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Abstract

Given a collection C of partitions of a base set S, the NP-hard Consensus
Clustering problem asks for a partition of S which has a total Mirkin dis-
tance of at most t to the partitions in C, where t is a nonnegative integer. We
present a parameterized algorithm for Consensus Clustering with running
time O(4.24k · k3 + |C| · |S|2), where k := t/|C| is the average Mirkin distance of
the solution partition to the partitions of C. Furthermore, we strengthen pre-
vious hardness results for Consensus Clustering, showing that Consensus
Clustering remains NP-hard even when all input partitions contain at most
two subsets. Finally, we study a local search variant of Consensus Cluster-
ing, showing W[1]-hardness for the parameter “radius of the Mirkin-distance
neighborhood”. In the process, we also consider a local search variant of the
related Cluster Editing problem, showing W[1]-hardness for the parameter
“radius of the edge modification neighborhood”.

Keywords: NP-hard problem, data clustering, search tree algorithm,
local search

1. Introduction

The NP-hard Consensus Clustering problem (also known as Cluster
Ensemble [37] or Clustering Aggregation [17]) aims at reconciling the
information that is contained in multiple clusterings of a base set S. More
precisely, the input of a Consensus Clustering instance is a multi-set C of
partitions of a base set S into subsets, also referred to as clusters, and the aim
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is to find a partition of S that is similar to C. Herein, the similarity between
two partitions is measured as follows. Two elements a, b ∈ S are co-clustered in
a partition C of S, if a and b are in the same cluster of C, and anti-clustered,
if a and b are in different clusters of C. For two partitions C and C ′ of S and a
pair of elements a, b ∈ S, let δ{C,C′}(a, b) = 1 if a and b are anti-clustered in C
and co-clustered in C ′ or vice versa, and δ{C,C′}(a, b) = 0, otherwise. Then, the
Mirkin distance dist(C,C ′) :=

∑
{a,b}⊆S δ{C,C′}(a, b) between two partitions C

and C ′ of S is the number of pairs a, b ∈ S that are clustered “differently”
by C and C ′. The total Mirkin distance between a partition C and a multi-
set C of partitions is defined as dist(C, C) :=

∑
C′∈C dist(C,C

′). Altogether,
the Consensus Clustering problem is defined as follows.

Consensus Clustering
Input: A multi-set of partitions C = (C1, . . . , Cn) of a base set S =

{1, 2, . . . ,m} and an integer t ≥ 0.
Question: Is there a partition C of S with dist(C, C) ≤ t?

Consensus Clustering has a wide array of applications, for example in gene
expression data analysis and classification [12, 14, 34], classification of electro-
cardiographic (ECG) test records [23], clustering categorical data [21], subtopic
retrieval [8], detecting behavioral anomalies across multiple data sources [29],
improving clustering robustness [14, 23, 37, 39], and preserving privacy [17].
AbedAllah and Shimshoni [2] applied Consensus Clustering to the k-nearest
neighbor classifier in machine learning, implementing heuristic data reduction
techniques. The NP-hardness of Consensus Clustering was shown by Křivánek
and Morávek [27] and Wakabayashi [38]. For n = 2, that is, with two input par-
titions, it is solvable in polynomial time: either input partition minimizes t.
In contrast, already for n = 3 minimizing t is APX-hard [6]. The variant of
Consensus Clustering where the output partition is required to have at
most d ≥ 2 subsets, d being a constant, is NP-hard for every d ≥ 2 [7] but it
admits a PTAS for minimizing t [7, 9, 22]. Various heuristics for Consensus
Clustering have been experimentally evaluated [4, 8, 18, 28, 30, 37]. Con-
sensus Clustering is closely related to Cluster Editing [36], also known
as Correlation Clustering [3].

So far, the study of the parameterized complexity [10, 11, 15, 35] of Con-
sensus Clustering seems to be neglected. One reason for this might be the
lack of an obvious reasonable parameter for this problem: First, the assump-
tion that the overall Mirkin distance of solutions is usually small is not realistic
in practice: every element pair that is co-clustered in at least one partition
and anti-clustered in at least one other partition contributes at least one to
this parameter. Second, Consensus Clustering is trivially fixed-parameter
tractable with respect to the number m of elements but m is also unlikely to
take small values in real-world instances. Finally, Consensus Clustering is
NP-hard for n = 3, ruling out fixed-parameter tractability with respect to n.
Betzler et al. [5] considered the parameter “average Mirkin distance p between
the input partitions”, that is, p :=

∑
i 6=j dist(Ci, Cj)/(n(n− 1)), and presented
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a “partial kernelization” for this parameter. More precisely, they presented a set
of polynomial-time data reduction rules whose application yields an instance
with |S| = m < 9p [5].1 Then, checking all possible partitions of S gives an
optimal solution, resulting in a fixed-parameter algorithm for the parameter p.
The term “partial” refers to the fact that not the overall instance size is bounded
but rather some “part” of the instance, in this case m. Since the Mirkin dis-
tance is a metric, the average Mirkin distance of solution partitions k := t/n is
at least p/2 [5]. Hence, the above also implies fixed-parameter tractability with
respect to k. However, there are currently no efficient algorithms for parame-
ter m (a brute-force check of all possible partitions of S leads to an impractical
running time of roughly 2O(k log k) poly(n,m)).

Motivated by these observations, we study several parameterizations of Con-
sensus Clustering. First, we complement the partial kernelization result by
presenting a search tree algorithm with running timeO(4.24k·k3+nm2). Second,
we consider the parameter “maximal number of clusters in any input partition”.
We show that Consensus Clustering remains NP-hard even if every input
partition consists of at most two clusters, ruling out fixed-parameter tractability
for this parameter. We also strengthen the hardness result of Bonizzoni et al.
[7] by showing that, even if all input partitions contain at most two clusters,
seeking a solution partition with at most two clusters remains NP-hard.

Finally, we consider Consensus Clustering under the local-search para-
digm, which is one of the most popular approaches for solving NP-hard optimiza-
tion problems. The basic idea is to improve a given solution by considering solu-
tions in “close proximity” (with respect to some to-be-defined distance measure)
to the given solution [1, 33]. The combination of local search and parameterized
complexity is relatively new. It has been initially considered for the Travel-
ing Salesman problem by Marx [31], who showed W[1]-hardness for the local
search variant using the k-exchange neighborhood (other neighborhoods were
examined by Guo et al. [19]). On the positive side, Khuller et al. [24] showed
that, the k-exchange neighborhood local search variant of the problem of finding
a feedback edge set that is incident to a minimum number of vertices is fixed-
parameter tractable with respect to k. Fellows et al. [13] considered local-search
variants of graph problems and show that “local search versions of most graph
problems are W[1]-hard or W[2]-hard on general graphs.” Further parameterized
complexity results are known for local search variants of Boolean constraint sat-
isfaction problems [26], Stable Marriage [32], Weighted Feedback Arc
Set in Tournaments [16], and List Coloring [20]. In this work, we ex-
amine a canonical local search variant of Consensus Clustering, where, in
addition to C and S, a partition C of S is given and the task is to decide whether
there is a partition C ′ such that dist(C ′, C) < dist(C, C) and dist(C ′, C) ≤ d for
some integer d ≥ 0. We show this problem to be W[1]-hard with respect to d.
Moreover, our reduction can also be used to show W[1]-hardness of a natural

1Subsequently, this was improved to a data reduction routine that yields an instance
with m < 16p/3 [25].

3



local search variant of Cluster Editing.

Preliminaries. Given a base set S and a multi-set C of partitions of S, let n :=
|C| and m := |S|. We use co(a, b) for a, b ∈ S to denote the number of partitions
in C where a and b are co-clustered and use anti(a, b) to denote the number of
partitions where a and b are anti-clustered. Clearly, n = co(a, b)+anti(a, b). For
a partition C of S and elements a, b ∈ S, the function distC(a, b) is defined as the
number of partitions in C in which a, b are clustered in a different way than in C.
More precisely, if a and b are co-clustered in C, then distC(a, b) = anti(a, b);
otherwise, distC(a, b) = co(a, b). Clearly, dist(C, C) =

∑
{a,b}⊆S distC(a, b).

2. A Search Tree Algorithm for the Average Mirkin Distance

In this section, we present a search tree algorithm for Consensus Clus-
tering parameterized by the average Mirkin distance k := t/n of a solution
partition to the set of input partitions C. The main idea of this search tree algo-
rithm follows the standard paradigm of branching algorithms in parameterized
algorithmics: branch into a bounded number of cases and decrease the param-
eter in each case. The difficulty for using this approach for the parameter k
lies in the fact that for a pair of elements a, b ∈ S the value of either co(a, b)
or anti(a, b) can be arbitrarily small compared to n. When branching on such
element pairs, the parameter might not really decrease in some cases. We cir-
cumvent this problem by finding a way to always branch into at most two cases,
decreasing k by at least 1/3 in each case. In the following, we describe this
approach in detail.

Description of the algorithm. The algorithm consists of two phases, the first
phase is a search tree algorithm and the second phase is a polynomial-time
algorithm solving the remaining instances at the leaves of the search tree. Each
node v of the search tree is associated with a partition Cv of S, called “temporary
solution”, and a list Lv, called “separation list”, that contains pairs of subsets
in Cv. These two data structures restrict the partitions we are seeking in the
subtree rooted at v: The temporary solution Cv requires that the elements co-
clustered by Cv will remain co-clustered in the final solution sought for. The
separation list Lv requires that in the solution for each pair {K1,K2} ∈ Lv the
elements in K1 are in different subsets than the elements in K2. In each search
tree node, we keep track of the average Mirkin distance that is already caused
by the constraints of Cv and Lv. To this end, consider the following.

Let U be the set of all unordered pairs {a, b} of elements a, b ∈ S with a 6=
b. Based on Cv and Lv, we divide U into two subsets. The first subset U1

v

contains the “resolved pairs”, that is, the pairs of elements that are either co-
clustered in Cv or contained in two subsets forming a pair in Lv. The other
subset U2

v := U \ U1
v contains the “unresolved pairs”. Then, each node carries

a rational number kv, called the “average Mirkin distance bound for unresolved
pairs”, which means that in the subtree rooted at v we seek only partitions C
with 1/n ·

∑
{a,b}∈U2

v
distC(a, b) ≤ kv.
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At the root r of the search tree, we start with the partition Cr := {{i} | i ∈
S} where all elements are in distinct sets, an empty separation list, and kr =
k = t/n. At every node v of the search tree, we branch into two cases, each
performing one of the following two operations on two subsets Xi and Xj in Cv.
One operation “merges” Xi and Xj , that is, it removes Xi and Xj from Cv and
adds Xi∪Xj to Cv. The other operation “separates” Xi and Xj , that is, it adds
the subset pair {Xi, Xj} to the separation list Lv.

To give a formal description of the search tree we introduce the following
notations. Let X and Y be two subsets of S that are contained in the tem-
porary solution Cv of a search tree node v, and let Lv be the separation list
of v. If X and Y do not form a pair in Lv, then we define cov(X,Y ) :=∑
a∈X

∑
b∈Y co(a, b) and antiv(X,Y ) :=

∑
a∈X

∑
b∈Y anti(a, b); otherwise, we

set cov(X,Y ) := 0 and antiv(X,Y ) := ∞. Moreover, we say that the predi-
cate (XY )v is true if and only if antiv(X,Y ) < n/3, X ↔v Y is true if and
only if cov(X,Y ) < n/3, and X#vY is true if and only if cov(X,Y ) ≥ n/3
and antiv(X,Y ) ≥ n/3. If X#vY holds, we call X and Y a dirty subset pair.
Three subsets X, Y , and Z are called a dirty subset triple, if (XY )v, (Y Z)v,
and X ↔v Z are true.

The search tree algorithm uses two branching rules, the dirty pair rule and
the dirty triple rule. In the following, let v denote the node of the search tree
in which the rules are applied. Both rules branch into two cases, referred to
as v1 and v2. Furthermore, branching into case v1 (case v2) is only performed
if kv1 ≥ 0 (kv2 ≥ 0); we refer to this as the stop criterion.

Branching Rule 1 (Dirty pair rule). If Cv contains two subsets X and Y
with X#vY , then branch into the following two cases.

• Case v1: merge X and Y and set kv1 := kv − 1/n · antiv(X,Y ).

• Case v2: separate X and Y and set kv2 := kv − 1/n · cov(X,Y ).

In case the dirty pair rule is not applicable, because there is no dirty pair,
we apply the following rule.

Branching Rule 2 (Dirty triple rule). If Cv contains three subsets X, Y ,
and Z such that (XY )v, (Y Z)v, and X ↔v Z, then branch into the following
two cases.

• Case v1: separate X and Y and set kv1 := kv − 1/n · cov(X,Y ).

• Case v2: separate Y and Z and set kv2 := kv − 1/n · cov(Y,Z).

We call a search tree node in which neither branching rule can be applied a
leaf of the search tree. At the leaves the algorithm enters its second phase in
which the temporary solution Cv is modified into a complete solution as follows.

As long as possible, merge all subset pairs X and Y for which (XY )v holds
and, after each merge operation, update kv := kv−1/n·antiv(X,Y ). Afterwards,
if kv ≥ 0 then output Cv (or, alternatively, answer “yes”) and terminate the
algorithm. If there is no search tree leaf in which a partition is output, then
answer “no”.
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Correctness of the algorithm. We now show the correctness of the algorithm. In
the following, a partition C of S satisfies the restrictions of a search tree node v
if C fulfills the following three conditions:

(C1) for every subset X ∈ Cv, there is a subset Z ∈ C with X ⊆ Z,

(C2) for every pair {X,Y } in Lv, there are two subsets Z,Z ′ ∈ C with Z 6= Z ′,
X ⊆ Z, and Y ⊆ Z ′, and

(C3) 1/n ·
∑
{a,b}∈U2

v
distC(a, b) ≤ kv.

We say that a branching rule is sound if each partition C satisfying the
restrictions of a node v, satisfies the restrictions of one of the child nodes created
by applying this rule to v. To show that our branching rules are sound, we use
three relations for element pairs with respect to the input partitions.

Definition 1 ([5, Definition 2]). A pair of elements a, b ∈ S is called a dirty
element pair, denoted by a#b, if co(a, b) ≥ n/3 and anti(a, b) ≥ n/3. Moreover,
the predicate (ab) is true if and only if co(a, b) > 2n/3, and the predicate a↔ b
is true if and only if anti(a, b) > 2n/3.

In particular, we employ the following lemma of Betzler et al. [5].

Lemma 1 ([5, Lemma 5]). For a, b ∈ S, it holds that
1. (ab) ∧ (bc)⇒ (ac) ∨ a#c
2. (ab) ∧ b↔ c⇒ a↔ c ∨ a#c.

Hence, in the first statement we infer that co(a, c) ≥ n/3 and in the second
statement we infer that anti(a, c) ≥ n/3. We can now prove the correctness of
the branching rules.

Lemma 2. Both branching rules are sound.

Proof. Consider an arbitrary node v of the search tree with the temporary
solution Cv, the separation list Lv, and the bound kv.

First, consider the dirty pair rule. Let C be a partition satisfying the re-
strictions of v. Obviously, for any two subsets X,Y ∈ Cv, either X and Y are
contained in the same subset or they are in two separate subsets in C. The
dirty pair rule creates a case for each of these two possibilities. Thus, C fulfills
the conditions (C1) and (C2) of exactly one of these two cases. First, assume
that C fulfills the conditions of Case v1. Since X and Y form a dirty subset pair,
the pairs formed by one element from X and one from Y are unresolved, that
is, they are contained in U2

v . However, in Case v1, they become resolved and,
therefore, we have to decrease the distance bound accordingly. Corresponding
to the co-clustering or anti-clustering status of these pairs in a partition C, we
have distC(a, b) = anti(a, b) or distC(a, b) = co(a, b) for all a ∈ X and b ∈ Y .
Therefore, C satisfies (C3) at v1 as well. A similar argument can be used to
show that C satisfies (C3) if it fulfills the conditions of Case v2. Altogether,
this proves the soundness of the dirty pair rule.
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Next, consider the dirty triple rule. Let X,Y, Z ∈ Cv with (XY )v, (Y Z)v,
and X ↔v Z be the three subsets that this rule is applied to. First, we show
that Lv contains the pair {X,Z}. For all elements x ∈ X and y ∈ Y we
have (xy) since, otherwise, antiv(X,Y ) =

∑
a∈X

∑
b∈Y anti(a, b) ≥ anti(x, y) ≥

n/3, contradicting (XY )v. Analogously, for all elements y ∈ Y and z ∈ Z
we have (yz). By Lemma 1, this implies (xz) ∨ x#z for all x ∈ X, z ∈ Z
and thus co(x, z) ≥ n/3 for all x ∈ X, z ∈ Z. Therefore, if {X,Z} /∈ Lv,
then cov(X,Z) =

∑
x∈X

∑
z∈Z co(x, z) ≥ n/3, contradicting X ↔v Z. By

Condition (C2), Lv thus forces X and Z to be anti-clustered in every partition C
satisfying the restrictions of node v. Consequently, X and Y or Y and Z must
be anti-clustered in C. The dirty triple rule creates a case for each of these two
possibilities. With the same argument as for the dirty pair rule, the decrement
of the average Mirkin distance bound is correct. Altogether, this shows the
soundness of the dirty triple rule.

Finally, we prove that the stop criterion kvi < 0 for the child nodes vi
with i ∈ {1, 2} of v is correct. Since there is at least one dirty subset pair or
one dirty subset triple in Cv, there exist some unresolved pairs in U2

v . Since
the branching from v to vi resolves the pairs from the dirty pair or triple, we
have to decrease kv. Thus kvi < 0 implies that every partition that satisfies
Conditions (C1) and (C2) of vi violates Condition (C3) of v, that is, the oper-
ation performed to obtain vi has cost more than kv. Consequently, vi can be
ignored.

The following lemma shows the correctness of the second phase of the algo-
rithm. More precisely, it states that the operations performed in a leaf v of the
search tree yield a partition C that, of all partitions satisfying the restrictions
of v, has minimum distance to the input partitions.

Lemma 3. Let v be a leaf of the search tree, and let D be the set of parti-
tions satisfying the restrictions of v. Then, there exists a partition C ∈ D
such that dist(C, C) = minC′∈D dist(C ′, C) and for all X,Y ∈ Cv, the following
holds:

(a) If (XY )v, then there is a subset Z ∈ C with X ⊆ Z and Y ⊆ Z.

(b) If X ↔v Y , then there are two subsets Z,Z ′ ∈ C with Z 6= Z ′, X ⊆ Z,
and Y ⊆ Z ′ .

Proof. Since v is a leaf of the search tree, there are no dirty subset pairs. This
implies that for each pair of subsets either (XY )v or X ↔v Y holds. Fur-
thermore, there are no dirty subset triples, and thus the following holds for all
subsets X,Y, Z ∈ Cv,

(XY )v ∧ (Y Z)v ⇒ (XZ)v.

Consequently, the predicate (XY )v for X,Y ∈ Cv corresponds to an equiva-
lence relation over the subsets in Cv. Hence, by merging all subsets of Cv for
which (XY )v holds we obtain a partition C of S that fulfills Conditions (a) and
(b) of the lemma (the subsets in C are precisely the equivalence classes of the
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aforementioned equivalence relation). Clearly, C satisfies the Conditions (C1)
and (C2) of v.

It therefore remains to show that of all partitions in D, C has minimum
distance to C. This can be seen as follows. For each pair of subsets X,Y ∈ Cv
either (XY )v or X ↔v Y holds. Every subset pair for which (XY )v holds
is co-clustered in C; since antiv(X,Y ) < n/3 < cov(X,Y ) this implies that,
restricted to these subset pairs, C has minimum distance to C (of all partitions
in D). Likewise, every subset pair for which X ↔v Y holds is anti-clustered
in C; since co(X,Y )v < n/3 < anti(X,Y )v this implies that, restricted to these
subset pairs, C has minimum distance to C (of all partitions in D). Summarizing,
this shows that C has minimum distance of all partitions in D.

Altogether, this implies the following.

Proposition 1. The algorithm is correct.

Proof. Clearly, the restrictions of the root r can be satisfied by all partitions
with an average Mirkin distance at most k to C. In each node of the search
tree we either apply one of the branching rules or we enter the second phase of
the algorithm. Lemma 2 implies that the proposed branching rules are sound.
For each leaf v of the search tree, we obtain a partition C that satisfies Condi-
tions (C1) and(C2) of the restrictions of v. By Lemma 3, of all partitions that
satisfy the restrictions of v, C has the minimum distance to C. Hence, if the
operations performed at the leaf v lead to kv < 0, then there is no partition
that satisfies the restrictions of v. Otherwise, the algorithm finds this partition
and outputs it.

Running time analysis. Next, we bound the running time of the algorithm. The
exponential part of the running time clearly depends on the size of the search
tree, that is, on the number of search tree nodes. A rough estimation of this
size is as follows.

At each node v of the search tree, we either merge or separate two sub-
sets X,Y ∈ Cv. Both operations cause a decrease of the average Mirkin
distance bound kv. More precisely, the dirty pair rule decreases kv either
by 1/n · antiv(X,Y ) or 1/n · cov(X,Y ). Since X and Y form a dirty sub-
set pair, kv is decreased by at least 1/3 in both cases. Branching on a dirty
triple X, Y , and Z with (XY )v, (Y Z)v, and X ↔v Z causes separation of X
and Y in one case and separation of Y and Z in the other case. The bound kv
is decreased by 1/n · cov(X,Y ) and 1/n · cov(Y, Z), respectively. Since (XY )v
and (Y Z)v hold, the distance bound kv is decreased by at least 2/3 in both
cases. Since kv < 0 is a stop criterion for the search tree, the size of the tree
is thus O(23k) = O(8k). Using this simple analysis, one obtains a running time
bound of 8k · poly(n,m). In the following, we give a more detailed analysis of
the search tree size. In the proof, we use φ := (1 +

√
5)/2 to denote the golden

ratio.

Theorem 1. Consensus Clustering can be solved in O(4.24k · k3 + nm2)
time.
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Proof. We first describe the main structure of the algorithm and bound the
polynomial part of the running time. Let C = (C1, . . . , Cn) be a multi-set of
partitions of a base set S = {1, 2, . . . ,m} and let k ≥ 0 be a rational number.
In O(nm2) time we compute the values of co(a, b) and anti(a, b) for each pair of
elements a, b ∈ S and apply the partial kernelization which produces an input
instance with |S| = m ≤ 18k [5]. On the resulting instance, we then apply
the search tree algorithm, which, by Proposition 1, then correctly solves this
instance. In each node in our search tree we have to check whether a dirty
subset pair or a dirty subset triple exists. Dirty pairs can be found in O(m2) =
O(k2) time by checking all subset pairs. Analogously, dirty triples can be found
in O(m3) = O(k3) time. Updating all cov(X,Y ), antiv(X,Y ), and kv after
applying a branching rule clearly takes O(m2) = O(k2) time. The second phase
merges some subsets, which can be done in O(m2) = O(k2) time. Summarizing,
we need O(k3) time for each node of the search tree. To complete the proof, it
remains to estimate the size of the search tree.

Next, we show that the search tree has size at most (2/
√
5)φ3k+2 − 1. To

this end, we consider an arbitrary node v in the tree and estimate the size of the
subtree rooted at v. Clearly, kv ≥ 0 for every node v in the tree. We consider
three cases for the value of kv and prove the size bound for each case.

Case 1: 0 ≤ kv < 1/3. Then, the two cases created by applying one of
the two branching rules both have average Mirkin distance bounds at most kv−
1/3 < 0. Hence, the search tree has only one node. Since 3kv+2 ≥ 2 for kv ≥ 0,
it holds that (2/

√
5)φ3kv+2−1 ≥ (2/

√
5)φ2−1 = 1+2

√
5+5

2
√
5
−1 = 3√

5
> 1. Thus,

the claimed search tree size bound holds in this case.
Case 2: 1/3 ≤ kv < 1/2. If the dirty triple rule is applied, then kv is

decreased by at least 2/3 in both cases. Therefore, the rule creates no child
node for v, and the claimed search tree size bound holds as shown above. If
the dirty pair rule is applied to a dirty subset pair X,Y ∈ Cv, then kv is
decreased by 1/n · cov(X,Y ) in one case and by 1/n · antiv(X,Y ) in the other
case. Since cov(X,Y )+antiv(X,Y ) = |X| · |Y | ·n, at least one of 1/n ·cov(X,Y )
and 1/n ·antiv(X,Y ) is greater than 1/2. Consequently, v has at most one child
node. Since Case 1 applies to this child node, the subtree rooted at v contains
at most two nodes. Since 3kv + 2 ≥ 3 for k ≥ 1/3 and

(2/
√
5)φ3 − 1 =

1 + 3
√
5 + 15 + 5

√
5

4
√
5

− 1 =
4 + 2

√
5√

5
− 1 =

4√
5
+ 1 > 2,

the claimed search tree size bound holds for this case.
Case 3: kv ≥ 1/2. As argued above, the dirty pair rule creates at most

two child nodes, v1 with kv1 := kv − 1/n · cov(X,Y ) and v2 with kv2 :=
kv−1/n·antiv(X,Y ), while the dirty triple rule adds at most two child nodes, v1
with kv1 := kv − 1/n · cov(X,Y ) and v2 with kv2 := kv − 1/n · cov(Y, Z).
Since cov(X,Y ) + antiv(X,Y ) = |X| · |Y | · n, we have antiv(X,Y ) ≥ n/3
and cov(X,Y ) ≥ n/3 for a dirty subset pair X,Y . Therefore, we have kv1 ≤
kv − α and kv2 ≤ kv − 1 + α for some α with 1/3 ≤ α < 2/3. Due to symme-
try, we can assume 1/3 ≤ α ≤ 1/2. Moreover, for the dirty subset triple, we
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have (XY )v and (Y Z)v, implying 1/n · cov(X,Y ) ≥ 2/3 and 1/n · cov(Y, Z) ≥
2/3. As the function (2/

√
5)φ3k+2 − 1 is monotonically increasing on k, we can

use kv1 = kv − α and kv2 = kv − 1 + α with 1/3 ≤ α ≤ 1/2 to obtain an
upper bound on the size of the subtree rooted at v, that is, in our analysis the
worst-case search tree size bound is obtained for the dirty pair rule. Assume,
by an inductive argument, that the search tree size bound holds for all k′ < kv.
Clearly, the size of the subtree rooted at v is at most[

(2/
√
5)φ3(kv−1+α)+2 − 1

]
+
[
(2/
√
5)φ3(kv−α)+2 − 1

]
+ 1.

We differentiate this bound with respect to α to find local extrema:

d
dα (2/

√
5)φ3(kv−1+α)+2 + (2/

√
5)φ3(kv−α)+2 − 1

= 6√
5
log (φ)φ2

[
φ3(kv−1+α) − φ3(kv−α)

]
.

This term equals zero only if kv − 1+α = kv −α, that is, if α = 1/2. Thus, the
candidates for the maximum are the critical point α = 1/2 and the endpoints
of the interval [1/3, 1/2]. For α = 1/2, the search tree has size at most (4/

√
5) ·

φ3kv+1/2−1 and for α = 1/3 the search tree has size at most (2/
√
5) ·φ3kv+2−1.

Hence, the claimed search tree size bound holds in this case as well.
Summarizing, the upper bound of (2/

√
5)φ3kv+2−1 holds for all kv ≥ 0 and

thus we can construct the search tree in O(φ3k+2 ·k3) = O(4.24k ·k3) time. The
overall running time bound follows.

3. NP-Hardness for Input Partitions with a Bounded Number of
Clusters

Bonizzoni et al. [7] proved that the variation of Consensus Clustering in
which the solution C is required to contain at most d clusters, is NP-hard for
every d ≥ 2. In the following, we consider—instead of solution partitions with
a bounded number of clusters—instances (C, t) in which each input partition
has at most d′ clusters, that is, d′ := maxC∈C |C|. We show that Consensus
Clustering is fixed-parameter intractable with respect to d′ by proving the
following.

Theorem 2. Consensus Clustering remains NP-hard, even if all input par-
titions have at most two subsets.

Proof. We use CC2 to denote the special case of Consensus Clustering where
all input partitions have at most two subsets. In the following, we call a partition
that has at most i subsets an i-partition. We show the NP-hardness of CC2 by
reducing from the NP-hard Cluster Editing problem [3, 36] where the input
is an undirected graph G = (V,E) and an integer k ≥ 0, and the question is
whether G can be transformed into a cluster graph, that is, a disjoint set of
cliques, by modifying (that is, deleting or inserting) at most k edges. Let n :=
|V | and m := |E|. We assume n− 2 = 2l for an integer l; otherwise, we can add
some isolated vertices to G without affecting the solvability of (G, k).
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The CC2-instance has the base set S := V and consists of 2-partitions. For
each undirected pair of vertices u, v ∈ V , we create a set Cuv of 2l+1 2-partitions,
called uv-partitions. These partitions have the following properties.

P1 If u and v are adjacent in G, then they are co-clustered in all partitions
in Cuv. If u and v are nonadjacent in G then they are anti-clustered in all
partitions in Cuv.

P2 Each pair of elements x, y ∈ V with {x, y} 6= {u, v}, is co-clustered in exactly
half of the partitions in Cuv and anti-clustered in the other half.

We achieve both properties by creating the following two partitions for ev-
ery i = 1, . . . , 2l:

S1
i = ({u, v} ∪Ai, Bi), S2

i = ({u, v} ∪Bi, Ai) (u and v adjacent), or
S1
i = ({u} ∪Ai, {v} ∪Bi), S2

i = ({u} ∪Bi, {v} ∪Ai) (u and v non-adjacent).

Herein Ai and Bi form a 2-partition of V \ {u, v}. Note that Ai or Bi can
be empty. The set pairs (Ai, Bi) are constructed in such a way that for every
two elements x, y ∈ V \ {u, v}, there are exactly 2l−1 pairs with {x, y} ⊆ Ai
or {x, y} ⊆ Bi and exactly 2l−1 pairs with x ∈ Ai and y ∈ Bi; we call this
the neutrality property. Such a construction is possible as we show by induction
on l. For l = 1, there are two elements, say a and b in V \ {u, v}. The
two 2-partitions {{a, b}, ∅} and {{a}, {b}} clearly fulfill the neutrality property.
For l > 1, we can assume that the neutrality property holds for l−1. Hence, we
can divide V \ {u, v} in two subsets S1 and S2, each of size 2l−1, and for each
subset there is a set of 2l−1 two-partitions that fulfills the neutrality property.
Let {(A1, B1), . . . , (Aj , Bj)} and {(C1, D1), . . . , (Cj , Dj)} with j = 2l−1 be such
a set of 2-partitions for S1 and S2, respectively. Then we construct the following
n 2-partitions for S: For each 1 ≤ i ≤ j, we construct two 2-partitions, one is
(Ai ∪ Ci, Bi ∪ Di) and the other one is (Ai ∪ Di, Bi ∪ Ci). Clearly, for each
pair a, b ∈ S1 the neutrality property is fulfilled, since for each 2-partition P
of S1 we construct exactly two 2-partitions in which a and b are clustered in
the same way as in P . Obviously, the same holds for pairs with a, b ∈ S2. For
pairs with a ∈ S1 and b ∈ S2 the neutrality property can be shown as follows.
For each i we create one 2-partition in which a is co-clustered with b and one in
which it is anti-clustered with b: Assume without loss of generality that a ∈ Ai
and b ∈ Ci. Then in the partition (Ai ∪ Ci, Bi ∪ Di) the two elements are
co-clustered and in the partition (Ai ∪Di, Bi ∪ Ci) the two elements are anti-
clustered. Summarizing, a set of 2l 2-partitions of V \ {u, v} that fulfills the
neutrality property exists. Clearly, the construction that is implied by the proof
above can be performed in polynomial time.

The set C of input partitions consists of all Cuv. Finally, we set the upper
bound t on the total Mirkin distance to

k · 2l+1 +
n(n− 1)

2
·
(
n(n− 1)

2
− 1

)
· 2l.
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Next, we show the equivalence between the instances. To this end, observe
that, for each pair of elements u, v ∈ S and each partition C of S, we always
have distC(u, v) = 2l · (n(n− 1)/2− 1), if we exclude the uv-partitions from C.

Suppose the Cluster Editing instance is a yes-instance. Let G′ be the
resulting cluster graph and let K denote the set of disjoint cliques. Clearly, K
is a partition of V . We claim that dist(K, C) ≤ t. We bound dist(K, C) =∑
u,v∈V distK(u, v) by considering all element pairs u, v ∈ V . As argued above,

without considering the uv-partitions, we have already distK(u, v) = 2l · (n(n−
1)/2−1) for each element pair. This means that the overall sum of the distances
between K and the corresponding uv-partitions over for all element pairs u, v is
at most k·2l+1. If two vertices u and v are in the same clique in G′, then they are
in the same subset of K. Further, if {u, v} /∈ E, then the distance distK(u, v)
restricted to the uv-partitions is 2l+1. This means that every edge addition
causes an increase of dist(K, C) of exactly 2l+1. By the same reason, each edge
deletion also causes an increase of exactly 2l+1 of dist(K, C). Since G′ can be
obtained by at most k edge modifications from G, we then have dist(K, C) = t.
The reversed direction can be shown in a similar way.

Next, we strengthen the hardness result of Bonizzoni et al. [7] by showing
that it is NP-hard to find solution partitions with at most two clusters even if
every input partition has at most two clusters.

Consensus Clustering with 2-Partitions (CC2P)
Input: A multi-set of partitions C = (C1, . . . , Cn) of a base set S =

{1, 2, . . . ,m}, where |Ci| ≤ 2 for all 1 ≤ i ≤ n, and an inte-
ger t ≥ 0.

Question: Is there a partition C of S with |C| ≤ 2 and dist(C, C) ≤
t?

To show the hardness of CC2P, we reduce a variant of Cluster Editing,
where, given G and k, the task is to decide whether G can be transformed into a
graph with at most two cliques by at most k edge modifications. We use ≤ 2-CE
to denote this variant. We thus first show the NP-hardness of ≤ 2-CE, which
may be of independent interest.

Theorem 3. The ≤ 2-CE problem is NP-hard.

Proof. The NP-hard 2-Cluster Editing (2-CE) problem asks whether a given
graph G can be transformed into a graph with exactly two cliques by at most k
edge modifications [36]. In the following, we show the NP-hardness of ≤ 2-CE
by reducing 2-CE.

Let G = (V,E) and k > 0 be an instance of 2-CE. Then, we reduce this
instance to |V |(|V |−1)/2 many instances of the ≤ 2-CE problem. Each of these
instances corresponds to a distinct pair of vertices u, v ∈ V and is constructed
from G as follows: Add to G two new cliques X and Y , each of size |V |2.
Then, add the edges {a, x} with a ∈ V \ {v} and x ∈ X and the edges {a, y}
with a ∈ V \ {u} and y ∈ Y . The new graph is denoted by G′. By setting k′ :=
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|V |3 − 2|V |2 + k, we obtain a ≤ 2-CE instance (G′, k′) that corresponds to
the vertex pair u, v. We now show that the polynomial-time transformation
described above is indeed a reduction by proving the following claim. Herein,
we assume that |V | > 6; all smaller instances of 2-CE can be obviously reduced
in constant time to a constant-size equivalent instance of ≤ 2-CE.

(G, k) is a yes-instance for 2-CE ⇔ At least one of the generated
≤ 2-CE instances is a yes-instance.

“⇒”: Since (G, k) be a yes-instance, there is a solution with two cliques V1
and V2 for G. Choose two vertices u ∈ V1 and v ∈ V2 and consider the ≤ 2-CE
instance (G′, k′) corresponding to this vertex pair. We count the number edge
modifications leading to two cliques X ∪ V1 and Y ∪ V2. To generate these two
cliques, we need exactly k′ = |V |3 − 2|V |2 + k edge modifications, as we have
to edit k edges to transform G into two cliques V1 and V2, |V |2 · (|V1| − 1)
edges {a, y} with a ∈ V1 and y ∈ Y , and |V |2 ·(|V2|−1) edges {a, x} with a ∈ V2
and x ∈ X. Thus, (G′, k′) is a yes-instance for ≤ 2-CE.

“⇐”: Assume that the set of created ≤ 2-CE instances contains at least one
yes-instance (G′, k′). We first show that any minimum-cardinality solution M
to this instance transforms G′ into a cluster graph with two cliques X ∪ V1
and Y ∪V2 where {V1, V2} is a partition of V . First, observe that generating the
clique X ∪ Y ∪ V from G′ needs at least |V |4 > k′ edge insertions. Thus, there
are exactly two cliques K1 and K2 in the graph that results from applying M
to G′. We now show that, without loss of generality, X ⊆ K1 and Y ⊆ K2.
Suppose that this is not true. Then, X1 := X ∩K1 6= ∅ and X2 := X ∩K2 6= ∅.
Without loss of generality, assume that |X1| ≥ |V |2/2. Let Y1 := Y ∩ K1

and Y2 := Y ∩ K2. If |Y1| > |V |2/3, then at least |V |4/6 edge insertions are
needed between X1 and Y1. This exceeds k′ since |V | > 6. Hence, |Y2| ≥
2|V |2/3. Now, this implies Y ⊆ K2. Assume towards a contradiction that this
is not the case. We show that moving any vertex y ∈ Y1 from K1 to K2 reduces
the number of edge modifications applied to this vertex. First, |X1| ≥ |X2|,
so the number of edge insertions between y and X decreases with this move.
Second, the number of edge deletions between y and Y \ {y} decreases by at
least |V |2/3 since |Y2| − |Y1| ≥ |V |2/3. Since at most |V | edge modifications are
necessary between y and V , this move thus reduces the overall number of edge
modifications applied to y. This contradicts the choice of M and thus Y ⊆ K2.
A similar argument can now be applied to show that X ⊆ K1; we omit the
details. Summarizing, we can thus assume that there is a solution M that
transforms G′ into two cliques X ∪ V1 and Y ∪ V2. By construction, such a
solution performs exactly |V |3 − 2|V |2 edge modifications with at least one
endpoint in X ∪ Y . Hence, G can be transformed into a cluster graph with the
two cliques V1 and V2 by at most k edge modifications.

With the hardness of ≤ 2-CE, the hardness of CC2P can be shown by using
the same reduction as in the proof of Theorem 2.

Corollary 1. CC2P is NP-hard.
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By introducing some dummy elements, one can then easily prove that Con-
sensus Clustering is also NP-hard if the input partitions have at most d ≥ 3
subsets and we ask for a partition with at most d subsets. Moreover, for ev-
ery d ≥ 2, a similar reduction can be used to show the NP-hardness in case
the input partitions contain exactly d subsets and we ask for a partition with
exactly d subsets.

4. Hardness of Local Search

In this section, we study the parameterized complexity of the following local
search variant of Consensus Clustering:

Consensus Clustering with Mirkin-Local Search (CCML)
Input: A multi-set C = (C1, . . . , Cn) of partitions of a base set S =

{1, 2, . . . ,m}, a partition C of S, a nonnegative integer d.
Question: Is there a partition C ′ of S such that dist(C ′, C) <

dist(C, C) and dist(C,C ′) ≤ d?

The study of CCML is motivated as follows. A partition that has average Mirkin
distance at most k to C trivially has Mirkin distance at most k to at least one of
the input partitions in C. Moreover, it could be that there is one input partition
which has Mirkin distance d � k to this partition. Hence, a good strategy to
find a partition with average distance at most k to C could be to search in the
local neighborhood of the input partitions. Unfortunately, as we show in the
following, it is unlikely that a running time of f(d) · poly(n,m) can be achieved
for this local search problem.

We present a parameterized reduction from the W[1]-hard Clique prob-
lem [10]. More precisely, we reduce a variant of Clique in which there is at
least one vertex in the input graph that is adjacent to all other vertices.

Clique with Universal Vertex
Input: An undirected graph G = (V,E) with a vertex u ∈ V such

that N [u] = V , and a nonnegative integer k.
Question: Is there a clique of size k in G?

The W[1]-hardness of Clique with Universal Vertex with respect to k fol-
lows from a straightforward reduction from Clique. For notational simplicity,
we assume that k is an odd number in the following; the problem clearly remains
W[1]-hard with this further restriction.

Given an instance (G = (V,E), k) of Clique with Universal Vertex,
we construct an instance of CCML as follows. The base set S consists of the
vertex set V and of (|V | · (k − 1)/2) − 1 further elements. More precisely, for
each vertex v ∈ V \ {u}, we create an element set Sv := {v1, . . . , v(k−1)/2}, and
for the universal vertex u, we create an element set Su := {u1, . . . , u(k−1)/2−1}.
The complete element set is S := V ∪ Su ∪

⋃
v∈V \{u} Sv.
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We construct a CCML instance in which C consists of n := 2|E|+1 partitions
of S. The first |E| partitions consist of one cluster that completely contains S:

Ci := {S}, 1 ≤ i ≤ |E|.

For each {v, w} ∈ E we create one partition containing {v, w} as one cluster
and a singleton cluster for each of the other elements. Let E = {e1, . . . , e|E|}.
Then these partitions are formally defined as

C|E|+i := {ei} ∪ {{s} | s ∈ S \ ei}, 1 ≤ i ≤ |E|.

Finally, we create one partition that, for each v ∈ V , contains a cluster that
contains v and Sv:

C2|E|+1 := {{v} ∪ Sv | v ∈ V }.

Overall, the following can be observed for this set of partitions. Two vertices
that are adjacent in G are co-clustered in |E| + 1 partitions of the CCML in-
stance. Two vertices that are not adjacent in G are co-clustered in |E| parti-
tions. Furthermore, each pair of elements v ∈ V and w ∈ S \ V , is co-clustered
in |E| + 1 partitions if w ∈ Sv, and co-clustered in |E| partitions, otherwise.
Finally, each pair of elements v, w ∈ S \ V is co-clustered in |E| + 1 partitions
if there is an x ∈ V such that v ∈ Sx and w ∈ Sx and co-clustered in |E|
partitions, otherwise. Consequently, for each pair of elements v, w ∈ S we
have | co(v, w)− anti(v, w)| = 1.

The partition C of the instance is defined exactly as the partition C2|E|+1,
that is, for each v ∈ V , C contains the cluster {v} ∪ Sv. We conclude the
construction of the CCML instance by setting d := k · (k − 1)− 1.

Informally, the idea behind the construction is that with the Sv’s and by
setting d := k · (k − 1) − 1 we can enforce that in a “better” partition within
distance d there is a cluster with exactly k elements from V . The elements of
this cluster must then induce a clique in G since otherwise the partition is not
better than C. In the following, we give a formal proof of the correctness of the
reduction.

Theorem 4. CCML parameterized by the radius d of the Mirkin-distance neigh-
borhood is W[1]-hard.

Proof. Clearly, the described transformation can be performed in polynomial
time and the parameter d is a function of the parameter k. It therefore remains
to show the following claim:

(G, k) is a yes-instance of Clique with Universal Vertex ⇔
(C, C, d) is a yes-instance of CCML.

“⇒”: Let K be a k-vertex clique in G. Clearly, we can assume that u ∈
K, since u is adjacent to all vertices in V . We first describe how to con-
struct a partition C ′ of S from K, and then show that dist(C ′, C) < dist(C, C)
and dist(C,C ′) ≤ d.
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One cluster of C ′ is K. Furthermore, for each vertex v ∈ K the parti-
tion C ′ contains the cluster Sv. Finally, for each vertex v /∈ K, C ′ contains the
cluster Sv ∪ {v}. Formally,

C ′ := {K} ∪ {Sv | v ∈ K} ∪ {Sv ∪ {v} | v /∈ K}.

First, we show that dist(C,C ′) ≤ d. Let D := K ∪
⋃
v∈K Sv. Since for all

vertices v ∈ V \K, the sets Sv ∪{v} are clusters of both C and C ′, the distance
between C and C ′ only depends on the elements in D, that is,

dist(C,C ′) =
∑
v∈D

∑
w∈D

δ(v, w)/2

where δ(v, w) = 1 if v and w are anti-clustered in C and co-clustered in C ′ or
vice versa, and δ(v, w) = 0, otherwise. Two elements v, w ∈ D \ K are either
co-clustered in both C and C ′ or anti-clustered in both partitions. Hence,

dist(C,C ′) =
∑
v∈K

∑
w∈K\{v}

δ(v, w)/2 +
∑
v∈K

∑
w∈D\K

δ(v, w).

The first term of above equation is clearly k · (k − 1)/2. The second term is
exactly k ·(k−1)/2−1: For each v ∈ K \{u}, the number of elements w ∈ D\K
for which δ(v, w) = 1 is (k − 1)/2, because v is in C in a cluster with the
(k − 1)/2 vertices from Sv. Likewise, for u the number of elements w ∈ D \K
for which δ(v, w) = 1 is (k − 1)/2 − 1, because u is in C in a cluster with
the (k − 1)/2− 1 vertices from Su. Summarizing, dist(C,C ′) = k · (k − 1)/2 +
k · (k − 1)/2− 1 = d.

It remains to show that dist(C ′, C) < dist(C, C). As argued above, we only
need to consider elements in D = K ∪

⋃
v∈K Sv since for all other elements the

clusters have not changed. Furthermore, the pairs of elements that are clustered
differently in C and C ′ contain at least one element from K, and for those that
contain exactly one element v ∈ K the other element is from Sv. More precisely,
we can express dist(C, C)− dist(C ′, C) as∑

v∈K

∑
w∈K\{v}

(co(v, w)− anti(v, w))/2 +
∑
v∈K

∑
w∈Sv

(anti(v, w)− co(v, w))

=
∑
v∈K

∑
w∈K\{v}

1/2 +
( ∑
v∈K\{u}

−(k − 1)/2
)
− ((k − 1)/2− 1)

=k · (k − 1)/2− (k · (k − 1)/2− 1)

>0.

The first equality can be seen as follows. First, since K is a clique, all pairs
of elements in K are co-clustered in |E| + 1 partitions in C. Second, each pair
of v ∈ K and w ∈ Sv is also co-clustered in |E|+1 partitions and for v ∈ K\{u},
we have |Sv| = (k − 1)/2, and |Su| = (k − 1)/2 − 1 (recall that we assume
that u ∈ K).
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Summarizing, the partition C ′ fulfills both dist(C,C ′) ≤ d and dist(C ′, C) <
dist(C, C). Hence, (C, C, d) is a yes-instance of CCML.

“⇐”: Let C ′ be a partition of S with dist(C ′, C) < dist(C, C), and dist(C,C ′) ≤
d. First, we show that for each v ∈ V we can assume that C ′ contains either the
cluster Sv ∪ {v} or the cluster Sv. Using this property, we then show that C ′
contains a cluster K∗ ⊆ V such that G[K∗] is a clique of size k.

We now show that we can assume that, for each v ∈ V , C ′ contains either
the cluster Sv ∪{v} or the cluster Sv. Suppose that this is not the case, that is,
there is some v ∈ V such that C ′ either contains a cluster K with K ∩ Sv 6= ∅
and with K \ (Sv ∪ {v}) 6= ∅ or it contains two nonempty clusters K1 ⊆ Sv
and K2 ⊆ Sv. We show that in both cases C ′ can be transformed into a
new partition C∗ such that dist(C∗, C) ≤ d, dist(C∗, C) ≤ dist(C ′, C), and C∗
satisfies our assumption.

Case 1: K ∩ Sv 6= ∅ and K \ (Sv ∪ {v}) 6= ∅. Let C∗ denote the partition
resulting from C ′ by replacing K by the two clusters K ∩ Sv and K \ Sv. Note
that each pair of elements x ∈ K ∩ Sv and y ∈ K \ (Sv ∪ {v}) is anti-clustered
in C. Furthermore, at most one vertex in K \Sv, namely v, is co-clustered in C
with the vertices from K ∩ Sv. Therefore, we have dist(C∗, C) ≤ dist(C ′, C).

Moreover, for each pair x ∈ K ∩ Sv and y ∈ K \ (Sv ∪ {v}) it also holds
that anti(x, y) > co(x, y). Also, there is at most one further vertex, namely v,
in K \ Sv. Since |K \ (Sv ∪ {v})| ≥ 1, we thus have dist(C∗, C) ≤ dist(C ′, C).

By repeatedly applying the modification described above, one can obtain a
solution C∗ such that for each v ∈ V , every cluster that contains an element
from Sv is a subset of Sv ∪ {v}.

Case 2: C ′ contains two clusters K1 ⊂ Sv and K2 ⊂ Sv ∪ {v}. Then, we
obtain a partition C∗ from C ′ by replacing K1 and K2 by the cluster K1 ∪K2.
Both dist(C∗, C) < dist(C ′, C) and dist(C∗, C) < dist(C ′, C) hold, which can be
seen as follows. All pairs of elements x ∈ K1 and y ∈ K2 are co-clustered in C;
this implies dist(C∗, C) < dist(C ′, C), since for all other elements the clusters
do not change. Furthermore, co(x, y) > anti(x, y); this implies dist(C∗, C) <
dist(C ′, C). By repeatedly applying this modification, we arrive at a solution
for which there is no pair of clusters that are both subsets of Sv ∪ {v} for
some v ∈ V .

Summarizing, we can thus assume that there is a solution C ′ in which for
each v ∈ V , there is a cluster K with either K = Sv or K = Sv ∪ {v}. Thus, all
other clusters in C ′ are subsets of V .

We now show that C ′ contains one cluster K ⊆ V of size k such that G[K] is
a clique. Let A := {A1, . . . , A`} denote the clusters in C ′ that are subsets of V .
We can express dist(C, C) − dist(C ′, C) by summing over the values of co(a, b)
and anti(a, b) for each pair of elements a ∈ Ai, 1 ≤ i ≤ `, and b ∈ S, since for
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all other element pairs, C and C ′ have the same partitioning. More precisely,

dist(C, C)− dist(C ′, C) =∑̀
i=1

(∑
v∈Ai

∑
w∈Ai\{v}

(co(v, w)−anti(v, w))/2+
∑
v∈Ai

∑
w∈Sv

(anti(v, w)−co(v, w))
)
.

Since dist(C, C) > dist(C ′, C), there must be at least one Ai for which the
summation above is at least 1, that is, there is an i, 1 ≤ i ≤ `, such that∑
v∈Ai

∑
w∈Ai\{v}

(co(v, w)− anti(v, w))/2 >
∑
v∈Ai

∑
w∈Sv

(co(v, w)− anti(v, w)). (1)

We show that G[Ai] is a clique of size k in G. First, we show that |Ai| =
k. Observe that the elements of Ai are all anti-clustered in C and in C each
element v ∈ Ai is co-clustered with all elements of Sv. Hence, dist(C,C ′) ≥
|Ai| · (|Ai| − 1)/2+ |Ai|(k− 1)/2− 1. If |Ai| > k, then this term is clearly larger
than d = k(k − 1)− 1. Hence, |Ai| ≤ k.

Next, assume towards a contradiction that |Ai| < k. Clearly, co(v, w) −
anti(v, w) ≤ 1 for each v, w ∈ Ai, and co(v, w) − anti(v, w) = 1 for v ∈ Ai
and w ∈ Sv. Hence, for all k > 3 we have∑

v∈Ai

∑
w∈Ai\{v}

(co(v, w)− anti(v, w))/2 < |Ai|(k − 1)/2− 1

≤
∑
v∈Ai

∑
w∈Sv

(co(v, w)− anti(v, w)).

which contradicts Inequality (1). Consequently, we have |Ai| = k. This implies∑
v∈Ai

∑
w∈Sv

(co(v, w)− anti(v, w)) ≥ k · (k − 1)/2− 1

and the equality holds only if u ∈ Ai. On the other hand, this implies∑
v∈Ai

∑
w∈Ai\{v}

(co(v, w)− anti(v, w))/2 ≤ k(k − 1)/2.

Clearly, equality is obtained only if co(v, w)− anti(v, w) = 1 for all v, w ∈ Ai.
Therefore, Inequality (1) enforces that u ∈ Ai and that co(v, w)−anti(v, w) =

1 for all v, w ∈ Ai. Hence, each pair of elements from Ai is adjacent in G and
thus G[Ai] is a size-k clique.

In the construction above we have | co(v, w) − anti(v, w)| = 1 for each ele-
ment pair v, w ∈ S. Consequently, each element pair causes a Mirkin distance of
at least |E| and at most |E|+1 in any solution. Hence, the Consensus Clus-
tering instance can also be formulated as an “equivalent” instance of Cluster
Editing. By modifying the construction above, we can then show the hardness
of the following local search variant of Cluster Editing.
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Cluster Editing with Edge-Modification-Local Search
Input: An undirected graph G = (V,E), a cluster graph C =
(V,E′), and a nonnegative integer k.
Question: Is there a cluster graph C ′ = (V,E′′) such that dist(G,C ′) <
dist(G,C) and dist(C,C ′) ≤ k?

Herein, a cluster graph is a disjoint union of complete graphs and dist(G =
(V,E), H = (V,E′)) := |(E \ E′) ∪ (E′ \ E)| denotes the number of edge mod-
ifications needed to transform a graph G into a graph H. In complete analogy
to Theorem 4, we obtain the following.

Theorem 5. Cluster Editing with Edge-Modification-Local Search
parameterized by the radius k of the edge-modification neighborhood is W[1]-
hard.

5. Conclusion

There are many possibilities for further research concerning Consensus
Clustering. For instance, comparing our algorithm with known heuristics
for Consensus Clustering would be interesting. Also, further parameters
should be considered for Consensus Clustering. For example, what is the
complexity of Consensus Clustering when for each input partition, every
cluster has a bounded number of elements? Also, the previously known partial
kernelization implies fixed-parameter tractability [5] for the parameter “num-
ber of dirty element pairs”. Are there efficient fixed-parameter algorithms for
this parameter? Finally, it would be interesting to consider further parameters
for the local search variant of Consensus Clustering. For example, is this
problem fixed-parameter tractable when the number n of input partitions is
bounded?
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