
Elections with Few Voters: Candidate Control Can Be Easy∗

Jiehua Chen1 and Piotr Faliszewski2 and Rolf Niedermeier1 and Nimrod Talmon1

1TU Berlin, Berlin, Germany
{jiehua.chen, rolf.niedermeier}@tu-berlin.de, nimrodtalmon77@gmail.com

2AGH University of Science and Technology, Krakow, Poland
faliszew@agh.edu.pl

Abstract

We study the computational complexity of candidate
control in elections with few voters (that is, we take
the number of voters as a parameter). We consider both
the standard scenario of adding and deleting candi-
dates, where one asks if a given candidate can become
a winner (or, in the destructive case, can be precluded
from winning) by adding/deleting some candidates, and
a combinatorial scenario where adding/deleting a can-
didate automatically means adding/deleting a whole
group of candidates. Our results show that the param-
eterized complexity of candidate control (with the num-
ber of voters as the parameter) is much more varied than
in the setting with many voters.

Introduction
Election control problems model the issue of affecting the
result of an election by either introducing some new candi-
dates/voters or by removing some of them from the election.
We study the complexity of election control by adding and
deleting candidates, for the case where the election involves
a few voters only. We focus on very simple, practical voting
rules such as Plurality, Veto, and t-Approval, but we also
discuss some more involved ones. To analyze the effect of a
small number of voters, we use the formal tools of parame-
terized complexity theory.

From the point of view of classical complexity theory,
candidate control is NP-hard for almost all typically studied
voting rules (even for the Plurality rule; though some natu-
ral examples of polynomial-time candidate control problems
exist as well). It turns out that for the case of elections with
few voters (i.e., for control problems parameterized by the
number of voters), the landscape of the complexity of can-
didate control is quite varied and, indeed, sometimes quite
surprising (see Table 1 for an overview of our results). In
addition to the standard candidate control problems, we also
study their combinatorial variants, where it is possible to
∗PF was supported by the DFG project PAWS (NI 369/10) and

by AGH University grant 11.11.230.124 (statutory research). NT
was supported by the DFG Research Training Group “Methods for
Discrete Structures” (GRK 1408). This work has been partly sup-
ported by COST Action IC1205 on Computational Social Choice.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

add or delete whole groups of candidates at unit cost. In this
we follow the path initiated by Chen et al. (2014), who in-
troduced combinatorial voter control.
Motivation. There is a number of settings in which it is
most natural to consider elections with few voters (and, typ-
ically, many candidates). Let us look at several examples.
Hiring committee. Consider a university department which

is going to hire a new faculty member. Typically the com-
mittee consists of relatively few faculty members, but it
may consider hundreds of applications for a position.

Holiday planning. Consider a group of people who are
planning to spend holidays together. The group typically
would consist of no more than a dozen persons, but—
technically—they have to choose from all the possible op-
tions provided by the travel offices, hotels, airlines, etc.
This example is particularly relevant to the case of multi-
agent systems: One may foresee that in the future we will
delegate the task of finding the most satisfying holiday lo-
cation to our personal software agents that will negotiate
with travel offices and other travelers on our behalf.

Meta-search engine. Dwork et al. (2001) argued that one
can build a web meta-search engine that queries several
other search engines (the few voters) regarding a given
query, aggregates their rankings of the web pages (the
many candidates), and outputs the consensus ranking.
In all these examples, it is clear that before we actually

hold an election, the voters (or, some particular individual)
first shrink the set of candidates. In the case of the hiring
committee, most of the applications are removed from the
considerations early in the evaluation process. The people
planning holidays first, implicitly, remove most of possible
holiday options and, then, remove those candidates that do
not fit their preferences completely (e.g., too expensive of-
fers). The search engines usually disregard those web pages
that appear completely irrelevant to a given query.

This natural process of modifying the candidate set, how-
ever, creates a natural opportunity for manipulating the re-
sult. A particularly crafty agent may remove those candi-
dates that prevent his or her favorite one from winning. Sim-
ilarly, after the initial process of thinning down the candidate
set, a voter may request that some candidates are added back
into consideration, possibly to help his or her favorite candi-
date. More importantly, it is quite realistic to assume that the



Problem Plurality Veto t-Approval t-Veto Borda Copelandα Maximin

R-CCAC W[1]-h / XP W[1]-h / XP W[1]-h / XP W[1]-h / XP para-NP-h (10) para-NP-h (20) ♠ para-NP-h (10)
R-CCDC FPT W[1]-h / XP W[1]-h / XP W[1]-h / XP para-NP-h (10) para-NP-h (26) ♠ P ♣
R-DCAC FPT FPT FPT FPT P ♥ P ♦ P ♣
R-DCDC FPT FPT FPT FPT P ♥ P ♦ P ♣

R-COMB-CCAC W[1]-h / XP W[1]-h / XP W[1]-h / XP W[1]-h / XP para-NP-h (2) para-NP-h (3) ♠ para-NP-h (6)
R-COMB-CCDC para-NP-h (1) para-NP-h (1) para-NP-h (1) para-NP-h (1) para-NP-h (1) para-NP-h (1) ♠ para-NP-h (1)
R-COMB-DCAC FPT FPT W[1]-h / XP ? / XP para-NP-h (2) para-NP-h (3) P
R-COMB-DCDC para-NP-h (3) para-NP-h (1) para-NP-h (2) para-NP-h (1) para-NP-h (2) para-NP-h (3) para-NP-h (5)

Table 1: The complexity of candidate control (constructive (CC) and destructive (DC), adding candidates (AC) and deleting
candidates (DC)) problems for varying voting rules R parameterized by the number of voters (for t-Approval and t-Veto we
mean t ≥ 2; for Copelandα, we mean 0 ≤ α ≤ 1; notice that the results by Betzler and Uhlmann (2009) hold only for
α ∈ {0, 1}). Results marked with ♣ and ♦ are due to Faliszewski et al. (2011; 2009), those marked with ♥ are due to Loreggia
et al. (2014), and those marked with ♠ follow from the work of Betzler and Uhlmann for α ∈ {0, 1} and are due to this paper
for the remaining values. Cells containing statements of the form “para-NP-h (z)” mean that the relevant problem is NP-hard
even with only z voters. Question mark (?) means that the exact complexity is still open.

voters in a small group know each other so well as to reliably
predict each others’ votes (this is particularly applicable to
the example of the hiring committee). Thus, we believe that
it is natural and relevant to study the complexity of candidate
control parameterized by the number of voters. While con-
trol problems do not model the full game-theoretic process
of adding/deleting candidates, they allow agents to compute
what effects they might be able to achieve.

Finally, it is quite natural to consider the case where
deleting (adding) a particular candidate means also deleting
(adding) a number of other ones. For example, if a hiring
committee removes some candidate from consideration, it
might have to also remove all those with weaker publication
records; if people planning holidays disregard some expen-
sive hotel, they might also want to remove those that cost
more. Thus, we also study combinatorial variants of candi-
date control problems that model such settings.

Main contributions. Our research has shown some sur-
prising patterns that were not (nearly as) visible in the con-
text of classical complexity analysis of election control:

1. (Non-combinatorial) destructive candidate control is easy
(either in the fixed-parameter tractability sense or via out-
right polynomial-time algorithms) for all our voting rules.

2. In the combinatorial setting, control by deleting candi-
dates appears to be computationally harder than control
by adding candidates.

We also found an interesting difference in the complexity
of non-combinatorial constructive control by deleting can-
didates between Plurality and Veto rules (this is especially
interesting since there is no such difference for the adding
candidates case).

Our results (see Table 1; formal definitions follow in the
next section) are of four types (with the exception of t-Veto-
Comb-DCAC which is only in XP): for each of our problems
we show that it either is in P, is in FPT, is W[1]-hard but
has an XP-algorithm, or is para-NP-hard (in each case the
parameter is the number of voters). Naturally, the first type

of results is the most positive1 (unconditionally efficient al-
gorithms) and the second type is quite positive too (the ex-
ponential part of the running time of an algorithm depends
only on the number of voters). The third kind is less positive
(W[1]-hardness precludes existence of FPT algorithms, but
membership in XP means that there are algorithms that are
polynomial-time if the number of voters is a constant). The
last kind is the most negative (NP-hardness even for a con-
stant number of voters; this precludes membership in XP).2
We introduce several new proof techniques to establish our
results. Due to the lack of space, we can only sketch some
of our proofs.

Related Work. The complexity study of election control
was introduced by Bartholdi et al. (1992), who were later
followed by numerous researchers, including, e.g., Hemas-
paandra et al. (2007), Meir et al. (2008), and many others
(we point the reader to the survey of Faliszewski et al. (2010)
and to several recent papers on the topic (Parkes and Xia
2012; Erdélyi et al. 2012; Rothe and Schend 2013)). Briefly
put, it turns out that for standard voting rules, control prob-
lems are typically NP-hard.

There is a growing body of research regarding the pa-
rameterized complexity of voting problems (see, e.g., the
survey of Betzler et al. (2012)), where typical parameters
include the solution size (e.g., the number of candidates
that can be added) and the election size (i.e., the num-
ber of candidates or the number of voters). For the solu-
tion size as the parameter, control problems usually turn
out to be hard (Betzler and Uhlmann 2009; Liu et al. 2009;
Liu and Zhu 2010). On the contrary, taking the number of
candidates as the parameter almost always leads to FPT
(fixed-parameter tractability) results (see, e.g., the papers of
Faliszewski et al. (2011) and Hemaspaandra et al. (2013)).

1We note that we evaluate the results from the computational
complexity perspective and, hence, regard computational efficiency
as positive.

2Naturally, we use the standard complexity-theoretic assump-
tions that P 6= NP and FPT 6= W[1].



However, so far, only Betzler and Uhlmann (2009) con-
sidered a control problem parameterized by the number of
voters (for the Copeland rule), and Brandt et al. (2013)
showed NP-hardness results of several winner determination
problems even for constant number of voters. The parame-
ter “number of voters” also received some limited attention
in other voting settings (Betzler et al. 2010; Dorn and Schlot-
ter 2012; Bredereck et al. 2014).

The study of combinatorial control was recently initiated
by Chen et al. (2014), who focused on voter control. We
stress that our combinatorial view of control is different from
the studies of combinatorial voting domains (Boutilier et al.
2004; Xia and Conitzer 2010; Mattei et al. 2012).

Preliminaries
Elections. An election E = (C, V ) consists of a set
of candidates C = {c1, . . . , cm} and a collection V =
(v1, . . . , vn) of voters. Each voter v` has a preference or-
der (vote), often denoted �`, which ranks the candidates
from the one that v` likes most to the one that v` likes least.
We sometimes write v` : ci � cj to indicate that v` prefers
ci to cj . If A is some subset of candidates, then writing A
within a preference order description (e.g., A � a � b,
where a and b are some candidates) means listing members
of A in some arbitrary, but fixed, order. Writing

←−
A means

listing the candidates in the reverse of this order. Given an
election E = (C, V ), for each two candidates ci, cj ∈ C,
we define NE(ci, cj) := ‖{v` | v` : ci � cj}‖.

A voting rule R is a function that given an election E =
(C, V ) outputs a set R(E) ⊆ C of candidates that tie as
winners (i.e., we use the non-unique-winner model, where
the candidates inR(E) are equally successful). We study the
following standard voting rules (in each case, the candidates
who receive the highest number of points are the winners):

t-Approval and t-Veto. Under t-Approval (where t ≥ 1 is
an integer), each candidate gets a point for each voter that
ranks him or her among the top t positions. For m candi-
dates, t-Veto is a nickname for (m−t)-Approval (we often
view the score of a candidate under t-Veto as the number
of vetoes, i.e., the number of times he or she is ranked
among bottom t positions). We refer to 1-Approval and 1-
Veto as the Plurality rule and the Veto rule, respectively.

Borda rule and Maximin rule. Under the Borda rule, in
election E = (C, V ) each candidate c ∈ C receives∑
d∈C\{c}NE(c, d) points. (It is also convenient to think

that Borda, for each voter v, gives each candidate c as
many points as the number of candidates that v ranks c
ahead of.) Under Maximin, each candidate c ∈ C receives
mind∈C\{c}NE(c, d) points.

Copelandα rule. Under the Copelandα rule (where α is ra-
tional, 0 ≤ α ≤ 1), in election E = (C, V ) each candi-
date c receives ‖{d ∈ C \{c} | NE(c, d) > NE(d, c)}‖+
α‖{d ∈ C \ {c} | NE(c, d) = NE(d, c)}‖ points.

Control Problems. We study candidate control in elec-
tions, considering both constructive control (CC) and de-
structive control (DC), by either adding candidates (AC) or
deleting candidates (DC). Following the work of Chen et

al. (2014), we also consider combinatorial variants of our
problems, where adding/deleting a single candidate auto-
matically adds/deletes a whole group of other candidates. In
these combinatorial variants (denoted with a prefix Comb),
we use bundling functions κ such that for each candidate c,
κ(c) is a set of candidates that are also added if c is added
(or, that are also deleted if c is deleted). For each candidate c,
we require that c ∈ κ(c) and call κ(c) the bundle of c.3 If B
is some subset of candidates, by κ(B) we mean

⋃
c∈B κ(c).

Bundling functions are encoded by explicitly listing their
values for all the arguments. Formally, given a voting ruleR,
our problems are defined as follows.

R-COMB-CCAC (resp.R-COMB-CCDC)
Input: An election (C, V ), a preferred candidate p ∈
C, a bundling function κ, and a non-negative integer k
(inR-COMB-CCAC we are also given a setA of unreg-
istered candidates and the voters have preference orders
over C ∪A).
Question: Is there a set A′ ⊆ A with ‖A′‖ ≤ k such
that p ∈ R(C ∪κ(A′), V )? (resp. is there a set C ′ ⊆ C
with ‖C ′‖ ≤ k such that p ∈ R(C \ C ′, V )?)

The destructive variants of our problems, R-COMB-
DCAC and R-COMB-DCDC, are defined analogously ex-
cept that we replace the preferred candidate p with the de-
spised candidate d, and we ask if it is possible to ensure that
d is not a winner of the election. In the DCDC case, we ex-
plicitly disallow deleting any bundle containing the despised
candidate. In the standard, non-combinatorial, variants of
control we omit the prefix “Comb” and assume that for each
candidate cwe have κ(c) = {c}, omitting the bundling func-
tion in discussions.

Our model of combinatorial candidate control is about the
simplest that one can think of. Indeed, in a scenario with
m candidates, there are at most m corresponding bundles of
candidates that can be added/deleted. In real life, one might
expect many more. However, on the one hand, even such a
simple model turns out to be computationally difficult and,
on the other hand, we believe that it is instructive to consider
such a simplified model first.
Parameterized Complexity. A parameterized problem is
in FPT (termed fixed-parameter tractable) if there exists an
algorithm that given an instance I of this problem (with pa-
rameter value p and instance size ‖I‖; for us the parame-
ter value is the number of voters involved) decides this in-
stance in time f(p) · ‖I‖O(1), where f is some computable
function. If, instead, the algorithm requires timeO(‖I‖f(p)),
then the problem is in XP. Indeed, while the problems
from both complexity classes come under “polynomial-time
solvable when the parameter p is a constant”, it is deci-
sive that in the case of FPT the degree of the polynomial
does not depend on p. Problems in FPT are viewed as
tractable, whereas the class XP is rather considered to be
at a high-level of the parameterized intractability hierarchy
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP. Due to space con-
straints, we omit the formal definition of the W[·] hierar-

3Whenever we delete candidates from an election, these candi-
dates are also implicitly deleted from the voters’ preference orders.



chy (see, e.g., the textbooks (Downey and Fellows 2013;
Flum and Grohe 2006; Niedermeier 2006)). To show W[1]-
hardness one can, e.g., give a parameterized reduction from
the W[1]-hard MULTI-COLORED CLIQUE problem. A pa-
rameterized reduction from a parameterized problem L to
a parameterized problem L′ is a function that, given an
instance (I, p), computes in FPT time (wrt. p) an in-
stance (I ′, p′) such that p′ ≤ g(p) (where g is an arbitrary
function) and (I, p) ∈ L ⇔ (I ′, p′) ∈ L′; in this paper all
reductions can actually be computed in polynomial time.

If a problem is NP-hard via a reduction that produces in-
stances where the value of the parameter is a constant, then
we say that such a problem is para-NP-hard. W[1]-hardness
precludes an FPT algorithm for the problem and para-NP-
hardness precludes an XP algorithm.

Overview of Proof Techniques
We introduce several proof techniques that can be useful in
studying the complexity of election problems parameterized
by the number voters. We use the following techniques (the
first two are, perhaps, most interesting):

Multi-Colored Clique Technique. This is a technique used
for establishing W[1]-hardness results. The idea is to give
a reduction from MULTI-COLORED CLIQUE (MCC) pa-
rameterized by the clique order (a variant of the stan-
dard CLIQUE problem, better suited for the parameterized
complexity results, where each vertex has one of h col-
ors and we seek a clique of order h with each vertex of
a different color): Given an MCC-instance, we introduce
a candidate for each vertex and two candidates for each
edge, and—in essence—we have to ensure that we add
only the candidates (delete all but the candidates) that cor-
respond to a multi-colored clique. We enforce this con-
straint using pairs of carefully crafted votes such that if
we have two vertices but not an edge between them, then
some candidate receives one more point than it should
have for our preferred candidate to win. Note that the col-
ors help to bound the number of voters needed for the
construction. See Theorem 1 for a sample proof.

Cubic Vertex Cover Technique. This is a technique used
for establishing para-NP-hardness results for non-
combinatorial constructive candidate controls. The crucial
idea of the technique is that the edges in a cubic graph can
be partitioned into four disjoint matchings, which allows
one to encode all the information regarding the graph in
a constant number of votes, in a way that ensures that the
actions of adding/deleting candidates correspond to cov-
ering edges. A sample proof is given in Theorem 5.

Set-Embedding Technique. This is a very simple technique
for showing para-NP-hardness results for combinatorial
control by adding/deleting candidates. The idea is to re-
duce from the standard SET COVER problem using the
bundling function to encode sets. Due to the power of
bundling, a constant number of voters suffices for the re-
duction. A sample proof is given for Theorem 2.

Signature Technique. This is a group of two very similar
techniques for showing FPT results (usually for destruc-

tive control). The first technique in the group works for
control by adding candidates problems and relies on the
fact that often it is possible to limit the number of can-
didates that one has to consider by identifying their most
crucial properties (such as the subsets of voters where the
candidates are ranked ahead of some given candidate; we
refer to these properties as signatures). The second tech-
nique applies to control by deleting candidates. A sample
proof using the first technique is given in Theorem 1.

Approval-Based Rules
In this section, we consider t-Approval and t-Veto rules.
These are perhaps the simplest and most frequently used
rules, so results regarding them are of particular interest.

We start by looking at the Plurality rule and the Veto
rule. In terms of standard complexity theory, control by
adding/deleting candidates (constructive and destructive) is
NP-complete for both of them (Bartholdi et al., (1992);
Hemaspaandra et al., (2007)). However, if we parameterize
by the number of voters, the results change quite drastically.
On the one hand, the results for analogous types of (non-
combinatorial) control for these rules differ (for example,
Plurality-CCDC is in FPT but Veto-CCDC is W[1]-hard;
this is quite unexpected given the similarity and simplicity
of Plurality and Veto), and, on the other hand, combinatorial
and non-combinatorial control problems behave differently.
For example, in combinatorial control, the deleting candi-
dates case is para-NP-hard for all the rules, but the adding
candidates case is either in FPT or W[1]-hard (but in XP).
Theorem 1. When parameterized by the number of voters,
(1) for Plurality and Veto, DCAC and DCDC are both in
FPT, (2) Plurality-CCAC and Veto-CCAC are both W[1]-
hard, and (3) Plurality-CCDC is in FPT, while Veto-CCDC
is W[1]-hard.

Proof sketch for Plurality-DCAC. First, we guess a candi-
date p which is to defeat the despised candidate d (such a
candidate must exist in a “yes”-instance; if p is an unregis-
tered candidate, then we add it and decrease k by one).

Let m := ‖A‖ + ‖C‖ be the total number of candidates
and n be the number of voters. For each unregistered candi-
date a, we define its signature to be the collection of votes
restricted to candidates p, d, and a, with each occurrence of
a replaced by a global symbol x. Adding a single candidate
with a given signature has the same effect on the score differ-
ence of d and p as adding several candidates with the same
signature. Thus, we partition the set of unregistered candi-
dates into equivalence classes based on their signatures, and,
for each signature, remove all unregistered candidates but
one. We also remove all the registered candidates that do
not score any points in the original election. Altogether, we
are left with at most n registered candidates and at most 3n
unregistered ones (the maximum number of different signa-
tures). We solve this instance by brute-forcing all at-most-k-
sized subsets of the unregistered candidates. This gives run-
ning time of the form O(3n

2 · poly(m,n)) since k ≤ n.
Finally, we remark that by using exponential space we can
design a more complicated O(2n ·m ·n)-time algorithm for
Plurality-DCAC.



Proof sketch for Plurality-CCAC. We give a reduction from
the W[1]-hard problem MULTI-COLORED CLIQUE param-
eterized by the clique order. In this problem, we are given
an undirected graph G = (V (G), E(G)) whose vertices
are partitioned into h disjoint sets, V1(G), . . . , Vh(G) such
that for each i, Vi(G) consists of exactly n′ vertices with
color i. We ask if there is an order-h clique containing a ver-
tex for each color. We rename the vertices so that for each i,
1 ≤ i ≤ h, we have Vi(G) = {v(i)1 , . . . , v

(i)
n′ }. W.l.o.g., we

assume thatG has edges between vertices of different colors
only.

We construct a Plurality-CCAC instance as follows: The
registered candidates are p (the preferred one) and d. We
have one unregistered candidate v for each vertex v, and two
unregistered candidates, (u, v), (v, u), for each edge {u, v}.

To describe the votes, we need the following notation. Let
i and j be two distinct colors. Let E(i, j) denote the set of
all edge candidates (u, v), where u ∈ Vi(G) and v ∈ Vj(G).
For each vertex v(i)z ∈ Vi(G), let L(v(i)z , j) denote the set of
all edge candidates (v

(i)
z , v), where v ∈ Vj(G). Finally, let

R(i, j) and R′(i, j) denote the following two orders (which,
indeed, are the crucial part of our construction):

R(i, j) : v
(i)
1 � L(v

(i)
1 , j) � · · · � v(i)n′ � L(v(i)n′ , j),

R′(i, j) : L(v
(i)
1 , j) � v(i)1 � · · · � L(v

(i)
n′ , j) � v(i)n′ .

We construct a set V of 3h+2(h+1) ·
(
h
2

)
voters as follows.

1. For each color i, (1 ≤ i ≤ h), construct one voter with
orders v(i)1 � · · · � v

(i)
n′ � d � · · · .

2. For each pair of colors i, j, (1 ≤ i 6= j ≤ h), construct
h − 1 voters with orders E(i, j) � d � · · · , and another
two voters, one with orders R(i, j) � d � · · · and one
with orders R′(i, j) � d � · · · .

3. Construct h voters with orders d � · · · and h voters with
orders p � · · · .

We claim that p can become a winner by adding at most
k := h + 2

(
h
2

)
candidates if and only if G has an order-

h multi-colored clique (i.e., a clique containing a vertex for
each color). Simple calculation shows that if Q is a multi-
colored clique of order h, then adding the vertex candidates
and the edge candidates corresponding to Q makes p win.

Conversely, we observe that irrespective of how many
candidates we add to the election, p cannot have more than
h points. Thus, d and every added unregistered candidate
cannot have more than h points in the final election. This
implies that any size-at-most-(h + 2

(
h
2

)
) set A′ of unreg-

istered candidates that we add to the election must contain
exactly one vertex candidate for each color and exactly one
edge candidate for each (ordered) pair of colors. Further, if
A′ contains two vertex candidates u, v but not the edge can-
didate (u, v), then, due to the orders R(i, j) � d � · · · and
R′(i, j) � d � · · · , either u or an edge candidate (u′, v′)
(where u′ ∈ Vi(G), v′ ∈ Vj(G), but (u′, v′) 6= (u, v)) re-
ceives too many points, causing p not to win. To see why,
note that R(i, j) and R′(i, j) contain all the candidates from
Vi(G) and E(i, j). If we restrict those two preference orders

to u and (u, v), then they will become u � (u, v) and the re-
verse one (u, v) � u. However, if we restrict them to u and
(u′, v′), then either they will both be u � (u′, v′) or they
will both be (u′, v′) � u. This completes the proof.

The Veto-CCAC case is quite intriguing. To see why, let
us consider the following voting rule: Under TrueVeto, a can-
didate c is a winner if none of the voters ranks c last. It is
quite easy to show that TrueVeto-CCAC is NP-complete,
but it is also in FPT (when parameterized by the number
of voters; an algorithm similar to that for Plurality-DCAC
works). If a Veto election contained more candidates than
voters, then at least one candidate would never be vetoed
and, in effect, the election would be held according to the
TrueVeto rule. This means that in the proof that Veto-CCAC
is W[1]-hard, the election has fewer candidates than voters,
even after adding the candidates (and keep in mind that the
number of voters is the parameter!). Thus, the hardness of
the problem lays in picking few spoiler candidates to add
from a large group of them. If we were adding more candi-
dates than voters, the problem would be in FPT.

In the combinatorial setting, there is a sharp difference
between control by adding and by deleting candidates.
Theorem 2. When parameterized by the number of vot-
ers, for Plurality and Veto, (1) COMB-DCAC is in FPT,
(2) COMB-CCAC is W[1]-hard, and (3) COMB-CCDC and
COMB-DCDC are para-NP-hard.

Proof sketch for Plurality-COMB-DCDC. We reduce from
SET COVER which, given a ground set X = {x1, . . . , xn′},
a family S = {S1, . . . , Sm′} of subsets of X , and a non-
negative integer h (taken to be the parameter), asks whether
it is possible to pick at most h sets from S so that their union
is X . Given an instance I of SET COVER, we create an in-
stance of Plurality-COMB-DCDC as follows. We let the can-
didate set beC = {p, d}∪X∪S (note that, depending on the
context, we will use the symbol Sj , 1 ≤ j ≤ m′, to denote
both the set from S and a set-candidate in the election). We
introduce three voters with the following preference orders:

v1 : X � p � · · · , v2 : d � · · · , and v3 : p � d � · · · .
We set the bundling function κ so that for each set-

candidate Sj , we have κ(Sj) := {Sj} ∪ {xi | xi ∈ Sj},
and for every non-set candidate c, we have κ(c) := {c}.

We claim that the candidate d can be precluded from win-
ning by deleting at most h bundles of candidates if and only
if there are h sets from S whose union is X .

Prior to deleting candidates, d, p, and one of the candi-
dates from X are tied as winners. Deleting p would make
d a unique winner, so the only way to defeat d is to ensure
that v1 gives its point to p. It is easy to see that we can as-
sume that we only delete bundles of the set-candidates. To
ensure that v1 gives a point to p, all candidates from X must
be deleted and, given our bundling function, this is possible
(by deleting h bundles) if and only if the union of the sets
corresponding to the deleted bundles is X .

For t-Approval and t-Veto with t ≥ 2, there are fewer
surprises and patterns are more clearly visible: In the non-
combinatorial setting, constructive controls are W[1]-hard



and the destructive ones are in FPT. In the combinatorial
setting, we have mostly hardness results.

Theorem 3. When parameterized by the number of voters,
for each fixed integer t ≥ 2, for t-Approval and t-Veto, (1)
(COMB)-CCAC, and CCDC are W[1]-hard, (2) DCAC and
DCDC are in FPT, (3) COMB-CCDC and COMB-DCDC
are para-NP-hard, and (4) t-Approval-COMB-DCAC is
W[1]-hard.

We conclude our discussion by claiming that in each of
the W[1]-hard cases discussed in this section we can, indeed,
provide an XP algorithm. This means that these cases cannot
be strengthened to para-NP-hardness results.

Theorem 4. For each control type K ∈ {CCAC, CCDC,
COMB-CCAC, COMB-DCAC}, and for each fixed integer t,
t ≥ 1, each of t-Approval-K and t-Veto-K is in XP, when
parameterized by the number of voters.

Other Voting Rules
We focus on the voting rules Borda, Copelandα, and Max-
imin. The results are quite different from those for the
case of t-Approval and t-Veto. Instead of FPT and W[1]-
hardness results, we obtain polynomial-time algorithms and
para-NP-hardness results. Specifically, it has already been
reported in the literature that there are polynomial-time al-
gorithms for destructive candidate control in Borda (Loreg-
gia et al. 2014), Copelandα (Faliszewski et al. 2009), and
Maximin (Faliszewski et al., (2011)). For constructive can-
didate control, para-NP-hardness was already known for
Copeland0 and Copeland1 (Betzler and Uhlmann 2009) and
we establish it for the remaining values of α and for Borda
and Maximin (in the latter case, only for CCAC; CCDC is
known to be in P).

Theorem 5. When parameterized by the number of voters,
for Borda and Copelandα (0 ≤ α ≤ 1), CCAC and CCDC
are para-NP-hard, and Maximin-CCAC is para-NP-hard.

Proof sketch for Borda-CCDC. We reduce from the NP-
complete problem CUBIC VERTEX COVER that given an
undirected graph G, where each vertex has degree exactly
three, and a non-negative integer h, asks whether there is a
subset (vertex cover) of at most h vertices such that each
edge is incident to at least one vertex in the subset.

Let I = (G, h) be a CUBIC VERTEX COVER instance. We
decompose E(G) into four disjoint matchings (this is pos-
sible due to the computational variant of the classic graph-
coloring result of Vizing (Misra and Gries 1992)) and re-
name the edges so that for each `, 1 ≤ ` ≤ 4, the `’th of
these matchings is E(`) = {e(`)1 , . . . , e

(`)
m`}. We set m′ =

m1 + m2 + m3 + m4 = ‖E(G)‖ and n′ = ‖V (G)‖. For
each edge e, we arbitrarily order its vertices and we write
v′(e) and v′′(e) to refer to the first vertex and to the second
vertex, respectively. For each `, 1 ≤ ` ≤ 4, we writeEV (−`)

to mean the set of edges not in E(`) union the set of vertices
not incident to any of the edges in E(`). For each edge e, we
define the following two orders over e, v′(e), and v′′(e):

P (e) : e � v′(e) � v′′(e) and P ′(e) : e � v′′(e) � v′(e).

We form an election E = (C, V ), where C = {p, d} ∪
V (G)∪E(G) and the voter set includes the following voters:

1. For each `, 1 ≤ ` ≤ 4, we have the following two voters
(E(`) is a matching so the orders are well-defined):

µ(`) : P (e
(`)
1 ) � · · · � P (e(`)m`

) � EV (−`) � d � p, and

µ′(`) : p � d �
←−−−−−
EV (−`) � P ′(e(`)m`

) � · · · � P ′(e(`)1 ).

2. We have two voters, one with order p � d � V (G) �
E(G) and one with order

←−−−
E(G) �

←−−−
V (G) � p � d.

We claim that deleting at most h candidates can make p a
winner if and only if there is a vertex cover of size h for G.

Initially, we have the following scores (to calculate them,
note that—except for small asymmetries—our pairs of votes
are reverses of each other): p has 5(n′+m′)+6 points, d has
5(n′+m′)+4 points, each edge candidate has 5(n′+m′)+7
points, and each vertex candidate has 5(n′+m′)+2 points.
So, p has one point fewer than each edge candidate, but more
points than the other ones.

Consider the effects of deleting candidates. Deleting d
decreases the score of p by six, whereas it decreases the
scores of each other candidate by five (so it is never bene-
ficial to delete d). Further, if there is a solution that deletes
some edge e, then a solution that is identical but instead
of e deletes either v′(e) or v′′(e) (it is irrelevant which
one) is also correct. Now, let v be some vertex candidate.
If we delete v, the score of each edge candidate e such that
v = v′(e) or v = v′′(e) decreases by six, and the score
of each other remaining candidate decreases by five. Thus,
there is a vertex cover of size h if and only if deleting ver-
tices corresponding to the cover ensures p’s victory.

For combinatorial variants of candidate control, we only
have one polynomial-time algorithm (for Maximin-COMB-
DCAC); all the remaining cases are para-NP-hard. Our
proofs mostly rely on the set-embedding technique. In par-
ticular, we prove that for every voting rule R that satisfies
the unanimity principle (that is, for each voting rule R that
chooses as the unique winner the candidate that is ranked
first by all the voters),R-COMB-CCDC is para-NP-hard.

Theorem 6. Let R be a voting rule that satisfies the una-
nimity principle. R-COMB-CCDC is NP-hard even for the
case of elections with just a single voter.

Altogether, we have the following result.

Theorem 7. When parameterized by the number of voters,
for Borda, Copelandα (0 ≤ α ≤ 1), and Maximin, COMB-K
is para-NP-hard for each control type K ∈ {CCAC, CCDC,
DCDC}. For Borda and Copelandα (0 ≤ α ≤ 1), COMB-
DCAC is para-NP-hard. On the contrary, Maximin-COMB-
DCAC is polynomial-time solvable.

In summary, for our more involved voting rules, construc-
tive candidate control is hard even in the non-combinatorial
setting, whereas destructive candidate control is tractable in
the non-combinatorial setting, but becomes para-NP-hard in
the combinatorial ones (with the exception of Maximin).



Outlook
Our work motivates several research directions. A particu-
larly interesting one is to consider game-theoretic aspects
of candidate control: Tractability results motivate studying
more involved settings (e.g., consider a setting where two
actors try to preclude two different candidates from winning;
their goals might involve both cooperation and competition).
Finally, taking a more general perspective, we believe that
the case of few voters did not receive sufficient attention in
the computational social choice literature and many other
problems can (and should) be studied with respect to this
parameter.

References
Bartholdi, III, J.; Tovey, C.; and Trick, M. 1992. How hard is it
to control an election? Mathematical and Computer Modeling
16(8/9):27–40.
Betzler, N., and Uhlmann, J. 2009. Parameterized complexity
of candidate control in elections and related digraph problems.
Theoretical Computer Science 410(52):43–53.
Betzler, N.; Bredereck, R.; Chen, J.; and Niedermeier, R. 2012.
Studies in computational aspects of voting—a parameterized
complexity perspective. In The Multivariate Algorithmic Rev-
olution and Beyond, volume 7370 of LNCS. Springer-Verlag.
318–363.
Betzler, N.; Guo, J.; and Niedermeier, R. 2010. Parameterized
computational complexity of Dodgson and Young elections. In-
formation and Computation 208(2):165–177.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and Poole,
D. 2004. CP-nets: A tool for representing and reasoning with
conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research 21:135–191.
Brandt, F.; Harrenstein, P.; Kardel, K.; and Seedig, H. G. 2013.
It only takes a few: on the hardness of voting with a constant
number of agents. In Proceedings of AAMAS-2013, 375–382.
Bredereck, R.; Chen, J.; Faliszewski, P.; Nichterlein, A.; and
Niedermeier, R. 2014. Prices matter for the parameterized com-
plexity of shift bribery. In Proceedings of AAAI-2014, 1398–
1404.
Chen, J.; Faliszewski, P.; Niedermeier, R.; and Talmon, N.
2014. Combinatorial voter control in elections. In Proceedings
of MFCS-2014, 153–164.
Dorn, B., and Schlotter, I. 2012. Multivariate complexity anal-
ysis of swap bribery. Algorithmica 64(1):126–151.
Downey, R. G., and Fellows, M. R. 2013. Fundamentals of
Parameterized Complexity. Springer-Verlag.
Dwork, C.; Kumar, R.; Naor, M.; and Sivakumar, D. 2001.
Rank aggregation methods for the web. In Proceedings of
WWW-2001, 613–622.
Erdélyi, G.; Fellows, M.; Rothe, J.; and Schend, L. 2012. Con-
trol complexity in Bucklin and Fallback voting. Technical Re-
port arXiv:1103.2230 [cs.CC].
Faliszewski, P.; Hemaspaandra, E.; Hemaspaandra, L.; and
Rothe, J. 2009. Llull and Copeland voting computationally
resist bribery and constructive control. Journal of Artificial In-
telligence Research 35:275–341.

Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L.
2010. Using complexity to protect elections. Communications
of the ACM 53(11):74–82.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L.
2011. Multimode control attacks on elections. Journal of Arti-
ficial Intelligence Research 40:305–351.
Flum, J., and Grohe, M. 2006. Parameterized Complexity The-
ory. Springer-Verlag.
Hemaspaandra, E.; Hemaspaandra, L.; and Rothe, J. 2007.
Anyone but him: The complexity of precluding an alternative.
Artificial Intelligence 171(5–6):255–285.
Hemaspaandra, L.; Lavaee, R.; and Menton, C. 2013. Schulze
and ranked-pairs voting are fixed-parameter tractable to bribe,
manipulate, and control. In Proceedings of AAMAS-2013,
1345–1346.
Liu, H., and Zhu, D. 2010. Parameterized complexity of control
problems in Maximin election. Information Processing Letters
110(10):383–388.
Liu, H.; Feng, H.; Zhu, D.; and Luan, J. 2009. Parameterized
computational complexity of control problems in voting sys-
tems. Theoretical Computer Science 410(27–29):2746–2753.
Loreggia, A.; Narodytska, N.; Rossi, F.; Venable, K.; and
Walsh, T. 2014. Controlling elections by replacing candi-
dates: Theoretical and experimental results. In Proceedings of
MPREF-2014, 61–66.
Mattei, N.; Pini, M.; Rossi, F.; and Venable, K. 2012. Bribery
in voting over combinatorial domains is easy. In Proceedings
of AAMAS-2012, 1407–1408.
Meir, R.; Procaccia, A.; Rosenschein, J.; and Zohar, A. 2008.
The complexity of strategic behavior in multi-winner elections.
Journal of Artificial Intelligence Research 33:149–178.
Misra, J., and Gries, D. 1992. A constructive proof of Vizing’s
theorem. Information Processing Letters 41(3):131–133.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Algo-
rithms. Oxford University Press.
Parkes, D., and Xia, L. 2012. A complexity-of-strategic-
behavior comparison between Schulze’s rule and ranked pairs.
In Proceedings of AAAI-2012, 1429–1435.
Rothe, J., and Schend, L. 2013. Challenges to complexity
shields that are supposed to protect elections against manipula-
tion and control: a survey. Annals of Mathematics and Artificial
Intelligence 68(1–3):161–193.
Xia, L., and Conitzer, V. 2010. Strategy-proof voting rules over
multi-issue domains with restricted preferences. In Proceedings
of WINE-2010, 402–414.


