-Rule and obtain an O(p)-

vertex problem kernel for 1-BDD (with O(p2) edges) in O(p12) time. We apply the

above iterative compression algorithm to this problem kernel. This means that we

have O(p) iterations, each taking O(2p · p2) time. Herein, the factor O(2p) derives

from trying all partitions of X into two subsets. The resulting total running time is

O(pn+ p12 + 2p · p2) = O(2p · p2 + pn). ⊓⊔

To the best of our knowledge, 1-BDD provides the first nontrivial application of itera-

tive compression where the corresponding Disjoint Compression Task is linear-time

solvable. For other related problems (like Cluster Vertex Deletion) whose corre-

sponding Disjoint Compression Tasks are polynomial-time solvable, it seems to be

much more difficult to reach linear-time solvability (Hüffner et al., 2010).

5 Implementation with some Speedup Tricks

Our implementation is written in the functional programming language Objective

Caml.6 A reason for this choice was the availability of a purely functional graph data

structure. This data structure makes the implementation of a search-tree-based algo-

rithm much easier, since we do not have to care about undoing changes to the data

structure that were applied in other search tree branches. Moreover, it is a stated (and

usually achieved) goal of the Objective Caml developers that Objective Caml code

runs at most twice as slow as code generated by a decent C compiler. Since we are

dealing with exponential-time algorithms, algorithmic improvements usually lead to

time savings that cannot be bounded by any constant factor, so such a constant factor

seems of lesser importance concerning a qualitative assessment of performance. Our

implementation is open source and it is freely available.7

Concerning the initial (d+2)-approximate solution X needed for the guided branch-

ing, it turned out that a greedy solution, computed by simply taking a vertex of highest

degree into the solution until the remaining graph has bounded degree d, very often

6 See http://caml.inria.fr/
7 http://theinf1.informatik.uni-jena.de/splex/
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was smaller than a (d+2)-approximate solution, although this method does not prov-

ably guarantee an approximation factor of d+2. Such a greedy solution is constructed

at the beginning of the computation (before invoking the search tree algorithm), and

its size is taken as the initial value of p (the maximum number of allowed vertex dele-

tions). Our implementation contains many algorithmic tweaks that are not covered by

the basic description from Figure 2 (Section 3). For instance, the effect of the guided

branching can be improved by recomputing X from time to time in the course of the

branching process. Moreover, it improves performance significantly if one updates the

value of p when a branch has found a solution smaller than the initial p. For 1-BDD

(that is, Maximum 2-Plex), we implemented the improved branching described in

Subsection 4.1 instead of the branching shown in Figure 2.

In the following, we comment about some particularities of our search tree imple-

mentation. One of the most important issues was the computation of the complement

graph (to transform between d-BDD and Maximum k-Plex, see Section 1), which

has to be performed before executing the BddSolve algorithm (Figure 2). For sparse

graphs, the complement graph is dense and in practice the amount of time and memory

to compute it exceeds often the time and memory needed for finding a maximum k-

plex. Therefore, we implemented a wrapper that simulates a complement graph rather

than actually computing it, which turned out to be much more efficient.

For the graphs we considered, it turned out that applying the data reduction rules

(see Figure 1) in every search tree node yields the best results. In particular, the

degree-one rule and the high-degree rule are mostly very effective.

We did not implement the iterative compression approach for d = 1 (see Theo-

rem 4 in Subsection 4.2) because preliminary experiments showed that trying all 2p

subsets of a given solution or even just enumerating subsets that can yield a solution

(excluding subsets that induce a graph of maximum degree > d) is not fast enough on

the instances we tested. Indeed, it is a common observation that algorithms based on

iterative compression actually are close to their analyzed worst-case behavior whereas

algorithms based on search trees often perform much better in practice than their

predicted worst-case behavior lets assume.

6 Experimental Results

All experiments were run on an AMD Athlon 64 3700+ machine with 2.2GHz, 1M

L2 cache, and 3GB main memory with Debian GNU/Linux 4.0 operating system and

the Objective Caml 3.09.2 compiler. The experiments of Balasundaram et al. (2009)

were performed on Dell Precision PWS690 machines with a 2.66 GHz Xeon Processor,

3GB main memory, implemented using ILOG CPLEX 10.0. The experiments of Mc-

Closky and Hicks (2010) were run on a 2.2GHz Dual-Core AMD Opteron processor

with 3GB main memory. Trukhanov (2008) used a Dell Optiplex GX260 computer

with 3.2GHz Pentium D processor and 2GB of RAM. The processor speeds are more

or less comparable, so we compare the running times directly without applying a cor-

rection factor. Note that for all three works (Balasundaram et al., 2009; McClosky and

Hicks, 2010; Trukhanov, 2008) the corresponding source code is not publicly available.

Balasundaram et al. (2009) experimented with two main groups of graphs. One

group can be characterized as social networks, which are derived from real-world data.

The second group of graphs contains various graphs using the Sanchis generator (San-

chis and Jagota, 1996) and clique instances from the second DIMACS challenge (DI-
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MACS, 1995). They also performed experiments on two biological networks. Balasun-

daram et al. (2009) used an integer linear programming formulation combined with

branch & cut methods. One of their exact algorithms, called BC(MIS), generates cuts

based on a greedily computed independent set. They combined this approach with an

algorithm that iterates over all vertices and searches a k-plex only in the vicinity of each

iterated vertex, combined with a low-degree reduction rule (which corresponds to the

high-degree rule in the complement d-BDD instance). This variant is called Iterative

Peel-Branch-and-Cut (IPBC) algorithm. In the following, we compare our approach

with the BC(MIS) and IPBC algorithms and also with the exact algorithm “OsterPlex”

by McClosky and Hicks (2010), which is an adapted version of an algorithm for finding

maximum-cardinality cliques by Österg̊ard (2002). The experiments of McClosky and

Hicks (2010) cover almost all social networks that were analyzed by Balasundaram

et al. (2009) and the instances from the DIMACS challenge. The algorithms studied

by Trukhanov (2008) are also based on the clique algorithm by Österg̊ard (2002). He

compared them to the approaches by McClosky et al. and Balasundaram et al. using

most of the aforementioned instances.

6.1 Social Networks

This graph group contains a set of Erdős collaboration networks (Grossman et al., 2007)

(ERDŐS graphs), collaboration networks in computational geometry (Batagelj and Mr-

var, 2006) (GEOM graphs), and text-mining networks based on Reuters news (Batagelj

and Mrvar, 2006) (DAYS graphs). In social network analysis, high-density subgraphs

play an important role since they represent, e.g., a group of persons that work closely

together. Cliques are too sensitive with respect to missing edges: even if a group is very

closely connected, there might be two persons who did not collaborate, but still can be

considered very active members of the group.

ERDŐS graphs. Each vertex in an Erdős graph represents a scientist, and two vertices

are adjacent if the corresponding scientists have published together. The graphs, ob-

tained from Grossman et al. (2007), are named “ERDOS-x-y”, where x represents the

last two digits of the year for which the network was constructed, and y is the maximum

distance from each vertex to Paul Erdős in the graph. As Balasundaram et al. (2009),

McClosky and Hicks (2010) and Trukhanov (2008), we considered x ∈ {97, 98, 99}
and y ∈ {1, 2}.

GEOM graphs. Each vertex represents an author in computational geometry. For a

threshold t, two authors are adjacent if they have more than t joint publications. The

graphs are based on data from Beebe’s bibliography page (Beebe, 2002) obtained from

a computational geometry database (Jones, 2002). The graphs were obtained from

Batagelj and Mrvar (2006) and named “GEOM-t”, where t ∈ {0, 1, 2} is the threshold.

DAYS graphs. The graphs are based on news released by Reuter during 66 days begin-

ning with the terrorist attacks in New York on September 11, 2001. Each vertex is a

selected word that appeared in the news. Given a threshold t, two words are connected

by an edge if there exist more than t sentences in which both appear. The graphs,

obtained from Batagelj and Mrvar (2006), are named “DAYS-t”, where t ∈ {3, 4, 5}.
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Table 1: Number of vertices, edges, graph density, and maximum k-plex sizes for 1 ≤

k ≤ 5 for social networks.

graph |V | |E| density k = 1 k = 2 k = 3 k = 4 k = 5
ERDOS-97-1 472 1314 0.01182 7 8 9 11 12
ERDOS-98-1 485 1381 0.01177 7 8 9 11 12
ERDOS-99-1 492 1417 0.01173 7 8 9 11 12
ERDOS-97-2 5488 8972 0.00060 7 8 9 11 12
ERDOS-98-2 5822 9505 0.00056 7 8 9 11 12
ERDOS-99-2 6100 9939 0.00053 8 8 9 11 12
GEOM-0 7343 11898 0.00044 22 22 22 22 22
GEOM-1 7343 3939 0.00015 10 10 11 12 13
GEOM-2 7343 1976 0.00007 8 8 10 11 11
DAYS-3 13332 5616 0.00006 8 10 11 13 13
DAYS-4 13332 3251 0.00004 7 8 9 11 11
DAYS-5 13332 2179 0.00003 7 7 8 10 11
H. Pylori 1570 1399 0.00114 3 5 6 7 8
S. Cerevisiae 2112 2203 0.00099 6 6 7 7 8
S. Pombe 1053 2884 0.00521 8 9 10 11 13

These three types of graphs have in common that they are sparse and show a power-

law degree distribution. See Table 1 for an overview on the number of vertices, edges,

graph density, and maximum-cardinality k-plex sizes (for 1 ≤ k ≤ 5) for ERDŐS,

GEOM, and DAYS graphs.

We compared the IPBC algorithm (Balasundaram et al., 2009), the OsterPlex algo-

rithm (McClosky and Hicks, 2010) and Trukhanov’s algorithm (Trukhanov, 2008) with

our methods. We discovered experimentally that guided branching has a strong effect

on the running time for the social network instances, while the BDD-NT rule and the

edge-count rule had only minuscule effects. Therefore, we performed experiments with

and without guided branching. The resulting running times for the ERDŐS, GEOM,

and DAYS graphs are given in Tables 2–4, respectively. For the ERDŐS graphs, our

method with guided branching outperformed the approaches by Balasundaram et al.

(2009), McClosky and Hicks (2010) and—for k ∈ {4, 5}—also Trukhanov’s algorithm

by one or two orders of magnitude. Guided branching was especially very effective for

higher values of k. An explanation for this is that since the graphs are very sparse,

their complements, on which we solve d-BDD, are very dense. For this reason, the

high-degree rule (Figure 1) applied extremely well, and the vertices that were chosen

to branch on had mostly a high degree, which makes branching very effective. The

guided branching accelerates the search process: the bdd-d-set X is relatively big (on

a dense graph, many vertices have to be put into a bdd-d-set), thus just branching

on v and N(v)∩X instead on v and N(v) (Figure 2) still results in a good branching,

because N(v) ∩ X is not significantly smaller than N(v). Thus, we still have a good

branching while having the benefit from the guided branching that our greedy solu-

tion X becomes small very quickly. To our surprise, the BDD-NT rule (almost) did

not apply at all. The reason was that X (see “guided branching” in Subsection 3.2.1)

was rather big, and we applied the high-degree rule first (see Figure 1), which reduces

the graph so effectively that the condition for applying the BDD-NT rule was (almost)

never met. When switching off the high-degree rule, almost all reduction was then

performed by the BDD-NT rule.

For the GEOM graphs, we observed similar speedups of up to two orders of mag-

nitude (see Table 3). Interestingly, for some instances our approach did not branch at
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Table 2: Running times and numbers of search tree nodes for ERDŐS graphs compared

with the running times of the IPBC (Balasundaram et al., 2009), OsterPlex (McClosky

and Hicks, 2010) and Trukhanov’s algorithm. Note that our and the OsterPlex experi-

ments were aborted after one hour. Also note that OsterPlex was not tested for k = 5.

k graph IPBC OsterPlex Trukhanov
search tree algorithm

no guided branching guided branching
seconds seconds seconds seconds nodes seconds nodes

2

E-97-1 1.5 0 0.16 0.46 91 0.26 674
E-97-2 392.9 1253 2.03 8.35 141 4.76 2356
E-98-1 1.7 0 0.17 0.24 78 0.14 838
E-98-2 464.3 1514 2.19 7.3 116 5.88 2855
E-99-1 1.8 0 0.17 0.31 100 0.17 931
E-99-2 526.5 1757 2.31 8.99 127 7.05 3391

3

E-97-1 1.8 19 0.16 0.95 4422 0.57 5935
E-97-2 394.1 ≥3600 3.78 10.56 30165 12.53 63137
E-98-1 1.8 20 0.19 0.63 5998 0.98 12947
E-98-2 457.1 ≥3600 4.44 20.1 55389 23.58 143441
E-99-1 1.8 21 0.19 0.99 8116 1.8 20188
E-99-2 520.0 ≥3600 4.73 26.76 69522 33.82 172777

4

E-97-1 2.2 1897 0.22 0.7 8949 1.12 14528
E-97-2 424.0 ≥3600 60.64 6.61 25032 8.86 43819
E-98-1 2.8 1675 0.28 0.67 8840 1.14 14528
E-98-2 614.7 ≥3600 83.47 8.52 33360 10.31 49908
E-99-1 1.8 1783 0.19 1.08 12793 1.47 17058
E-99-2 526.3 ≥3600 90.41 16.68 72695 17.23 75940

5

E-97-1 5.7 – 0.30 18.29 177845 6.12 75830
E-97-2 1042.8 – 1932.11 1434.04 4948746 45.07 313441
E-98-1 7.9 – 1.36 40.7 347168 6.11 74812
E-98-2 1664.6 – 2920.34 ≥3600 8815201 52.81 357568
E-99-1 9.9 – 0.28 98.4 697284 8.04 93790
E-99-2 653.5 – 3172.94 ≥3600 7606070 122.6 665268

Table 3: Running times and numbers of search tree nodes for GEOM graphs.

k graph IPBC OsterPlex
search tree algorithm

no guided branching guided branching
seconds seconds seconds nodes seconds nodes

2
GEOM-0 2384.4 397 9.61 0 9.73 0
GEOM-1 753.2 1118 4.92 14 5.23 129
GEOM-2 530.6 1145 3.37 13 3.36 192

3
GEOM-0 2387.1 ≥3600 9.63 0 9.67 0
GEOM-1 747.7 ≥3600 6.04 7472 5.15 1128
GEOM-2 524.3 ≥3600 3.3 1 3.42 1

4
GEOM-0 2383.7 ≥3600 9.74 0 9.6 0
GEOM-1 743.7 ≥3600 5.42 5021 5.45 6731
GEOM-2 522.2 ≥3600 3.44 1 3.46 1

5
GEOM-0 2298.1 – 9.65 0 9.64 0
GEOM-1 691.6 – 6.91 21952 8.11 34089
GEOM-2 472.6 – 8.02 58445 13.68 137262

all; it immediately found a solution using the data reduction rules. Since the data re-

duction rules were very effective and few branchings take place, the effect of the guided

branching was not as pronounced as for the ERDŐS graphs. Note that Trukhanov

(2008) did not include the GEOM graphs in his experiments.
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Table 4: Running time and number of search tree nodes for DAYS graphs.

k graph IPBC
search tree algorithm

no guided branching guided branching
seconds seconds nodes seconds nodes

2
DAYS-3 3367.8 20.34 10 20.44 330
DAYS-4 2635.7 17.51 12 17.69 310
DAYS-5 2462.9 0.1 16 0.11 262

3
DAYS-3 3395.4 60.52 119669 21.49 5160
DAYS-4 3395.4 17.69 2282 17.85 3378
DAYS-5 2445.5 0.27 2302 0.37 3596

4
DAYS-3 3489.8 20.49 1 20.45 1
DAYS-4 3642.3 17.59 1 17.68 1
DAYS-5 2426.3 89.73 550125 0.31 2983

5
DAYS-3 15336.9 81.28 423511 78.64 420962
DAYS-4 6201.4 31.19 149970 37.74 222057
DAYS-5 2820.8 ≥3600 6616431 2.09 18311

-plex running times

ERDOS-98-1

GEOM-1

5 10 15 20 25

10-2

10-1

1

101

102

103

ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

k

k

(a)

-plex sizes

ERDOS-98-1

GEOM-1

5 10 15 20 25

5

10

15

20

25

30

35

pl
ex

 s
iz

e

k

k

(b)

Fig. 5: (a) Running times of our approach and (b) sizes of the resulting maximal k-

plexes for 1 ≤ d ≤ 25 on ERDOS-98-1 and GEOM-1 graphs. Missing data points are

due to the exceeded running time limit of 60 minutes.

For the DAYS graph, we observed a speedup of up to three orders of magnitude

(see Table 4) compared to the IPBC algorithm (Balasundaram et al., 2009). Note that

McClosky and Hicks (2010) and Trukhanov (2008) did not include the DAYS graphs

in their experiments.

Since the preceding experiments indicate that the running time of our approach

does not increase too much with increasing k (recall that k = d + 1), we performed

experiments on two of the real-world graphs (of medium difficulty) for 1 ≤ k ≤ 25.

The results are shown in Figure 5a. For most values of k, the instances could be solved

within some seconds, only very few took several minutes, and exactly three could not

be solved within the time limit of one hour. We also observed in Figure 5b that the

size of a maximum k-plex increases almost linearly with the value of k. We conclude
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Table 5: Running time and number of search tree nodes for the biological networks.

k graph IPBC Trukhanov
search tree algorithm

no guided branching guided branching
seconds seconds seconds nodes seconds nodes

1
H. Pylori 11.5 - 5.54 357 4.50 405
S. Cerevisiae 44.1 - 0.29 0 0.28 0
S. Pombe - - 1.23 45 1.48 251

2
H. Pylori 12.6 0.53 11.40 289 4.42 5223
S. Cerevisiae 46.4 0.69 0.29 1 0.29 1
S. Pombe - - 0.96 28 1.12 1754

3
H. Pylori 37.8 0.55 46.77 233060 44.73 216341
S. Cerevisiae 26.6 0.72 0.29 1 0.28 1
S. Pombe - - 13.99 50127 2.26 14746

4
H. Pylori 29.3 0.78 ≥3600 ≥7212876 1655.40 7264346
S. Cerevisiae 45.0 0.80 0.31 23 0.32 23
S. Pombe - - 19.70 126160 27.65 194344

5
H. Pylori 133.1 2.36 ≥3600 ≥13401599 ≥3600 ≥14046277
S. Cerevisiae 41.8 1.69 277.45 1224879 1.86 6532
S. Pombe - - 0.83 1 0.84 1

that our approach seems to be able to find maximum k-plexes for a wide range of the

parameter k for these types of graphs.

6.2 Biological Networks

Balasundaram et al. (2009) and Trukhanov (2008) performed experiments on two bio-

logical networks, namely protein-protein interaction networks of H. Pylori and S. Cere-

visiae. In these graphs, vertices represent proteins and edges indicate that the pair of

proteins forming the endpoints are known to interact. In such protein-protein inter-

action networks, k-plexes correspond to functional modules (see, e.g, (Balasundaram

et al., 2005)). We add one additional network to the set of instances, namely the

protein-protein interaction network of S. Pombe (fission yeast). The graph of S. Pombe

was generated using data from the BioGRID database (http://www.thebiogrid.org).

See Table 1 for the number of vertices and edges, density, and maximum k-plex sizes

for 1 ≤ k ≤ 5 for these biological networks. For the biological instances, we observe

a very different behavior of our approach depending on the network (Table 5). For

S. Cerevisiae and S. Pombe our algorithm performs very good for all considered values

of k. For S. Cerevisiae, it is about two orders of magnitude faster than the IPBC algo-

rithm by Balasundaram et al. (2009) and comparable to the approach by Trukhanov

(2008). However, for H. Pylori the running time of our approach increases very quickly

with increasing k and is much slower than Trukhanov’s algorithm and slower than the

IPBC algorithm for k ≥ 4. A plausible explanation for this behavior is that neither the

high-degree rule nor the BDD-NT rule can reduce the graph sufficiently; therefore, the

parameter p is still rather large when the algorithm starts branching and therefore the

search space combinatorially explodes. It would be interesting to learn why the IPBC

algorithm and Trukhanov’s algorithm perform so extremely well on this instance com-

pared to our approach; this could help to combine the “best of all worlds” into one

algorithm.
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6.3 Sanchis and DIMACS Graphs

The second group of graphs considered by Balasundaram et al. (2009) contains various

graphs using the Sanchis generator (Sanchis and Jagota, 1996) and clique instances

from the second DIMACS challenge (DIMACS, 1995). The Sanchis generator (Sanchis

and Jagota, 1996) produces graphs with known maximum clique size with a specified

number of vertices n and edges m, and a construction parameter r. As Balasundaram

et al. (2009), we fixed the maximum clique size at ⌈n/5⌉, and the construction param-

eter to ⌊0.75(n/c − 1)⌋. The number of edges is determined by the density ̺, that is,

we computed the number of edges as m := ⌊̺n(n− 1)/2⌋. We performed experiments

for n ∈ {100, 200} and ̺ ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

We observed the same general behavior as for the BC(MIS) algorithm, that is, dense

Sanchis graphs are harder to solve than sparse ones, and graphs with many vertices

are harder to solve than graphs with few vertices. However, since the algorithm by

Trukhanov (2008) appears to be clearly superior to our and the BC(MIS) algorithms

in the Sanchis instances, we discarded a more detailed performance comparison. The

general observation is that Trukhanov’s algorithm outperforms the running times of the

other algorithms approximately in a range between two and three orders magnitude.

Finally, we briefly report about our findings concerning instances from the DI-

MACS challenge. We compare with the BC(MIS) algorithm (Balasundaram et al.,

2009), the OsterPlex algorithm (McClosky and Hicks, 2010) and Trukhanov’s algo-

rithm (Trukhanov, 2008). The results, which cover all instances that are used by Bal-

asundaram et al. (2009), are shown in Table 6. Summarizing, out of the 32 considered

instances we could solve 25 instances for k = 1 and 17 instances for k = 2, while

BC(MIS) could solve 20 instances for k = 1 and 16 instances for k = 2 within a run-

ning time limit of three hours. Compared to the OsterPlex algorithm and Trukhanov’s

algorithm, we could solve within one hour all but five instances for k = 2, which they

could solve within this time. Also, we could solve one instance within the time limit,

which they could not. Summarizing, BC(MIS) is comparable with our approach, and

OsterPlex and Trukhanov’s algorithm are at least as good as our approach for these

instances. In general, “hard” instances cannot be solved efficiently by either of the four

compared algorithms and “easy” instances are solved quickly by all the four algorithms,

but there are a few exceptions where one method seems to outperform the others. In

this respect, it would be interesting to study whether the OsterPlex, BC(MIS) and

Truhkanov’s algorithms could be efficiently combined with ours.

6.4 Concluding Remarks

The three data reduction rules (Figure 1) behave very differently in our experiments.

The simple high-degree rule is the most effective and time-efficient data reduction rule,

although in theory it does not yield the best-possible problem kernel size-bound. We

recommend to apply it in every search tree node, especially in dense d-BDD instances.

The degree-one rule is less often applied, but still it is quite effective on some instances.

Concerning the BDD-NT rule, it is also applied less often than the high-degree rule.

We repeated some of the above experiments with the high-degree rule and the degree-

one rule disabled. Then, the applications of the BDD-NT rule increase dramatically.

However, we observed that the running time with and without BDD-NT rule is approx-

imately the same for most of the instances. We observed two reasons for this behavior:
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Table 6: Table showing the running times of our algorithm and the corresponding k-

plex sizes of DIMACS instances. A “B” superscript means that Balasundaram et al.

(2009) solved the corresponding instance to optimality within three hours, but our

algorithm did not terminate within this time. A “b” superscript means that we solved

the corresponding instance to optimality within three hours, but the algorithm of

Balasundaram et al. (2009) did not terminate within this time. Likewise, “M”, “m”, “T”

and “t” superscripts compare our algorithm with those of McClosky and Hicks (2010)

and Trukhanov (2008), respectively, but with the time limit one hour. A “∗” superscript

indicates that the corresponding instance was not part of the testbed for the algorithm

considered by Trukhanov (2008). If our algorithm did not terminate within the running

time limit of three hours, then we state the lower bound x and upper bound y of the

maximum k-plex size that could be computed in the given time as an interval [x, y].

graph |V | density 1-plex size seconds 2-plex size seconds

c-fat200-1 200 0.077 12 0.21 12 1.10
c-fat200-2 200 0.163 24 0.42 24 3.53
c-fat200-5 200 0.426 58 1.17 58 22.44
c-fat500-1 500 0.036 14 3.95 14 11.01
c-fat500-2 500 0.073 26 7.25 26 50.21
c-fat500-5 500 0.186 64 17.61 64 350.56
c-fat500-10 500 0.374 126 36.28 126 1547.25
hamming6-2 64 0.905 32 0.00 32 1.77
hamming6-4 64 0.349 4 0.05 6 0.24
hamming8-2 256 0.969 128 0.21 [127,192]BMT > 10800
hamming8-4 256 0.639 16 243.11 [16,171]BMT > 10800
hamming10-2 1024 0.990 512 12.44 [511,768]M∗ > 10800
hamming10-4 1024 0.829 [30,512] > 10800 [34,683]∗ > 10800
johnson8-2-4 28 0.556 4 0.00 5 0.02
johnson8-4-4 70 0.768 14 0.44 14 40.70
MANN a9 45 0.927 16 0.00 26 0.09
MANN a27 45 0.927 126 2.05 236mt 3417.35
MANN a45 1035 0.996 345b 469.16 [662,697]∗ > 10800
keller4 171 0.649 11 21.38 15MT 4583.84
brock200 1 200 0.745 21b 794.73 [24,134] > 10800
brock200 2 200 0.496 12 23.13 13b 606.16
brock200 4 200 0.658 17 204.58 20bT 9691.01
brock400 2 400 0.749 [23,200] > 10800 [26,267] > 10800
brock400 4 400 0.749 [24,200] > 10800 [26,267] > 10800
brock800 2 800 0.651 [19,400] > 10800 [21,534]∗ > 10800
brock800 4 800 0.650 [19,400] > 10800 [22,534]∗ > 10800
p hat300-1 300 0.244 8 29.72 10b 502.48
p hat300-2 300 0.489 25b 242.77 [28,200]T > 10800
p hat300-3 300 0.744 36b 8154.08 [39,200] > 10800
p hat700-1 700 0.249 11b 1464.41 [11,467]M∗ > 10800
p hat700-2 700 0.498 [40,350] > 10800 [47,467]∗ > 10800
p hat700-3 700 0.748 [58,350] > 10800 [69,467]∗ > 10800

one is the running time of the BDD-NT rule; in the present version, it seems to be

still too slow to be used to effectively speed up the search tree algorithm. A bottleneck

in the BDD-NT rule is the computation of a maximum flow, which we implemented

using a simple augmenting path computation; however, this method turned out to be

still faster than using an existing (experimental) maximum flow library for Objective

Caml. A more sophisticated routine to compute maximum flows could significantly

speed up the search process. The second reason is that the greedy solution X is rather
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big in almost all the tested instances. In many cases, the condition |N(X)| > (d+1)|X|

(cf. Figure 1) is satisfied only in search tree nodes that are very close to the leaves of

the search tree. The input instance for such search tree nodes often contains only a few

vertices, and the instance is solved very efficiently within a few branching steps. The

benefit of reducing such small instances before branching has no big influence, com-

pared to the application of, e.g., the high-degree rule on the input graph even before

starting to branch. For the special case of 2-BDD respectively Maximum 3-Plex one

might test the benefits of the recent results of Chen et al. (2010).

Since data reduction rules are in some sense universal (that is, they can be always

applied before solving an instance with virtually any method), it makes sense to com-

bine the data reduction rules presented in this work with the BC(MIS), the OsterPlex

and Trukhanov’s algorithm. This is an interesting topic for future research.

7 Outlook

In some analogy to previous work on maximum-cardinality clique finding (Abu-Khzam

et al., 2004, 2007; Chesler et al., 2005), we demonstrated that a fixed-parameter

approach provides competitive algorithms for finding maximum-cardinality k-plexes.

Clearly, due to the NP-hardness of the problem, there are limitations concerning the

range of practical feasibility. On the one hand, we believe that there is still some room

for further tuning our algorithms and implementations (which in future work also

should be compared with other approaches in an experimental study being based on

the same platform); on the other hand, we think that at some point more restrictions

such as the one of “isolation” (see (Ito and Iwama, 2009; Komusiewicz et al., 2009;

Hüffner et al., 2009)) have to be imposed in order to gain practical algorithms. Our

focus was on finding k-plexes of maximum size; studies concerning efficient approxima-

tion algorithms are left open.

It is conceivable that the presented algorithms can be converted into an enumerative

algorithm if one does not use the BDD-NT-Rule and the Degree-One Rule. Since the

whole search space has to be traversed, it seems also clear that the guided branching

heuristic would not show effect. Hence, isolation concepts might be necessary in order

to derive efficient enumeration algorithms, also because for k ≥ 2 the search space for

Maximum k-Plex is larger than the search space for Maximum Clique (for which

the isolation concepts were originally designed).

A general message to be taken from our work is that even when considering

exponential-time algorithms (particularly fixed-parameter algorithms), then still poly-

nomial running time factors with high-degree polynomials may turn such algorithms

impractical. Hence, struggling for (almost) linear-time factors in fixed-parameter algo-

rithms is an important, so far often neglected matter of great practical significance.
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