
NP-Hardness and Fixed-Parameter Tractability

of Realizing Degree Sequences with Directed

Acyclic Graphs∗

Sepp Hartung André Nichterlein†

July 7, 2015

Abstract

In graph realization problems one is given a degree sequence and the
task is to decide whether there is a graph whose vertex degrees match the
given sequence. This realization problem is known to be polynomial-time
solvable when the graph is directed or undirected. In contrast, we show
NP-completeness for the problem of realizing a given sequence of pairs
of nonnegative integers (representing in- and outdegrees) with a directed
acyclic graph (DAG), answering an open question of Berger and Müller-
Hannemann. Furthermore, we classify the problem as fixed-parameter
tractable with respect to the parameter “maximum degree”. Investigating
sparse and dense settings, we show that the problem remains NP-hard even
if the realizing DAG (precisely, the underlying undirected graph) can be
transformed into a clique (a tree) by adding (deleting) a constant fraction
of the arcs. In contrast, if at most k arcs have to be inserted respectively
removed to obtain a clique or a tree in the underlying undirected graph,
then the problem becomes fixed-parameter tractable with respect to k.

1 Introduction

Berger and Müller-Hannemann [2] introduced the following graph realization
problem:

DAG Realization
Input: A multiset S =

{(
a1

b1

)
, . . . ,

(
an
bn

)}
of pairs of nonnegative integers.

Question: Is there a directed acyclic graph (without parallel arcs and self-
loops) that admits an ordering v1, . . . , vn of its vertex set such
that for every vi ∈ V the indegree is ai and the outdegree is bi?

∗An extended abstract of this paper appeared in Proceedings of the 8th International
Conference on Computability in Europe 2012 (CiE 2012), volume 7318 of LNCS, pages 283–
292, Springer, 2012. Besides providing several omitted proof details, an important difference
compared to the conference version is the proof of fixed-parameter tractability for the parameter
“number of arcs minus number of vertices” (see Section 5).
†Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany

(sepp.hartung@tu-berlin.de, andre.nichterlein@tu-berlin.de)

1

mailto:sepp.hartung@tu-berlin.de
mailto:andre.nichterlein@tu-berlin.de

If a degree sequence S is a yes-instance, then S is called realizable and the
corresponding directed acyclic graph (DAG for short) D is called a realizing
DAG for S. This problem arises in the context of randomly generating DAGs
satisfying some prespecified degree constraints [1].

Our Contributions Berger and Müller-Hannemann [2] showed that DAG
Realization is polynomial-time solvable for special types of degree sequences,
but left the computational complexity of the general problem as their main
open question. We answer this question by showing that DAG Realization is
NP-complete. Moreover, on the positive side we classify DAG Realization
as fixed-parameter tractable with respect to the parameter maximum degree
∆ := max{a1, b1, . . . , an, bn}. Denoting by n the number of vertices and by
m the number of arcs in a realizing DAG and assuming

(
0
0

)
/∈ S, Berger and

Müller-Hannemann [3] showed that if m < n, then DAG Realization is
polynomial-time solvable. We extend this result to less sparse and to dense
settings by considering the four parameters m−n+1, m/n,

(
n
2

)
−m, and (n

2)/m. For

the first and the third parameter m−n+1 and
(
n
2

)
−m we prove fixed-parameter

tractability, whereas for the second and fourth parameter m/n and (n
2)/m we show

NP-hardness for any constant parameter value larger than one.

Related Work It has been known for a long time that deciding whether a given
degree sequence (a multiset of positive integers) is realizable with an undirected
graph is polynomial-time solvable. There are characterizations for realizable
degree sequences due to Erdős and Gallai [6] and algorithms by Havel [14] and
Hakimi [13]. The problem variant where one asks whether there is a directed
graph realizing the given degree sequence (a multiset of positive integer pairs),
has also been intensively studied; see Chen [4], Fulkerson [10], Gale [11], and
Ryser [23] for characterizations of realizable degree sequences and Kleitman
and Wang [17] for polynomial-time algorithms. The problem of realizing degree
sequences has also been studied in context of (loop-less) multigraphs, where the
aim is to minimize or maximize the number of multi-edges [15].

Berger and Müller-Hannemann [1, 2, 3] investigated restricted variants of
DAG Realization that are polynomial-time solvable and performed an exten-
sive experimental study on the general problem.

Organization Our paper is structured as follows: We introduce the necessary
notation in Section 2. Section 3 contains the proof of the NP-completeness of
DAG Realization. Furthermore, we show that it remains NP-complete in
case of any constant ratios m/n > 1 and (n

2)/m > 1. In Section 4 we show that
DAG Realization is fixed-parameter tractable with respect to the parameter
maximum degree ∆. Finally, in Section 5 we prove that DAG Realization
is fixed-parameter tractable with respect to each of the parameters m− n+ 1
and

(
n
2

)
−m.

2 Preliminaries

Let N := {0, 1, 2, . . .}. We denote with] the multiset sum (e. g. {1, 1}] {1, 2} =
{1, 1, 1, 2}). The input of DAG Realization, a so-called degree sequence, is

2

a multiset of non-negative integer pairs which are called tuples. Although in a
multiset there is no ordering given, we stick to the term degree sequence as it is

commonly used in the literature. For a degree sequence S =
{(

a1

b1

)
, . . . ,

(
an
bn

)}
we

always assume that
(

0
0

)
/∈ S, that the maximum occurring value is at most n− 1,

and that
∑n
i=1 ai =

∑n
i=1 bi. For convenience we assume throughout this

work that all 2n numbers in the degree sequences are given explicitly. Hence,
the overall input size of the DAG Realization instance is O(n log ∆) where
∆ := max{a1, b1, . . . , an, bn} is the largest number in the degree sequence. Note
that by the above assumption we have ∆ < n and, thus, the size of the input is
also bounded by O(n log n).

We denote directed graphs by D = (V,A) with vertex set V and arc set A ⊆
V × V . For a vertex subset V ′ ⊆ V , the subgraph induced by V ′ is D[V ′] :=
{V ′, (V ′ × V ′) ∩A}. Let n := |V | and m := |A|. Correspondingly, for a degree

sequence S =
{(

a1

b1

)
, . . . ,

(
an
bn

)}
we set m :=

∑n
i=1 ai.

Two vertices in a directed graph D = (V,A) are called connected if they are
weakly connected, that is, in the underlying undirected graph there is a path
between them. Correspondingly, connected components always refer to weakly
connected components. For two vertices v, u ∈ V with (v, u) ∈ A, we call v
an inneighbor of u and u an outneighbor of v. We denote the indegree of a
vertex v ∈ V by d−(v) and the outdegree by d+(v). Correspondingly, for a degree
sequence S and a tuple s ∈ S with s =

(
a
b

)
, we set d−(s) := a and d+(s) := b.

A vertex v ∈ V or a tuple
(
a
b

)
∈ S is called a source if d−(v) = 0 = a and it is

called a sink if d+(v) = 0 = b.
For a directed graph D = (V,A), a directed path is a vertex sequence v1, . . . , vl

such that for all 1 ≤ i < l we have (vi, vi+1) ∈ A. If additionally vl = v1 holds,
then it is a directed cycle. A directed graph D = (V,A) is a DAG if it does not
contain a directed cycle. Each DAG D admits a topological ordering, that is, an
ordering of all its vertices v1, . . . , vn such that for all arcs (vi, vj) ∈ A it holds
that i < j.

A transitive tournament with n vertices is the (up to isomorphism) unique
DAG that realizes the degree sequence {

(
0

n−1

)
,
(

1
n−2

)
, . . . ,

(
n−1

0

)
}. Equivalently,

a transitive tournament is the only DAG with
(
n
2

)
arcs and it admits only one

topological ordering.
Next, we define a central notion of our work.

Definition 2.1. An ordered degree sequence σ =
(
a1

b1

)
, . . . ,

(
an
bn

)
is called realiz-

able degree ordering if there is a realizing DAG D for σ that admits a topological
ordering v1, . . . , vn that corresponds to σ, that is, a topological ordering such
that d−(vi) = ai and d+(vi) = bi for all 1 ≤ i ≤ n.

A realizable degree ordering of a degree sequence S refers to an ordering of S
such that it fulfills Definition 2.1. Moreover, a realizing DAG for an ordered
degree sequence σ always refers to a DAG admitting a topological ordering that
corresponds to σ. Berger and Müller-Hannemann [3] proved that one can check
in polynomial time whether a given ordering of a degree sequence is a realizable
degree ordering.

Parameterized Complexity An instance of a parameterized problem consists
of the “classical” problem instance I and a parameter k ∈ N. It is called fixed-

3

parameter tractable if there is an algorithm that solves any instance (I, k) in
f(k)·|I|c time. Here, f is a computable function solely depending on k and c ∈ N
is a constant independent from k and I. For a more detailed introduction to
parameterized algorithmics we refer to the monographs [5, 8, 21].

3 NP-Completeness

In this section we first describe the construction of our reduction proving NP-
hardness of DAG Realization and explain the idea of how it works. Then,
we prove its correctness. Finally, we show that DAG Realization remains
NP-hard for any constant ratio of m/n and of (n

2)/m.
We prove NP-hardness for DAG Realization by giving a polynomial-time

many-to-one reduction from the strongly NP-hard 3-Partition problem [12,
SP15]:

3-Partition
Input: A multiset A = {a1, . . . , a3p} of 3p positive integers and an

integer B with
∑3p
i=1 ai = pB and ∀i : B/4 < ai < B/2.

Question: Is there a partition of the 3p integers from A into p disjoint
triples such that in every triple the three elements sum up to B?

Construction Throughout this section let (A, B) be an instance of 3-Parti-
tion and let SA,B be the degree sequence constructed as follows:

SA,B := X0]X1] . . .]Xp]
{(

a1

a1

)
, . . . ,

(
a3p

a3p

)}
.

We formally define the multisets Xi, 0 ≤ i ≤ p, after giving the idea of the
construction. For the description of the idea we need some notation: We
set X :=

⊎p
i=0Xi, we call a tuple in X an x-tuple, and all others are called

a-tuples. In a realizing DAG the vertices realizing x-tuples are called x-vertices
and the vertices realizing a-tuples are called a-vertices.

The intuition of the construction is that a DAG realizing SA,B (if it exists)
looks as follows (see Figure 1 for an illustration): The tuples of a multiset Xi,
0 ≤ i ≤ p, form a “block” in a realizable degree ordering. These blocks are
a skeletal structure in any realizable degree ordering and there are p “gaps”
between them. The construction ensures that each gap is filled with a-vertices
adjacent to the vertices in the blocks bordering the gap and, moreover, the
indegrees and outdegrees of all a-vertices in a gap sum up to B. Hence, these
p gaps require to partition the a-vertices into p sets where each set has in total
in- and outdegree B and, thus, the p sets correspond to a solution for the
3-Partition instance that we reduce from. In the reverse direction, for each
triple in a solution of a 3-Partition instance the corresponding a-vertices will
be used to fill up one gap.

We next provide the remaining details of the reduction. The set X consists of
the tuples {x0, . . . , x2Bp+2B−1} where, as indicated in Figure 1, each multiset Xi

contains 2B tuples. More specifically, Xi = {x2Bi, . . . , x2Bi+2B−1} for all i ∈
{0, . . . , p}. Subsequently, we describe properties that a DAG realizing SA,B shall
have. We later prove that any DAG realizing SA,B indeed has these properties.
To impose the required skeletal structure (having a gap between each pair of

4

X0 X1 X2 X3 X4

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

Figure 1: A schematic illustration of a DAG that realizes a degree sequence SA,B
that is constructed from a 3-Partition instance with B = 12 and p = 4. There
are five blocks marked by the gray ellipses and four gaps between them. In
each gap there are three a-vertices, altogether having in- and outdegree B. The
sets Xi, 0 ≤ i ≤ p, are partitioned into two parts of size B. The vertices in
the left part (except for X0) have B incoming arcs from the a-vertices that fill
the gap between Xi−1 and Xi. Correspondingly, the vertices in the right part
(except in Xp) have B outgoing arcs to the a-vertices that fill the gap between Xi

and Xi+1. The in- and outdegrees of the a-vertices in each triple sum up to B.
The vertices in the gray ellipses induce a big transitive tournament where the
first vertex with no inneighbors is the top-leftmost vertex and the vertex without
outneighbors is the bottom-rightmost vertex. Here, the thick-drawn arcs on top
indicate that each vertex in an ellipse has outgoing arcs to all vertices in the
proceeding gray ellipses.

blocks Xi, Xi+1), the x-vertices shall induce a transitive tournament where the
degrees in the topological ordering correspond to the order x0, . . . , x2Bp+2B−1.
Thus, denoting the x-vertices corresponding to Xi by V (Xi), it follows that V (Xi)
precedes V (Xi+1) for all i ∈ {0, . . . , p − 1}. To ensure that each gap between
V (Xi) and V (Xi+1) is “filled up” by a-vertices with total indegree/outdegree B,
we partition Xi into the “left” part X`

i = {x2Bi, . . . , x2Bi+B−1} and the “right”
part Xr

i := {x2Bi+B , . . . , x2Bi+2B−1}. Then, each of the B right-part vertices
in V (Xr

i) is required to have, in addition to its outneighbors in V (X), one
a-vertex as an outneighbor. Symmetrically, each of the B left-part vertices
in V (X`

i) has one additional a-vertex as an inneighbor. The “borders” of the
skeletal structure, namely x-vertices corresponding to the left-part of X0 and the
right-part of Xp, are not supposed to have a-vertices as neighbors. The following
definition of the tuple xj from Xi captures the above mentioned properties:

xj :=

(
j + in(j)

|X| − 1− j + out(j)

)
(1)

5

where in(j) and out(j) are defined as follows:

in(j) :=

{
1, if xj ∈ X`

i ∧ i > 0

0, else
out(j) :=

{
1, if xj ∈ Xr

i ∧ i < p

0, else.

The construction above can be computed in polynomial time due to the strong
NP-hardness of 3-Partition: The size of the constructed DAG Realization
instance is upper-bounded by a polynomial in the values of the integers in A.
Since 3-Partition is strongly NP-hard, it remains NP-hard when the values of
the integers in A are bounded by a polynomial in the input size. Hence, the size
of the DAG Realization instance is polynomially bounded in the size of the
3-Partition instance.

Correctness Next, we prove the correctness of the construction given above.
To start with the simpler case, we first show that if (A, B) is a yes-instance,
then there is a realizing DAG for SA,B .

Lemma 3.1. If (A, B) is a yes-instance of 3-Partition, then SA,B is a yes-
instance of DAG Realization.

Proof. We prove that if (A, B) is a yes-instance, then there exists a realizing
DAG DA,B for SA,B which is structured as depicted in Figure 1. Formally, let π
be a permutation of the sequence A such that aπ(3i+1) + aπ(3i+2) + aπ(3i+3) = B
for all 0 ≤ i < p. Since (A, B) is a yes-instance of 3-Partition such a
permutation exists. The x-vertices in DA,B induce a transitive tournament
whose topological ordering corresponds to the ordering x0, x1, . . . , x2Bp+2B−1 of
the x-tuples. Observe that the arcs in this transitive tournament ensure that
the degree of the x-vertices is equal to Equation (1), except for the additive in-
and out-terms.

Each a-tuple
(
ai
ai

)
is realized in DA,B by a vertex called ui. The a-ver-

tex uπ(3i+1) (uπ(3i+2), uπ(3i+3) resp.) has an incoming arc from each of the
first aπ(3i+1) (next aπ(3i+2), last aπ(3i+3)) vertices in V (Xr

i) and an outgoing

arc to each of the first aπ(3i+1) (next aπ(3i+2), last aπ(3i+3)) vertices in V (X`
i+1).

In this way, each a-vertex ui has an in- and outdegree of ai. Furthermore,
as aπ(3i+1) + aπ(3i+2) + aπ(3i+3) = B, all vertices in V (X`

i) (for i > 0) have an
incoming arc from an a-vertex and all vertices in V (Xr

i) (for i < p) have an
outgoing arc to an a-vertex.

To show the reverse direction, we first need some lemmas.

Lemma 3.2. In any DAG realizing SA,B, the a-vertices form an independent
set and the x-vertices induce a transitive tournament.

Proof. The number d−(X) of incoming arcs to all x-vertices is

d−(X) =

|X|−1∑
j=0

d−(xj)
(1)
=

|X|−1∑
j=0

j + in(j)

= pB +

|X|−1∑
j=0

j = pB +

(
|X|
2

)
.

6

Moreover, the number d+(X) of outgoing arcs from all x-vertices is

d+(X) =

|X|−1∑
j=0

d+(xj)
(1)
=

|X|−1∑
j=0

|X| − 1− j + out(j)

=

|X|−1∑
j=0

j + out(j) = pB +

|X|−1∑
j=0

j = pB +

(
|X|
2

)
.

Hence, d−(X) = d+(X) and since there can be at most
(|X|

2

)
arcs between

two x-vertices, it follows that there are at least d−(X) −
(|X|

2

)
= d+(X) −(|X|

2

)
= pB arcs from an x-vertex to an a-vertex and vice versa. Together with∑3p

i=1 ai = pB, it follows that each a-vertex is adjacent only to x-vertices. Thus,
in any realizing DAG the a-vertices form an independent set and the number
of arcs between the x-vertices is exactly

(|X|
2

)
. Hence, the x-vertices form a

transitive tournament.

Next we show that for a realizable degree sequence SA,B there exists a
realizable degree ordering in which the x-vertices are ordered correspondingly to
x0, x1, . . . , x2Bp+2B−1. To this end, we need some further notations: We use the
opposed order ≤opp for the tuples of a degree sequence as introduced by Berger
and Müller-Hannemann [2]:

Definition 3.3. For two tuples
(
a
b

)
and

(
a′

b′

)
it holds that

(
a
b

)
≤opp

(
a′

b′

)
⇐⇒

a ≤ a′ ∧ b ≥ b′.

Note that there might be tuples in a degree sequence that are not comparable
with respect to the opposed order (for example

(
1
1

)
and

(
2
2

)
). However, Berger

and Müller-Hannemann [2] proved that one can always reorder a realizable degree
ordering with respect to the opposed order.

Lemma 3.4. ([2, Corollary 3]) Let S be a realizable degree sequence. Then,
there exists a realizable degree ordering

(
a1

b1

)
, . . . ,

(
an
bn

)
of S such that for all

1 ≤ i, j ≤ n with
(
ai
bi

)
≤opp

(
aj
bj

)
and

(
ai
bi

)
6=
(
aj
bj

)
, it holds that i < j.

As a consequence of Lemma 3.4, if there are two tuples t1, t2 in a realizable
degree sequence SA,B such that t1 ≤opp t2 and t1 6= t2, then we can always
assume that there is a realizable degree ordering where the tuple t1 is ahead of t2.
Furthermore, observe that if t1 = t2 and there is a realizable degree ordering
where t1 is ahead of t2, then there is also a realizable degree ordering where t2 is
ahead of t1 (just exchange these two identical tuples). We use this fact to prove
the next lemma.

Lemma 3.5. If SA,B is realizable, then there exists a realizable degree ordering σ
of SA,B such that in σ tuple xi is ahead of xj for all 0 ≤ i < j < |X|.

Proof. To prove that such a realizable degree ordering σ exists, by Lemma 3.4 and
the above discussion, it is sufficient to show for all 0 ≤ i < j < |X| that xi ≤opp

7

xj . This can be verified easily as in(k), out(k) ∈ {0, 1} for all 0 ≤ k < |X|:

d−(xi)− d−(xj)
(1)
= i+ in(i)− j − in(j) ≤ i+ 1− j ≤ 0

d+(xi)− d+(xj)
(1)
= |X| − 1− i+ out(i)− (|X| − 1− j + out(j))

=j + out(i)− i− out(j) ≥ j − i− 1 ≥ 0.

With Lemmas 3.2 and 3.5 we can prove the next lemma, which completes
the proof of the correctness of our reduction.

Lemma 3.6. If SA,B is a yes-instance of DAG Realization, then (A, B) is a
yes-instance of 3-Partition.

Proof. Let DA,B be a realizing DAG of a degree sequence SA,B with a topo-
logical ordering φ. Let vj be the x-vertex realizing xj . Denoting for each
vertex w by posφ(w) the position of w in φ, by Lemma 3.5 we may assume that
that posφ(vj) < posφ(vk) for all 0 ≤ j < k < |X|. From Lemma 3.2 it follows
that the x-vertices induce a transitive tournament in DA,B. Hence, it follows
from the in- and outdegrees of the x-vertices (Equation (1)) that each x-vertex
in V (Xr

i), 0 ≤ i < p, has exactly one outgoing arc to an a-vertex and each
x-vertex in V (X`

i), 0 < i ≤ p, has exactly one incoming arc from an a-vertex.
The fact that all B vertices from V (Xr

0) have one outgoing arc to an a-vertex,
all B vertices in V (X`

1) have one incoming arc from an a-vertex, and the a-
vertices form an independent set (Lemma 3.2), imply that between posφ(vB)

(first vertex from V (Xr
0)) and posφ(v2B+B−1) (last vertex from V (X`

1)) there are
a-vertices in φ whose total in- and out-degree sum up to B. (From the definition
of 3-Partition, it follows that this must be exactly three a-vertices.) As these
three a-vertices have all their outneighbors in X`

1, by the same argumentation it
follows that for each pair V (Xi) and V (Xi+1), 0 ≤ i < p, between the first vertex
from V (Xr

i) and the last vertex from V (X`
i+1) there must three a-vertices whose

total in- and outdegree sum up to B. Thus, they provide a p-partition of A into
triples each summing up to B and, thus, imply that (A, B) is a yes-instance of
3-Partition.

Our construction together with Lemma 3.1 and Lemma 3.6 yields the NP-
hardness of DAG Realization. Containment in NP follows from the fact that
it can be checked in polynomial time whether a degree ordering is realizable or
not [3]. Together, this implies the central theorem of this section.

Theorem 3.7. DAG Realization is NP-complete.

Theorem 3.7 proves that unless P = NP DAG Realization is not solvable
in polynomial time. This motivates a parameterized complexity analysis of the
problem meaning to perform a more fine-grained complexity analysis with respect
to various parameters [7, 19, 22]. Thereby, the general target is to identify certain
“quantities” or parameters whose restriction allows the problem to be solved
efficiently. In this respect, Berger and Müller-Hannemann [2] already identified
special cases of DAG Realization that can be solved in polynomial time;
for instance, this is the case when the degree sequence can be linearly ordered

8

with respect to the opposed order. Moreover, Berger and Müller-Hannemann [3]
showed that DAG Realization is polynomial-time solvable when the number m
of arcs is less than the number n of vertices. Since in our NP-hardness proof
construction, the resulting DAG Realization instance contains Θ(n2) arcs,
the natural question then is whether more general “sparse” instances allow for
polynomial-time algorithms. Unfortunately, the next theorem proves that, unless
P = NP, this is not the case. Furthermore, it shows that although the problem is
easy if m =

(
n
2

)
(the only realizing DAG is a transitive tournament), the problem

becomes hard if m is “almost”
(
n
2

)
.

Theorem 3.8. For every constant ` > 1, DAG Realization remains NP-
complete even if m < `n or if m >

(
n
2

)
· `−1.

Proof. We prove both results with simple padding arguments. To this end, let

` > 1 be some constant and let S =
{(

a1

b1

)
, . . . ,

(
an
bn

)}
be an arbitrary instance of

DAG Realization. We will modify S in order to obtain an instance with the
desired ratios between m and n. We denote the modified instance with S ′ which
is initialized as a copy of S.

First, we describe the modifications for the case m >
(
n
2

)
· `−1: We repeatedly

add universal sources one after the other to S ′, that is, we add a tuple
(

0
n′

)
to S ′ and increase the first component of the other tuples of S ′ by one, that is,
replace

(
a
b

)
∈ S ′ by

(
a+1
b

)
. Notice that once a universal source is added to S ′ all

former sources become non-sources; in particular, if a second universal source
is added, then the first added universal source is no longer a source. We keep

adding universal sources until m′ >
(
n′

2

)
· `−1. Observe that the condition is

fulfilled after adding polynomially many universal sources.
Observe, that adding a universal source to a DAG Realization instance

results in an equivalent instance: The vertex realizing the universal source has
to have outgoing arcs to each other vertex in any realizing DAG . Thus, for
every realizing DAG for the new instance the subgraph induced by all vertices
not realizing the universal sink forms a realizing DAG for the original instance.
Conversely, any realizing DAG for the old instance can be easily extended to
a realizing DAG for the new instance. Thus, the constructed instance S ′ is
a yes-instance if and only if S is a yes-instance. Hence, DAG Realization
remains NP-complete even if m >

(
n
2

)
· `−1.

Second, for the case m < `n we do the following: We add some number
of
(

0
0

)
-tuples to S ′ and then add one universal source turning the

(
0
0

)
-tuples

into
(

1
0

)
-sinks. By choosing the appropriate amount of

(
0
0

)
-tuples the modified

instance S ′ satisfies m′ < `n′. Furthermore, as adding a
(

0
0

)
-tuple results in an

equivalent instance, it follows that the constructed instance S ′ is a yes-instance if
and only if S is a yes-instance. Hence, DAG Realization remains NP-complete
even if m < `n.

Complementing Theorem 3.8, we show in Section 5 that DAG Realization
is fixed-parameter tractable with respect to each of the parameters m− n+ 1
and

(
n
2

)
−m. Besides the above mentioned parameters, the maximum degree ∆

is unbounded in our NP-hardness proof and is hence a good candidate for further
investigations. Indeed, we show in the next section that DAG Realization is
linear-time solvable for constant maximum degree.

9

p3 p7 p8

Figure 2: A realizing DAG for the degree sequence S = {
(

0
1

)
,
(

0
1

)
,
(

0
2

)
,
(

2
2

)
,
(

2
2

)
,(

1
2

)
,
(

2
3

)
,
(

3
2

)
,
(

2
1

)
,
(

3
2

)
,
(

1
0

)
,
(

2
0

)
}. The highlighted potentials are as follows: p3 =

(3, 1, 0), p7 = (4, 1, 1), and p8 = (3, 2, 0). Their values (number of arcs crossing
the line indicating the potential) are: ω(p3) = 4, ω(p7) = 6, and ω(p8) = 5.

4 Fixed-Parameter Tractability with Respect to
Maximum Degree ∆

Let ∆ := max{a1, b1, . . . , an, bn} denote the maximum degree in a degree se-
quence. In this section we show that DAG Realization is fixed-parameter
tractable with respect to the parameter ∆. To this end, we assume that ∆
is some fixed value and all degree sequences considered in this section have a
maximum degree of ∆.

A high-level description of our approach is as follows: First, we show that
we can reorder any realizable degree ordering for our given input instance S so
that it has a certain structure. Second, our algorithm branches into all possible
orderings of the tuples in S satisfying this structure and returns “yes” if in at
least one branch the considered ordering is indeed a realizable degree ordering,
otherwise it returns “no”. Herein, we will distinguish two cases for the sought
structures. In both cases, however, we use the same reordering operations and
their description makes up the major part of Section 4.1. To describe how we
reorder realizable degree orderings, we need the following central definition.

Definition 4.1. Let φ = v1, v2, . . . , vn be a topological ordering of a DAG D.
For all 0 ≤ i ≤ n, the potential at position i is a vector pφi ∈ N∆ where pφi [`]
for 1 ≤ ` ≤ ∆ is the number of vertices in the subsequence v1, . . . , vi that have
in D at least ` neighbors in the subsequence vi+1, . . . , vn. The value of the

potential pφi is ω(pφi) :=
∑∆
`=1 p

φ
i [`].

See Figure 2 for an example. If the DAG D and the topological ordering φ
are clear from the context, then we write pi instead of pφi . We denote with
0∆ the potential of value zero, for example, it holds that p0 = pn = 0∆. To
indicate the role of potentials in the reordering operation, consider a topological
ordering φ = v1, . . . , vn where at two positions 0 < i < j < n the potentials
are equal, that is pφi = pφj . We will show in Section 4.1 that we can cut out
the vertices vi+1, . . . , vj and rewire the arcs to obtain another DAG without
changing the degrees of the remaining vertices or their relative position in the
topological ordering.

In order to give some intuition about potentials, in the rest of this introductory
part of Section 4, we provide some general observations. First, observe that the

10

value of a potential ω(pi) is just the number of arcs with tail in {v1, . . . , vi} and
head in {vi+1, . . . , vn}; for example in Figure 2 four arcs “cross” the third position
and hence ω(p3) = 4. Since the number of arcs is determined by the degrees of
the vertices, the value of the potential at position i+1 can be determined from the
potential at position i and the degree of the vertex vi+1 at position i+1: As vi+1

“absorbs” d−(vi+1) arcs and “contributes” d+(vi+1) arcs to the following vertices,
the value of the potential at position i+1 is ω(pi+1) = ω(pi)−d−(vi+1)+d+(vi+1).
Generalizing this yields the following.

Observation 4.2. Let φ = v1, v2, . . . , vn be a topological ordering of a DAG D
and let 1 ≤ i < j ≤ n be two integers. Then it holds that ω(pj) = ω(pi) +∑j
`=i+1(d+(v`)− d−(v`)).

Second, we remark that a potential stores more information than just the
number of arcs “crossing” some position: The potential pi stores all informa-
tion about how many vertices from {v1, . . . , vi} have how many outgoing arcs
to {vi+1, . . . , vn}: In particular, for each 1 ≤ j < ∆ there are pi[j] − pi[j + 1]
vertices in {v1, . . . , vi} that have exactly j outneighbors in {vi+1, . . . , vn}. Thus,
for any potential pi ∈ N∆ at any position i ∈ N, it holds that pi[j] ≥ pi[j + 1]
for all 1 ≤ j < ∆.

Third, observe that each vector p ∈ N∆ satisfying the above requirement can
appear as potential in some DAG. More precisely the following holds.

Observation 4.3. Let p ∈ N∆ be a vector with pi[j] ≥ pi[j + 1] for all j ∈
{1, . . . ,∆}. Then there exists a DAG D with a topological ordering φ =

v1, v2, . . . , vn such that p = pφi for some i ∈ {1, . . . , n}.
Proof. Let p ∈ N∆ be a vector with pi[j] ≥ pi[j + 1] for all 1 ≤ j < ∆.

We construct a DAG D with a topological ordering φ such that p = pφp[1].

The DAG D contains p[1] sources and ω(p) sinks and no further vertices. In
particular, D contains p[∆] sources with outdegree ∆ and for each 1 ≤ j < ∆,
D contains p[j]− p[j + 1] sources with outdegree j. The ω(p) sinks in D have
all indegree one. Observe that the sum of the outdegrees is ω(p), that is, equal
to the sum of the indegrees. We complete D by making each source adjacent
with the appropriate number of sinks. Since D contains only sinks and sources,
D is acyclic. Moreover, observe that in a topological ordering of D where all
sources precede the sinks, the potential at position p[1] (after the last source) is
equal to p.

Algorithm Outline Our algorithm consists of two parts. First, as described
in Section 4.2, the algorithm checks whether the DAG Realization instance
admits a “high-potential” realization where at some position the value of the
potential is at least ∆2. If no high-potential realization is found, then, by
exploiting the fact that the value of all potentials is upper-bounded, the algorithm
checks whether a “low-potential” realization exists; see Section 4.3 for the
description.

4.1 General Terms and Observations

In this section we provide some general notations, observations, and lemmas
leading to the reordering operation we use in the algorithms to find high-potential
as well as low-potential realizations.

11

Notation For a topological ordering φ = v1, . . . , vn and two indices 1 ≤ i ≤
j ≤ n we set φ[i, j] := vi, vi+1, . . . , vj . The vertex set {vi, . . . , vj} is denoted
by φ{i, j}. Analogously, for an ordered degree sequence σ =

(
a1

b1

)
, . . . ,

(
an
bn

)
we set σ[i, j] :=

(
ai
bi

)
, . . . ,

(
aj
bj

)
and we denote the multiset

{(
ai
bi

)
, . . . ,

(
aj
bj

)}
by

σ{i, j}.

Definition 4.4. Two tuples
(
a
b

)
and

(
a′

b′

)
are of the same type if a = a′ and

b = b′. Furthermore,
(
a
b

)
is a good type tuple if a ≤ b and otherwise it is a bad

type tuple.

Note that there are at most (∆ + 1)2 different types.

Well-Connected DAGs Berger and Müller-Hannemann [3] showed that,
given an ordering of a degree sequence, one can check in polynomial time
whether this ordering is a realizable degree ordering. The proof is done by
well-connecting consecutive vertices in a topological ordering.

Definition 4.5. Let D be a DAG with a topological ordering φ[1, n]. The
remaining outdegree of vertex vi at position j, 1 ≤ i ≤ j < n, is the number of vi’s
neighbors in the subsequence φ[j + 1, n]. Furthermore, D is well-connected with
respect to φ if for all vertices vi ∈ φ{1, n} it holds that the d−(vi) inneighbors of
vi are among the vertices in φ[1, i− 1] that have the highest remaining outdegree
at position i− 1.

Observe that the potential pφi at position i stores all remaining outdegrees of
all vertices v1, . . . , vi at position i. In the following, we omit φ and just write that
D is well-connected when the corresponding topological ordering φ is clear from
the context or implicitly given by a realizable degree ordering corresponding to D.
Furthermore, during the construction of a DAG corresponding to a realizable
degree ordering we write that we well-connect the vertex vi as an abbreviation
for making d−(vi) vertices with the highest remaining outdegree at position i− 1
inneighbors of vi. Berger and Müller-Hannemann [3] showed how to construct a
well-connected DAG realizing a given realizable degree ordering; see Berger [1]
for the complete proof of correctness.

Lemma 4.6. ([1, Theorem 4.1] and [3, Lemma 1]) Let σ be a realizable degree
ordering. Then, there exists a realizing well-connected DAG D that admits a
topological ordering φ corresponding to σ.

We use Lemma 4.6 in two (obvious) ways. First, it paves the way to a simple
algorithm checking whether a given ordering of a degree sequence S is indeed a
realizable degree ordering: The algorithm iteratively adds the vertices according
to given ordering and well-connects each added vertex.

Lemma 4.7. Given an ordered degree sequence σ, one can decide in O(∆n)
time whether σ is a realizable degree ordering.

Proof. As mentioned above, the algorithm constructs the DAG stepwise by
iterating over σ, adding a vertex v for the currently considered tuple, and well-
connecting v. We remark that Berger [1, Theorem 4.1] actually proved that all
possibilities of well-connecting v lead to a realizing DAG. Hence, if there are
multiple possibilities to well-connect v, then we can use an arbitrary one.

12

p4p4

Figure 3: Two non-isomorphic well-connected DAGs realizing the realizable
degree ordering

(
0
1

)
,
(

0
1

)
,
(

1
1

)
,
(

1
1

)
,
(

2
0

)
. Observe that for each position the two

potentials at this position are the same, for example, in both graphs the potential
at position four is p4 = (2, 0).

The algorithm uses ∆ lists, where the ith list stores all vertices having remain-
ing outdegree i at the currently considered position. By virtually concatenating
the ∆ lists in O(∆) time and then iterating over the first ∆ elements one can
determine in O(∆) time up to ∆ vertices with highest outdegrees. Hence, well-
connecting a vertex v can be done in O(∆) time and decreasing the remaining
outdegree of the d−(v) ≤ ∆ inneighbors of v by one can also be done in O(∆)
time. Furthermore, inserting v into these lists can be done in constant time.
Hence, with n elements in the given realizable degree ordering σ one can decide
in O(∆n) time whether σ is a realizable degree ordering.

Second, in the following it will be important that Lemma 4.6 allows us to
assume that, given a realizable degree ordering σ, the corresponding realizing
DAG is well-connected if not explicitly stated otherwise. Note that there might
be more than one well-connected DAG realizing σ as there might be multiple
vertices with the highest outdegree at some position, see Figure 3 for an example.
However, for each x ∈ N the number of vertices with remaining outdegree x at
position i is the same for all well-connected DAGs realizing σ. Hence, we arrive
at the following.

Lemma 4.8. Let φ[1, . . . , n] be a topological ordering of a well-connected DAG
and let pj be the potential at position j ∈ {0, . . . , n− 1}. Furthermore, let

(
a
b

)
be the in- and outdegree of the (j+ 1)th vertex in φ. Then, setting pj [∆ + 1] = 0,
for all ` ∈ {1, . . . ,∆} it holds that

∑̀
i=1

pj [i]− pj+1[i] = max{0, a− pj [`+ 1]} −min{i, b}. (2)

Proof. We first prove Lemma 4.8 in case of b = 0 and thus we prove that

∑̀
i=1

pj [i]− pj+1[i] = max{0, a− pj [`+ 1]}. (3)

Observe that this is sufficient as the last additive term in Equation (2) only
counts the contribution of the b outgoing arcs of the (j + 1)th vertex in φ to
pj+1.

Denoting the (j+1)th vertex in φ by v, we next analyze its effect of “absorbing”
a arcs from potential pj . Vertex v has a vertices with highest remaining outdegree

13

at position j as inneighbors because the underlying DAG is well-connected. Thus,
for ` = ∆ the difference on the left-hand side in Equation (3) is exactly a. By
definition, pj [` + 1] denotes the number of vertices that have at position j a
remaining outdegree of at least `+ 1. If a ≤ pj [`+ 1], then clearly the vertices
with remaining outdegree of at most ` at position j are not adjacent to v and,
therefore, the difference on the left-hand side is zero. Conversely, if a > pj [`+ 1],
then a−pj [`+ 1] of the vertices with remaining outdegree at most ` at position j
are adjacent to v. Thus, the difference on the left-hand side in Equation (3) is
in this case exactly a− pj [`+ 1].

Lemma 4.8 shows that in a topological ordering of a well-connected DAG, the
potential at position i+ 1 is uniquely determined by the potential at position i
and the in- and outdegree of the (i+ 1)th vertex. This allows us to define the
potential pσi of σ at position i independent from the DAG and its topological
ordering.

Definition 4.9. Let σ[1, n] be a realizable degree ordering. For all 0 ≤ i ≤ n,
the potential pσi of σ at position i is the potential at position i in a corresponding
topological ordering of a well-connected DAG realizing σ.

Reordering Realizable Degree Orderings Given a realizable degree order-
ing, cutting out subsequences and reinserting them appropriately is the main
operation that we perform to reorder the degree sequence such that we can
exploit the resulting regular structure in our algorithm. Basically, if a certain
potential p occurs twice in a realizable degree ordering, then removing the sub-
sequence between them results also in a realizable degree ordering. Furthermore,
this subsequence can be reinserted at any position where the potential p occurs.
In the following we give a formal description of this operation. To this end,
we link subsequences to the two potentials that appear at the cut-positions
in the realizable degree ordering as these potentials obviously do not depend
solely on the subsequences but on the whole realizable degree ordering. In
this way, the following definition formalizes the potentials that may fit to a
subsequence if the rest of the realizable degree ordering is chosen accordingly.
For notational convenience, we write σ1σ2 for the concatenation of two ordered
degree sequences σ1 and σ2.

Definition 4.10. An ordered degree sequence σ[1, n] is a partial realizable degree
ordering with input potential pσ0 and output potential pσn, if there are two ordered
degree sequences σ1[1, n1] and σ2 such that σ′ = σ1σσ2 is a realizable degree
sequence with potential pσ0 at position n1 and potential pσn at position n1 + n.
The potential of σ at position 0 ≤ i ≤ n is defined to be pσ

′

n1+i.

By Lemma 4.8 the potential of a partial realizable degree ordering with a
certain input and output potential is well-defined.

Observe that a partial realizable degree ordering with input and output
potential 0∆ is also a realizable degree ordering. Furthermore, for a realizable
degree ordering σ[1, n] it holds that σ[i, j], for all 1 ≤ i ≤ j ≤ n, is a partial
realizable degree ordering with input potential pσi−1 and output potential pσj .

In the remainder of this subsection we show that we can concatenate two
partial realizable degree orderings σ1 and σ2 to σ1σ2 when the output potential
of σ1 is “better” than the input potential of σ2. To formalize what it means to
be better we introduce a partial order for potentials.

14

Definition 4.11. For p, p′ ∈ N∆, p � p′ if ∀1 ≤ j ≤ ∆:
∑j
i=1 p[i] ≥

∑j
i=1 p

′[i].

Intuitively, a bad potential value represents “few” vertices with “high” out-
degree. These vertices can only be connected to many vertices with low indegree.
On the contrary, a good potential represents many vertices with low outdegree.
These vertices can be connected to many vertices with low indegree or to few
vertices with high indegree. So a good potential at some position indicates a
high freedom for connecting the following vertices. Indeed, a potential p that is
better than a potential p′ guarantees that all subsequent vertices that can be
connected with potential p′ can also be connected with potential p, as shown in
the next proposition.

Proposition 4.12. Let σ1[1, n1] be a partial realizable degree ordering with
input potential pσ1

0 and output potential pσ1
n1
∈ N∆ and let σ2[1, n2] be a partial

realizable degree ordering with input potential pσ2
0 and output potential pσ2

n2
such

that pσ1
n1
� pσ2

0 . Then, σ = σ1σ2 is a partial realizable degree ordering with input
potential pσ0 = pσ1

0 and output potential pσn1+n2
� pσ2

n2
such that pσi = pσ1

i for all
1 ≤ i ≤ n1 and pσi � pσ2

i−n1
for all n1 ≤ i ≤ n2 + n1. If additionally ω(pσ1

n1
) =

ω(pσ2
0) and pσ1

0 = pσ2
n2

= 0∆, then σ is also a realizable degree ordering.

The proof of Proposition 4.12 is based on the following lemma dealing with
the case n2 = 1.

Lemma 4.13. Let σ1[1, n1] be a partial realizable degree ordering with input
potential pσ1

0 and output potential pσ1
n1
∈ N∆ and let σ2 =

(
a
b

)
, a, b ∈ N,

be a partial realizable degree ordering with input potential pσ2
0 and output

potential pσ2
1 such that pσ1

n1
� pσ2

0 . Then, σ = σ1σ2 is a partial realizable
degree ordering with input potential pσ1

0 and output potential pσn1+1 � p
σ2
1 such

that pσi = pσ1
i for all 1 ≤ i ≤ n1.

Proof. Let σ̃1[1, ñ1] be a realizable degree ordering corresponding to σ1, that
is, there are integers 1 ≤ i ≤ j ≤ ñ1 such that σ1 = σ̃1[i, j], pσ1

0 = pσ̃1
i−1,

and pσ1
n1

= pσ̃1
j . Note that, by Definition 4.10, σ̃1, i, and j exist. Furthermore,

let σ̂ be a multiset containing ω(pσ1
n1

)−a+ b times the sink
(

1
0

)
. In order to prove

the lemma, we will show that σ̃ = σ̃1[1, j]σ2σ̂ is a realizable degree ordering such
that pσ̃i−1 = pσ1

0 and pσ̃j+1 � p
σ2
1 .

First, we show that σ̃ = σ̃1[1, j]σ2σ̂ is indeed a realizable degree ordering:
Let D be a well-connected realizing DAG for σ̃1[1, ñ1]. We next describe how to
transform D into a realizing DAG for σ̃. Remove all vertices in D that correspond
to tuples in σ̃[j + 1, ñ1]. Next, add to D the vertex v corresponding to σ2 =

(
a
b

)
and well-connect v. This is possible since a ≤ pσ2

0 [1] ≤ pσ1
n1

[1]. Finally, repeatedly

add sinks corresponding to the tuples in σ̂ that all are of type
(

1
0

)
. Note that,

since |σ̂| = ω(pσ1
n1

)−a+ b this leads to a well-connected DAG for σ̃. Furthermore,
since we did not change the arcs between the vertices corresponding to σ̃[1, j], it
follows that pσ̃t = pσ1

t−i+1 for all i − 1 ≤ t ≤ j. Hence, it remains to show that

pσ̃j+1 � p
σ2
1 .

We now complete the proof by showing that pσ̃j+1 � pσ2
1 . To this end, we

first assume that b = 0 and deal afterwards with the case b > 0. For every
` ∈ {1, . . . ,∆} by Equation (2) from Lemma 4.8 we have∑̀

i=1

pσ̃j+1[i]
(2)
=

(∑̀
i=1

pσ̃j [i]

)
−max{0, a− pσ̃j [`+ 1]}. (4)

15

If pσ̃j [`+ 1] ≥ a, then we obtain

∑̀
i=1

pσ̃j+1[i]
(4)
=
∑̀
i=1

pσ̃j [i] ≥
∑̀
i=1

pσ2
0 [i] ≥

∑̀
i=1

pσ2
1 [i], (5)

as by assumption we have pσ̃j � p
σ2
0 and pσ2

0 � p
σ2
1 since we have b = 0. In the

remaining case of pσ̃j [`+ 1] < a, we obtain

∑̀
i=1

pσ̃j+1[i]
(4)
=

(∑̀
i=1

pσ̃j [i]

)
− (a− pσ̃j [`+ 1]) =

(
`+1∑
i=1

pσ̃j [i]

)
− a ≥

(
`+1∑
i=1

pσ2
0 [i]

)
− a

=

(∑̀
i=1

pσ2
0 [i]

)
− (a− pσ2

0 [`+ 1]) ≥

(∑̀
i=1

pσ2
0 [i]

)
−max{0, a− pσ2

0 [`+ 1]}

(2)
=
∑̀
i=1

pσ2
1 [i]. (6)

Since Inequality (5) and Inequality (6) hold for every ` ∈ {1, . . . ,∆}, it follows
that pσ̃j+1 � p

σ2
1 .

It remains to consider the case b > 0. To this end, we denote by c ∈
N∆ the vector having ones in the first b entries and zeros in the remaining
entries. Intuitively, c is the “emission” the vertex v realizing

(
a
b

)
adds to both

potentials pσ̃j+1 and pσ2
1 . As this emission is the same for both potentials, we

can subtract c from pσ̃j+1 and from pσ2
1 to obtain the potentials only containing

the “absorption” of v. It is thus sufficient to show that pσ̃j+1 − c � p
σ2
1 − c. In

this way, the case b > 0 reduces to the case b = 0.

Now, we prove Proposition 4.12 by repeatedly invoking Lemma 4.13.

Proof. (of Proposition 4.12) We first prove, by induction on j, that for each 0 ≤
j ≤ n2 the sequence σ[1, n1 + j] = σ1[1, n1]σ2[1, j] (σ[1, n1 + j] = σ[1, n1]
for j = 0) is a partial realizable degree ordering with input potential pσ1

0 and
output potential pσn1+j � pσ2

j such that pσi = pσ1
i for all 1 ≤ i ≤ n1 and

pσi � p
σ2
i−n1

for all n1 ≤ i ≤ n2 + n1.
For the base case σ[1, n1 + 0] = σ[1, n1], the statement is fulfilled due

to the assumptions of the proposition. For the induction step, assume that
the statement is true for some j ∈ {0, . . . , n2 − 1}. Then, by Lemma 4.13,
σ[1, n1 + j + 1] = σ[1, n1 + j]σ2[j + 1, j + 1] is a partial realizable degree
ordering with input potential pσ0 and output potential pσn1+j+1 � p

σ2
j+1 such that

p
σ[1,n1+j+1]
i = p

σ[1,n1+j]
i for all 1 ≤ i ≤ n1 + j. Hence, by induction hypothesis,

it holds that p
σ[1,n1+j+1]
i = pσ1

i for all 1 ≤ i ≤ n1 and p
σ[1,n1+j+1]
i � pσ2

i−n1
for

all n1 ≤ i ≤ n1 + j + 1. This proves the first statement of the proposition.
For the second statement of the proposition observe that if ω(pσ1

n1
) = ω(pσ2

0),
then ω(pσn1+n2

) = ω(pσ2
n2

). Thus, if pσ1
0 = pσ2

n2
= 0∆, then σ is a partial realizable

degree ordering with input and output potential 0∆. Hence, σ is in this case a
realizable degree ordering.

Proposition 4.12 shows that we can “merge” two partial realizable degree
orderings σ1 and σ2 to σ1σ2, if for the output potential pσ1

n1
of σ1 and the input

16

potential pσ2
0 it holds that pσ1

n1
� pσ2

0 and ω(pσ1
n1

) = ω(pσ2
0). This provides the

basis for cutting out a subsequence in a realizable degree ordering and reinserting
it at another position. First, consider the cut out of subsequences.

Lemma 4.14. Let σ[1, n] be a realizable degree ordering. If there are two indices
1 ≤ i < j ≤ n such that pσi = pσj , then σ′ = σ[1, i]σ[j+ 1, n] is a realizable degree

ordering with pσ
′

i+` = pσj+` for all 0 ≤ ` ≤ n− j.

Proof. Let σ[1, n] be a realizable degree ordering and let 1 ≤ i < j ≤ n be two
indices such that pσi = pσj . First, by definition, σ[1, i] is a partial realizable

degree ordering with input potential 0∆ and output potential pσi . Furthermore,
σ[j + 1, n] is a partial realizable degree ordering with input potential pσj and

output potential 0∆. Hence, since ω(pσi) = ω(pσj) and pσi � pσj , it follows from
Proposition 4.12 that σ′ = σ[1, i]σ[j + 1, n] is a realizable degree ordering.

It remains to show that pσ
′

i+` = pσj+` for all 0 ≤ ` ≤ n − j. We show
this by induction on `. Since pσi = pσj , the statement is true for the base

case ` = 0. For ` ≥ 1, the induction hypothesis states that pσ
′

i+`−1 = pσj+`−1.

From Lemma 4.8 follows that pσ
′

i+` = pσj+`, which proves the induction step.

Lemma 4.14 shows that from a realizable degree ordering σ we can cut out a
subsequence σ[i+ 1, j] whenever pσi = pσj . The next observation shows that we
can reinsert this subsequence in the remaining realizable degree ordering σ′ at
any position ` with pσ

′

` = pσi = pσj .

Lemma 4.15. Let σ1[1, n1] be a realizable degree ordering. Furthermore,
let σ2[1, n2] be a partial realizable degree ordering with input and output po-
tential p. Then, for all indices 1 ≤ i ≤ n1 where pσ1

i = p, the ordering
σ = σ1[1, i]σ2[1, n2]σ[i+ 1, n1] is a realizable degree ordering with pσ1

j = pσj+n2

for all i < j ≤ n1.

Proof. Let σ1[1, n1] be a realizable degree ordering and let σ2[1, n2] be a partial
realizable degree ordering with input and output potential p ∈ N∆. Further-
more, let i be a position in σ1 such that pσ1

i = p. Then, by Proposition 4.12,
σ1[1, i]σ2[1, n2] is a partial realizable degree ordering with input potential 0∆ and
output potential p′ � p. Since the input and output potential of σ2 are equal, it
follows that ω(p′) = ω(pσ1

i) = ω(p). Hence, again applying Proposition 4.12, it
follows that σ = σ1[1, i]σ2[1, n2]σ1[i+ 1, n1] is a realizable degree ordering with
pσ1
j � pσj+n2

for all i < j ≤ n1.
As in the proof of Lemma 4.14, one can show by induction on j that pσ2

j = pσj+i
for all 0 ≤ j ≤ n2. Thus, pσi+n2

= p. Then, the statement pσ1
j = pσj+n2

for
all i < j ≤ n1 follows from a similar induction over j which invokes Lemma 4.8
in the induction step.

Given a realizable degree ordering σ where at the three positions i, j, k the
same potential occurs, we can now cut out (Lemma 4.14) the part between
positions i and j and then insert (Lemma 4.15) it at position k. The following
proposition formalizes this “reordering operation”.

Proposition 4.16. Let σ[1, n] be a realizable degree ordering and let 1 ≤ i <
j < k ≤ n be three positions with pi = pj = pk. Then σ[1, i]σ[j + 1, k]σ[i +
1, j]σ[k + 1, n] is a realizable degree ordering.

17

.

I G B E
pi

ω(pi) ≥ ∆2

pj

ω(pi) ≥ ∆2

Figure 4: A schematic illustration of a realizing high-potential DAG that corre-
sponds to the pattern I GB E. Thereby, I is a subsequence of length at most
∆2∆ such that the first high potential occurs at position i. Correspondingly, j is
the last position with high potential and E is a sequence of length at most ∆2∆.
The sequence G (resp. B) consists of only good (bad) type vertices but is of
arbitrary length. All high-potential realizations can be reordered to fit into this
pattern.

4.2 High-Potential Sequences

In this subsection we show that if a realizable degree sequence admits a realizable
degree ordering where at some position the value of the potential is at least ∆2,
a so-called high-potential realizable degree ordering, then there is also a realizable
degree ordering σ that is of the following “pattern” (see Figure 4 for an illustra-
tion): The ordering σ can be partitioned into four subsequences I,G,B,E. It
starts with sequence I “establishing” a potential of value at least ∆2, a so-called
high potential. Correspondingly, at the end there is a sequence E that reduces
the value of the potential from a value that is at least ∆2 to zero. Furthermore,
I and E are of length at most ∆2∆. The subsequence G, which is of arbitrary
length, only consists of good type tuples (indegree at most outdegree) in arbitrary
order and, correspondingly, B is of arbitrary length but only consists of bad
type tuples (indegree larger than outdegree) in arbitrary order.

This characterization allows us to check whether there is a high-potential
realizable degree ordering as follows: First, branch into all possibilities to choose I
and E. Second, insert in each branch the remaining vertices sorted by good and
bad types between I and E and, third, check whether this ordering is a realizable

degree ordering. There are at most ((∆ + 1)2)2∆2∆

) = ∆∆O(∆)

possibilities
for choosing I and E. Furthermore, the insertion and checking can be done
in polynomial time, see Lemma 4.7. Hence, this branching algorithm yields
fixed-parameter tractability with respect to ∆ for the high-potential case.

Our strategy to prove that there is indeed a high-potential realizable degree
ordering with the pattern I GB E is as follows. Let σ[1, n] be an arbitrary
high-potential realizable degree ordering and let 1 ≤ i ≤ n be the first position
with a high potential and, symmetrically, let j be the last position with a high
potential. In the first part of this subsection (see Proposition 4.21), we show that
σ can be restructured such that i ≤ ∆2∆ and j ≥ n−∆2∆. To prove this the
main argument is that if i > ∆2∆, then, since there are at most ∆2∆ different
potentials with value less than ∆2, there have to be two positions 1 ≤ `1 < `2 < i

18

with p`1 = p`2 . Then, by Lemma 4.14, we can cut out σ[`1 + 1, `2] from σ and we
will show (see Lemma 4.20) that we can reinsert it right behind i, resulting in a
realizable degree ordering σ[1, `1]σ[`2 + 1, i]σ[`1 + 1, `2]σ[i+ 1, n]. By iteratively
applying this operation, we end up with a realizable degree ordering where the
first position with high potential is at most ∆2∆. A symmetric argument holds
for the last position j with high potential.

In the second part we show that we can arbitrarily sort the vertices in σ[i+1, j]
under the constraint that at first vertices of good type occur in any order, and
then they are followed by the bad type vertices (see Proposition 4.22). The
basic idea herein is that if the value of a potential at some position ` is at least
∆2, then there are at least ∆ vertices with remaining outdegree at least one
at position `. Hence, one can always connect the next vertex to the preceding
vertices. Here, the sorting such that in σ[i + 1, j] first the good type vertices
occur ensures that at each position ` ∈ {i+1, . . . , j−1} the value of the potential
is at least ∆2.

Bounding the Length of I and E With the next lemmas and observations
we show that the subsequences I and E of the above pattern can be assumed to be
of length at most ∆2∆. As already mentioned above, if i > ∆2∆, then there have
to be two positions 1 ≤ `1 < `2 < i such that pσ`1 = pσ`2 . Hence, by Lemma 4.14,

σ′ = σ[1, `1]σ[`2 + 1, n] is a realizable degree ordering with pσ
′

`1+` � pσ`2+` for all
1 ≤ ` ≤ n− `2. Next, we show that σ[`1 + 1, `2] can be reinserted behind σ[i, i],
meaning that σ[1, `1]σ[`2 +1, i]σ[`1 +1, `2]σ[i+1, n] is a realizable degree ordering
with a high potential at position i− (`2− `1 + 1). However, observe that to prove
this, Lemma 4.15 cannot be used since ω(pσ

′

i−(`2−`1+1)) ≥ ∆2 > ω(pσ`1). Thus,
in the following we prove that we can reinsert the cut out subsequence in the
high-potential part (Lemma 4.20). Before that, we formalize the observation that
among potentials with the same value there is one that is minimum concerning
the ordering introduced in Definition 4.11.

Lemma 4.17. For a fixed positive integer x let p(x) ∈ N∆ be the potential
with

p(x)[j] :=

{⌈
x
∆

⌉
, if j ≤ x modulo ∆⌊

x
∆

⌋
, otherwise

for all 1 ≤ j ≤ ∆. Then, for all potentials p′ ∈ N∆ with x = ω(p′) = ω(p(x)) it
holds that p′ � p(x).

Proof. Let p(x) ∈ N∆ be the potential as defined in Lemma 4.17 and let p′ ∈ N∆

be a potential with ω(p′) = ω(p(x)). Clearly, by definition it holds that ω(p(x)) =
x. Towards a contradiction assume that p′ � p(x) does not hold. Then, there is

a position 1 ≤ j ≤ ∆ with
∑j
`=1 p(x)[`] >

∑j
`=1 p

′[`]. From this it follows that
there is a position 1 ≤ t ≤ j such that p(x)[t] > p′[t] and since p(x)[t] ≤ dx/∆e it
follows that p′[t] ≤ bx/∆c. Recall that for any potential p it holds that p[`1] ≥ p[`2]
for all 1 ≤ `1 ≤ `2 ≤ ∆ (see remark after Definition 4.1). Thus, from p′[t] ≤ bx/∆c
it follows that

∑∆
`=j+1 p

′[`] ≤ (∆ − j)bx/∆c ≤
∑∆
`=j+1 p(x)[`]. Together with∑j

`=1 p(x)[`] >
∑j
`=1 p

′[`] this yields a contradiction to ω(p(x)) = ω(p′).

The reason for considering the “worst” potential p(x) is demonstrated in
the next lemma. It shows that, if the input potential of any partial realizable

19

degree ordering has value x ≥ ∆2, then even the “worst” potential of value x,
namely p(x) as defined in Lemma 4.17, suffices as input potential.

Lemma 4.18. Let σ be a partial realizable degree ordering with input poten-
tial pσ0 , x = ω(pσ0) ≥ ∆2, and output potential 0∆. Then, σ is a partial realizable
degree ordering with input potential p(x) and output potential 0∆.

Proof. Let σ[1, n] be a partial realizable degree ordering with input potential pσ0 ,
x = ω(pσ0) ≥ ∆2, and output potential 0∆. We first show that we may assume
without loss of generality that σ consists only of sink-tuples, meaning that all
tuples have outdegree zero: By Definition 4.10, there is a degree ordering σ̃ such
that σ̃σ is a realizable degree ordering with potential pσ0 at position |σ̃|. Let D
be a fixed realizing DAG corresponding to σ̃σ. Then delete from D each arc
between two vertices corresponding to tuples from σ. We denote by S(σ) be
the degree ordering that is obtained from σ where for each deleted arc the in-
and outdegree of the corresponding tuples is decreased by one. Clearly, in any
topological ordering for D that corresponds to σ̃σ, the potential at position |σ̃|
does not change by removing the arcs between vertices corresponding to the
tuples in σ. In the reverse direction, having shown the correctness of Lemma 4.18
for S(σ), “reinserting” these arcs does not change the input potential of S(σ).
Hence, in the following we may assume that σ only consists of sink-tuples.

Setting p(x)[∆ + 1] = 0, let σ′ be the ordered degree sequence consisting
of p(x)[`] − p(x)[` + 1] many (source-)tuples

(
0
`

)
, for all 1 ≤ ` ≤ ∆, that are

arbitrarily ordered. Observe that σ′ is a partial realizable degree ordering with
input potential 0∆ and output potential p(x). To prove Theorem 4.18 we show
that σ′σ is a realizable degree ordering. To this end, by induction on i we show
for all 0 ≤ i ≤ |σ|

(i) that σ′σ[1, i] (σ′ for i = 0) is a partial realizable degree ordering with input
potential 0∆ and output potential pi such that ω(pi) = ω(pσi), and

(ii) that the potential is used in a “balanced way”, that is, the following holds:

∀` ∈ {1, . . . ,∆− 1} : pi[`] < p(x)[`]⇒ pi[`+ 1] = 0. (7)

The induction base i = 0 follows from the assumption that ω(pσ0) = x and that
the output potential of σ′ is p(x).

For the induction step, assume that σ′σ[1, i] is a partial realizable degree
ordering with input potential 0∆ and output potential pi with ω(pi) = ω(pσi).
Furthermore, assume that pi satisfies Property (7). Observe that Property (7)
implies Part (i), that is, σ′σ[1, i+ 1] is partial realizable degree ordering with
input potential 0∆ and output potential pi+1 such that ω(pi+1) = ω(pσi+1): By
Lemma 4.13, it suffices to argue that pi[1] ≥ ai+1, for σ[i + 1, i + 1] =

(
ai+1

0

)
.

Since p(x)[1] ≥ ∆ ≥ ai+1, we only need to consider the case where pi[1] < p(x)[1].
In this case, from Property (7) it follows that pi[2] = 0 and thus ω(pi) = pi[1].
Since ω(pi) = ω(pσi), this implies that pi[1] ≥ pσi [1] and thus pi[1] ≥ pσi [1] ≥ ai+1,
implying the claim for σ′σ[1, i+ 1].

It remains to prove the correctness of Property (7) for i+ 1. The intuition
behind the proof is as follows: Recall that by Definitions 4.9 and 4.10 potentials
in a partial realizable degree ordering are defined to correspond to the potentials
in a well-connected DAG. Furthermore, we assumed that we start with a high

20

potential with value at least ∆2. Hence, in each step there will be enough vertices
with high remaining outdegree such that no vertex with low remaining outdegree
is used when well-connecting some vertex v. Next, we formalize this.

Similar to the base case, let
(
ai+1

0

)
= σ[i+1, i+1]. Thus, for all ` ∈ {1, . . . ,∆},

Equation (2) (see Lemma 4.8) implies that∑̀
j=1

pi[j]

−max{0, ai+1 − pi[`+ 1]} =
∑̀
j=1

pi+1[j]. (8)

For all indices 1 ≤ ` < ∆ with pi[` + 1] = p(x)[` + 1], Equation (8) and
p(x)[`+ 1] ≥ ∆ ≥ ai+1 immediately imply Property (7). It remains to consider
an index 1 ≤ ` < ∆ with pi[` + 1] < p(x)[` + 1]. By induction hypothesis, it
follows that pi[`+ 2] = 0 (potentially, `+ 2 = ∆ + 1). If pi[`+ 1] ≥ ai+1, then
Equation (8) implies that pi+1[`] = pi[`]. Otherwise, in case pi[` + 1] < ai+1,
Equation (8) implies pi+1[`+ 1] = 0 (since pi[`+ 2] = 0)). This completes the
proof of Part (ii).

Combining Proposition 4.12 with Lemmas 4.17 and 4.18 yields the following.

Corollary 4.19. Let σ1[1, n1] be a partial realizable degree ordering with
input potential 0∆ and output potential pσ1

n1
. Furthermore, let σ2 be a partial

realizable degree ordering with input potential pσ2
0 and output potential 0∆ such

that ω(pσ1
n1

) = ω(pσ2
0) ≥ ∆2. Then, σ = σ1σ2 is a realizable degree ordering.

Lemma 4.14 shows that we can cut out a partial realizable degree ordering
with equal input and output potential. Based on Corollary 4.19, the following
lemma shows that we can reinsert it right behind a high potential in any realizable
degree ordering.

Lemma 4.20. Let σ1[1, n1] be a realizable degree ordering and let σ2[1, n2] be
a partial realizable degree ordering with input and output potential p. Then,
for any position 1 ≤ i ≤ n1 with ω(pσ1

i) ≥ max{∆2, ω(p)} it holds that σ =
σ1[1, i]σ2[1, n2]σ[i+ 1, n1] is a realizable degree ordering.

Proof. Let σ1[1, n1] be a realizable degree ordering and let σ2[1, n2] be a partial
realizable degree ordering with input and output potential p. Furthermore, let
1 ≤ i ≤ n1 be a position with ω(pσ1

i) ≥ max{∆2, ω(p)}. We prove that σ =
σ1[1, i]σ2[1, n2]σ1[i+ 1, n1] is a realizable degree ordering. To this end, we show
that σ1[1, i]σ2[1, n2] is a partial realizable degree ordering with input potential
0∆ and output potential p′ where ω(p′) = ω(pσ1

i). Then, from Corollary 4.19 it
follows that σ is a realizable degree ordering.

By Definition 4.10 there exists a realizable degree ordering σ̃2[1, ñ2] such
that σ2 = σ̃2[`, j] for some 1 ≤ ` < j ≤ ñ2 and p = pσ̃2

`−1 = pσ̃2
j . Now, in case of

ω(pσ1
i) > ω(p) we add ω(pσ1

i)−ω(p) tuples of type
(

1
0

)
at the beginning of σ̃2 and

the same number of tuples of type
(

0
1

)
at the end of σ̃2. This shows that σ2 is a

partial realizable degree ordering with input potential p′ and output potential p′

with ω(p′) = ω(pσ1
i) ≥ ∆2. Hence, by Corollary 4.19, σ2[1, n2]σ̃2[j + 1, ñ2] is a

partial realizable degree ordering with input potential p′ and output potential 0∆.
From this together with Corollary 4.19 it follows that σ1[1, i]σ2[1, n2]σ̃2[j +

1, ñ2] is a realizable degree ordering. Since, by our assumption σ2 is a partial
realizable degree ordering with input and output potential p′, it follows that

21

∑
v∈σ2

d−(v) =
∑
v∈σ2

d+(v). Hence, from Observation 4.2 and the fact that
the potential at position i in σ1[1, i]σ2[1, n2]σ̃2[j + 1, ñ2] is pσ1

i , it follows that
σ1[1, i]σ2[1, n2] is a partial realizable degree ordering with input potential 0∆

and output potential p′′ with ω(p′′) = ω(pσ1
i) ≥ ∆2. Thus, by Corollary 4.19 it

follows that σ is a realizable degree ordering.

With Lemma 4.20 we are able to bound the length of the parts I and E, that
is, the first position of a high potential is “near” the start and the last position
of a high potential is “near” the end.

Proposition 4.21. If a DAG Realization instance consisting of n tuples
admits a high-potential realization, then there is also a corresponding high-
potential realizable degree ordering such that the first position with high potential
is at most ∆2∆ and the last position with high potential is at least n−∆2∆.

Proof. Let σ[1, n] be a high-potential realizable degree ordering and let 1 ≤ i ≤ n
be the first position where ω(pi) ≥ ∆2. Consider the case where i > ∆2∆. Thus,
for all 1 ≤ ` < i it holds that ω(p`) < ∆2. There are ∆2∆ integer ∆-tuples with
elements between 0 and ∆2−1 and not every ∆-tuple is a potential. Hence, there
are less than ∆2∆ potentials with value less than ∆2. Thus, there are two indices
1 ≤ `1 < `2 < i with p`1 = p`2 . By Lemma 4.14, the ordering σ[1, `1]σ[`2 + 1, n]
is a realizable degree ordering where the value of the potential at position
i− (`2 − `1) is ω(pi). Moreover, by definition σ[`1 + 1, `2] is a partial realizable
degree ordering with input and output potential p`1 where ω(p`1) < ∆2 ≤ ω(pi).
Thus, by Lemma 4.20, it holds that σ[1, `1]σ[`2 + 1, i]σ[`1 + 1, `2]σ[i + 1, n] is
a realizable degree ordering. Moreover, since

∑
v∈σ{`1+1,`2} d

−(v)− d+(v) = 0
it follows from Observation 4.2 that in this realizable degree ordering the first
position with high potential is i − (`2 − `1). Applying the same operation
iteratively as long as there are two positions with equal potential before the first
high potential results in a realizable degree ordering where the first position with
high potential is at most ∆2∆.

Basically, the same argumentation can be applied for the last position j
where a high potential occurs. In case of j < n −∆2∆, there have to be two
indices j < `1 < `2 ≤ n where p`1 = p`2 . Then, by Lemma 4.14 the ordering
σ[1, `1]σ[`2 + 1, n] is a realizable degree ordering and σ[`1 + 1, `2] is a partial
realizable degree ordering with input and output potential p`1 with ω(`1) < ω(pj).
Thus, by Lemma 4.20 the ordering σ[1, j]σ[`1 + 1, `2]σ[j + 1, `1]σ[`2 + 1, n] is
a realizable degree ordering. Since

∑
v∈σ{`1+1,`2} d

−(v)− d+(v) = 0 it follows

from Observation 4.2 that the last position with high potential is j + (`2 − `1).
Again, by applying this operation iteratively we get an ordering where the last
position with high potential is at least n−∆2∆.

Sorting the Remaining Vertices Having shown that we can assume that
for the first position i and the last position j with high potential it holds that
i ≤ ∆2∆ and j ≥ n−∆2∆, we next prove that one can sort all vertices between i
and j arbitrarily by good (indegree at most outdegree) and bad (indegree larger
than outdegree) types.

Proposition 4.22. Let σ[1, n] be a high-potential realizable degree ordering
and let 1 ≤ i < j ≤ n be two arbitrary positions such that ω(pi) ≥ ∆2

and ω(pj) ≥ ∆2. Furthermore, let σ′[i + 1, j] be a permutation of the tuples

22

in σ[i+ 1, j] such that there is a position 0 ≤ ` ≤ j − i with the property that
the first ` tuples in σ′[i+ 1, j] are of good type and all subsequent tuples are of
bad type. Then, the ordering σ[1, i]σ′[i+ 1, j]σ[j + 1, n] is a realizable degree
ordering.

Proof. Assume that there is a high-potential realizable degree ordering with
two indices 1 ≤ i ≤ j ≤ n such that ω(pi) ≥ ∆2 and ω(pj) ≥ ∆2. We
prove that σ[1, i]σ′[i + 1, j]σ[j + 1, n] is a realizable degree ordering for any
reordering σ′[i+ 1, j] of σ[i+ 1, j] where the first ` tuples are of good types and
the remaining ones of bad types.

To this end, by induction on h with 0 ≤ h ≤ j − i we show that the sequence
σ[1, i]σ′[i+ 1, i+ h] (the sequence σ[1, i] if h = 0) is a partial realizable degree
ordering with input potential 0∆ and output potential ph with ω(ph) ≥ ∆2.
The base case h = 0 is given by the assumptions of the lemma. By induction
hypothesis the output potential ph−1 of σ[1, i]σ′[i+1, i+h−1] is a high potential
and hence ph−1[1] ≥ ∆. Thus, by Lemma 4.13 σ[1, i]σ′[i+ 1, i+ h] is a partial
realizable degree ordering. It remains to show that the value of the output
potential ph of σ[1, i]σ′[i + 1, i + h] is at least ∆2. Towards a contradiction
suppose that it is not. This implies∑

(a
b)∈σ′{i+1,i+h}

a− b > ω(pi)−∆2. (9)

Clearly, σ′[i+ h, i+ h] has to be a bad type, otherwise Inequality (9) cannot
be true. However, it holds that

ω(pi)−
∑

(a
b)∈σ{i+1,j}

a− b = ω(pj) ≥ ∆2

and thus ∑
(a
b)∈σ{i+1,j}

a− b ≤ ω(pi)−∆2. (10)

Since σ′[i + 1, j] is sorted by good and bad types and σ′[i + h, i + h] is of
bad type, all tuples in σ′[i + h, j] are bad type tuples with a − b < 0. Thus,
Inequality (10) yields a contradiction to Inequality (9). Hence, σ[1, i]σ′[i+ 1, j]
is a partial realizable degree ordering with input potential 0∆ and output
potential pj−i with ω(pj−i) ≥ ∆2. This completes the proof of the induction.

By Observation 4.2, it holds that ω(pj−i) = ω(pσj). Thus, by Corollary 4.19,
σ[1, i]σ′[i+ 1, j]σ[j + 1, n] is indeed a realizable degree ordering.

Propositions 4.21 and 4.22 lead to the central result of this subsection:

Theorem 4.23. If a DAG Realization instance admits a high-potential

realizable degree ordering, then it can be solved in ∆∆O(∆) · n time.

Proof. If an instance of DAG Realization admits a high-potential realizable
degree ordering, then by Proposition 4.21 there is also a high-potential realizable
degree ordering in which the occurrence of the first high potential is at most
at position i with i ≤ ∆2∆ and the last occurrence of a high potential is at

23

p p p p p p

· · ·

Figure 5: Realization for the degree se-
quence

(
0
2

)
,
(

0
4

)
,
(

2
1

)
,
(

3
4

)
,
(

2
1

)
,
(

3
4

)
, . . . ,

(
2
1

)
,
(

3
4

)
,
(

2
1

)
,
(

3
4

)
,
(

2
0

)
,
(

2
0

)
,
(

1
0

)
,
(

1
0

)
. Since

this sequence basically consists of only two different types (not regarding types
with indegree or outdegree equal to zero), it is easy to check that the pictured
low-potential realization (the highest occurring value of a potential is ω(p) = 6)
is the only one. The displayed potentials are all identical and they furthermore
indicate the repetitions of the neutral block

(
2
1

)
,
(

3
4

)
.

least at position j with j ≥ n −∆2∆. Recall that there are at most (∆ + 1)2

types of tuples in the given degree sequence, and thus the subsequences σ[1, i]
and σ[j, n] of a realizable degree ordering σ[1, n] can be found by exhaustive

search in ∆∆O(∆)

time. Proposition 4.22 shows that the remaining tuples can be
arbitrarily inserted between them, as long as they are sorted by good and bad
types. This can be done in O(n) time. Finally, we check whether the produced
ordering is indeed a realizable degree ordering, which can be done by Lemma 4.7

in O(∆2n) time. Altogether, we arrive at a running time of ∆∆O(∆) · n.

4.3 Low-Potential Sequences

In this section, we will provide an algorithm that finds a low-potential realization
(if one exists) for a DAG Realization instance, that is, a realization such that
the value of all potentials is strictly less than ∆2. See Figure 5 for an example
of such a realization.

As in the high-potential case, the main idea is to restrict the length of the
parts in a realizable degree ordering that have to be guessed by brute force. To
this end, fix a realizable degree ordering σsol that our algorithm is supposed
to find. In the low-potential case, we can exploit that there are at most ∆2∆

potentials with value less than ∆2 and, thus, if the length of a realizable degree
ordering is greater than ∆2∆, then there are two positions with equal potential.
By Lemma 4.14, we can remove in σsol the part between two positions with
the same potential and obtain another realizable degree ordering. We call
such parts with equal potential at the beginning and end neutral blocks. By
repeatedly cutting out neutral blocks in σsol, we end up with a realizable degree
ordering σshort of length at most ∆2∆. In the first step, our algorithm branches
into all possibilities to choose σshort. Since σshort does not contain all tuples of
the input sequence, the next step of the algorithm is to try to extend σshort.
Here, Lemma 4.15 allows us to reinsert a neutral block we cut out; we only
need to find a position in σshort with the correct potential. Thus, the remaining

24

problem is “just” to find a combination of neutral blocks such that after inserting
them the resulting sequence contains the very same tuples as our input degree
sequence. This problem is solved in our algorithm by utilizing an ILP (integer
linear program) formulation. For this second step, we need two conditions to
hold: First, we need a bound on the number of different neutral blocks we can
possibly reinsert. Second, in order to insert the removed neutral blocks, the
requirement is that the corresponding potentials are contained in σshort. To
this end, we will remove in σsol only neutral blocks of length at most ∆2∆.
Furthermore, we restrict the removal of neutral blocks such that all potentials
that occur in σsol do also occur at least once in σshort. These two requirements
will increase the length bound for σshort, but we can provide a bound that only
depends on a function in ∆.

In the following we introduce some notation to formalize the above concepts.

Definition 4.24. A neutral block of potential p ∈ N∆ is a partial realizable
degree ordering σ[1, n] with input and output potential p. If n ≤ ∆2∆, then a
neutral block σ[1, n] is called short.

The set of potentials pot(σ′) is defined to contain all potentials of a realizable
degree ordering σ′ = σ′[1, n′], that is,

pot(σ′) := {p ∈ N∆ | ∃i ∈ {0, . . . , n′} : p = pσ
′

i }.

A realizable degree ordering σ′[1, n′] contains the neutral block σ of potential p
if there exist two integers 1 ≤ i ≤ j ≤ n′ such that σ′[i, j] = σ and pσ

′

i−1 = pσ
′

j = p.
If σ is short and pot(σ′) = pot(σ′[1, i]σ′[j + 1, n′]), then σ is called removable
from σ′.

We now prove the claim that deleting all removable neutral blocks in a
realizable degree ordering results in another realizable degree ordering of bounded
length. To this end, our two core tools are the repetition removals and the
reordering operation provided in Proposition 4.16.

Lemma 4.25. Let σ be a low-potential realizable degree ordering, that is,
ω(p) < ∆2 for all p ∈ pot(σ). Then there is a realizable degree ordering σ′ of
length at most ∆4∆ such that

(i) pot(σ) = pot(σ′) and

(ii) σ′ can be obtained by repeatedly deleting removable neutral blocks in σ.

Proof. Let σ′ be a shortest realizable degree ordering satisfying Properties (i)
and (ii). Such a realizable degree ordering has to exists as σ′ = σ satisfies these
properties. Assume towards a contradiction that σ′ has length more than ∆4∆.
Since there are less than ∆2∆ potentials of value less than ∆2, it follows that
there is a potential p ∈ pot(σ′) that occurs more than ∆2∆ times in σ′. These
occurrences of p define ∆2∆ (pairwise disjoint) neutral blocks of potential p
that are contained in σ′. Since there are less than ∆2∆ potentials of value less
than ∆2, it follows that σ′ contains a neutral block σ1 of potential p such that all
potentials occurring within σ1 also occur outside of it. Denote by σ2 a shortest
neutral block for some p′ ∈ pot(σ′) that is contained within σ1 (allowing σ1 = σ2).
By the minimality of the length of σ2, it follows that the potentials occurring
within σ2 are all different. Thus, σ2 is short, that is, has length at most ∆2∆. By

25

construction of σ2 it follows that all potentials within σ2 occur also outside σ2.
Thus, σ2 is removable from σ′. Deleting σ2 from σ′ yields by Lemma 4.14 a
shorter realizable degree ordering σ̃. Since σ2 is removable, it follows that σ̃
satisfy Properties (i) and (ii); a contradiction to the assumption that σ′ is the
shortest realizable degree ordering satisfying Properties (i) and (ii).

Lemma 4.25 shows that deleting all removable neutral blocks yields indeed a
short realizable degree ordering. Our algorithm branches into all possibilities to
choose the short realizable degree ordering σshort of length at most ∆4∆. This
gives at most (∆+1)2∆4∆

cases. For each produced ordered degree sequence σshort

the algorithm checks whether σshort is indeed a realizable degree ordering. By
Lemma 4.7, this can be done in O(∆n) time. In the cases that pass the test, the
algorithm computes the short neutral blocks that can be (re-)inserted. To this
end, we need some further notation. For a multiset S and an element e ∈ S, the
number of occurrences of e in S is denoted by o(e, S).

Definition 4.26. Let S be a DAG Realization-instance with maximum
degree ∆. A realizable degree ordering σ[1, n] is called short realizable degree
ordering for S if σ has length at most ∆4∆ and for all a, b ∈ {0, . . . ,∆} it holds
that

o(

(
a

b

)
, σ{1, n}) ≤ o(

(
a

b

)
,S).

Furthermore, B(∆, σshort) is the set that contains for each p ∈ pot(σshort) all
possible short neutral blocks of potential p containing only tuples with degree at
most ∆.

Given the realizable degree ordering σshort and ∆, the algorithm computes
B(∆, σshort) by trying for all possible (∆ + 1)2∆2∆

ordered degrees sequences of
length at most ∆2∆ whether they are indeed neutral blocks of some potential p ∈
pot(σshort). Checking whether a partial realizable degree ordering is a neutral
block of potential p is done as follows: Using the construction in the proof of
Observation 4.3, our algorithm constructs a realizable degree ordering with p[1]
sources and ω(p) sinks. The potential at position p[1] is p. Next, our algorithm
inserts the partial realizable degree ordering at position p[1] and constructs the
corresponding well-connected DAG. The length of the DAG is at most ∆2∆+2∆2,
because ω(p) < ∆2. Hence, by Lemma 4.7, the DAG can be constructed
in O(∆2∆+1) time. Then, the algorithm checks (in the well-connected DAG)
whether the potential at the end of the neutral block is p. Recall that by
Lemma 4.8 the potential at position p[1] + 1 depends only on p and the first
tuple in the neutral block, and not on the individual tuples before position p[1].
Thus, the above construction yields for every neutral block of potential p a
realizable realizable degree ordering. Overall, constructing B(∆, σshort) can be

done in O((∆ + 1)2∆2∆ ·∆2∆ ·∆2∆) = ∆∆O(∆)

time since there are at most ∆2∆

potentials of value less than ∆2.
Now, given the set B(∆, σshort) of neutral blocks, the algorithm determines

whether it is possible to insert these a certain number of times such that a
realizable degree ordering for S is obtained. To this end, we formalize the
problem and call it Exact Multiset Multicover.

26

Exact Multiset Multicover (EMM)
Input: A collection C = {S1, . . . , S`} of multisets over a universe U =

{e1, . . . , em} and a demand function dem: U → N.
Question: Is there an exact multicover, that is, a function c: C → N such

that for each element e ∈ U it holds that

∑̀
i=1

c(Si) · o(e, Si) = dem(e)?

Before providing an ILP-formulation for Exact Multiset Multicover,
we show that it indeed captures our remaining problem.

Lemma 4.27. Let S be a DAG Realization instance with maximum degree ∆
and let σshort be a short realizable degree ordering for S. Set U := {

(
a
b

)
| a, b ∈

{0, . . . ,∆}} and dem(t) := o(t,S) − o(t, σshort) for each tuple t ∈ U . Then,
σshort can be extended to a realizable degree ordering for S by inserting neutral
blocks of B(∆, σshort) if and only if the EMM instance (B(∆, σshort), U,dem) is
a yes-instance.

Proof. “⇒:” Let σ be the realizable degree ordering for S that is obtained by
inserting neutral blocks of B(∆, σshort) in σshort. For each neutral block σB ∈
B(∆, σshort), let #ins(σB) ∈ N denote the number how often the neutral block σB

is inserted in σshort. Hence, for each tuple t ∈ U we have∑
σB∈B(∆,σshort)

#ins(σB)o(t, σB) = o(t,S)− o(t, σshort) = dem(t).

Thus setting c(σB) = #ins(σB) for all σB ∈ B(∆, σshort) is an exact multicover.
“⇐:” Conversely, let c : B(∆, σshort)→ N denote an exact multicover, that

is, for every tuple t ∈ U we have∑
σB∈B(∆,σshort)

c(σB) · o(t, σB) = dem(t) = o(t,S)− o(t, σshort).

Observe that inserting a neutral block into σ, by Lemma 4.15, does not change
the potentials that occur after the insert position. Hence, we can insert any
subset of neutral blocks of B(∆, σshort) in σshort. Thus, if we insert each neutral
block σB ∈ B(∆, σshort) exactly c(σB) times in σshort, then we obtain a realizable
degree ordering for S.

Next, we show fixed-parameter tractability of EMM with respect to the
parameter |B(∆, σshort)| = `. Since the number ` of neutral blocks is bounded
by a function only depending on ∆, this completes our algorithm for the case
that an input of DAG Realization admits a low-potential realization.

Lemma 4.28. EMM is fixed-parameter tractable with respect to the parame-
ter |C| = `.

Proof. We show the fixed-parameter tractability result by giving an ILP-formulation
of the problem with ` variables. It has been shown that an ILP with p variables
can be solved in O(p2.5p+o(p) · L) time and space polynomial in L where L is

27

the input size [9, 16, 20]. To solve the EMM instance, we use the following
ILP-formulation:

∀1 ≤ i ≤ ` : xi ∈ N (11)

∀e ∈ U :
∑̀
i=1

xi · o(e, Si) = dem(e) (12)

Each of the ` integer variables x1, . . . , x` denotes how often the multiset Si ∈ C
is used in the solution. The function o(e, si) denotes the number of occurrences
of the tuple e the multiset Si. It follows from the definition of EMM that a
solution to the ILP directly corresponds to an exact multicover (c(Si) = xi) for
the EMM instance.

The ILP consists of `+ |U | equations that contain together O(` · |U |) integers,
each upper-bounded by maxe∈U,Si∈C{dem(e), o(e, Si)}. Hence, the ILP can be
solved in O(`2.5`+o(`) · ` · |U | · log(maxe∈U,Si∈C{dem(e), o(e, Si)})) time.

Combining Lemma 4.25 and Lemma 4.28 shows fixed-parameter tractability
for the low-potential case: The algorithm first tries all possibilities for the short
realizable degree ordering and in each branch it tries to solve the corresponding

EMM-instance. As to the running time observe that there are ∆∆O(∆)

possibilities
for the short realizable degree ordering σshort. Then the algorithm constructs

in ∆∆O(∆)

time B(∆, σshort). To check whether σshort is realizable requires O(∆n)

time (Lemma 4.7), the construction of the EMM instance O(∆∆O(∆) · log n) time,

and solving the ILP requires ∆∆∆O(∆)

· log n time. Since the algorithm has to
read the input of size O(n log ∆) we arrive at the following theorem.

Theorem 4.29. If a degree sequence admits a low-potential realization, then it

can be found in ∆∆∆O(∆)

· n time.

Theorems 4.23 and 4.29 together lead to the main result of this section.

Theorem 4.30. DAG Realization is fixed-parameter tractable with respect
to the parameter maximum degree ∆.

Note that Theorem 4.30 is a mere classification result: The corresponding

running time is ∆∆∆O(∆)

· n. It is dominated by the low-potential case.

5 Fixed-Parameter Tractability with Respect to
m − n + 1 and

(n
2

)
− m

In the end of Section 3 we showed that DAG Realization remains NP-hard
even on sparse and on dense instances. More specifically, for every constant ` > 1,
DAG Realization remains NP-hard when restricted to instances with m < `n
or m >

(
n
2

)
·`−1 (see Theorem 3.8). In contrast, in this section we prove that if we

measure the sparseness or denseness by the number of arcs that a realizing DAG
is away from a tree or a tournament instead of using a fraction of m and n, then
the problem becomes tractable. In particular, we show that DAG Realization
is fixed-parameter tractable with respect to each of the parameters

(
n
2

)
− m

and m− n+ 1. To this end, we first consider the (very) dense setting and then
the (very) sparse setting.

28

Dense Setting Our algorithm for the dense setting relies on two simple
observations: First, for each tuple

(
a
b

)
with degree a+ b = n− 1 the position in a

realizable degree ordering σ is precisely defined: The a inneighbors of the vertex v
realizing the tuple are ahead in the topological ordering φ corresponding to σ
and the b outneighbors of v are behind in φ. As |φ| = |σ| = n it follows that v is
the (a+ 1)th vertex in φ, that is,

(
a
b

)
occurs in any realizable degree ordering

at the (a+ 1)th positions. Second, any realizing DAG can be obtained from a
transitive tournament by exactly k :=

(
n
2

)
−m arc removals. Thus, all but 2k

vertices in the realizing DAG have a degree (indegree plus outdegree) of n− 1.
Putting this together, there are at most 2k positions “left” in a realizable degree
ordering. Hence, a simple search-tree algorithm tries all possibilities to insert
the tuples

(
a
b

)
with a+ b < n− 1 in these “free positions” and checks whether

the resulting ordering is indeed a realizable degree ordering. As there are (2k)!
possibilities to insert the tuples and, by Lemma 4.7, the checking can be done
in O(∆n) time, we arrive at the following.

Theorem 5.1. DAG Realization is fixed-parameter tractable with respect
to the parameter k :=

(
n
2

)
−m. The corresponding running time is O((2k)!∆n).

Sparse Setting The sparse setting requires more effort. Let k := m− n+ 1.
We develop a polynomial-time executable data reduction rule whose exhaustive
application to a degree sequence S results in an instance which is equivalent to S
and whose maximum degree is at most 2k. Then, the claimed fixed-parameter
tractability follows from Theorem 4.30.

We exploit the following observations: For an instance S with m ≤ n − 1,
Berger and Müller-Hannemann [3] have shown that DAG Realization is
polynomial-time solvable (recall that we assume

(
0
0

)
/∈ S). Moreover, they proved

that if m ≥ n− 1 and S is realizable, then there is a realizing DAG for S that
consists of only one connected component. (Recall that by “connectedness” in a
directed graph we always refer to the connectivity in the underlying undirected
graph.) Thus, if a degree sequence is realizable, then there is a connected realizing
DAG D such that the parameter k denotes the size of a feedback edge set of
the underlying undirected graph of D. A feedback edge set F of an undirected
graph G is a subset of the edges whose removal makes the graph acyclic, that is,
G can be seen as a tree with the additional edges in F . This implies that deleting
in D a vertex with in- or outdegree at least k+ 2 results in a disconnected DAG:
Deleting a vertex of degree k+ 2 in a tree results in k+ 2 connected components.
At most k+ 1 of these k+ 2 components can be pairwise connected by the edges
in the feedback edge set.

If there are two connected components in a realizing DAG D, then we can
restructure D by copying parts from one component into the other component
without creating cycles. This restructuring of a realizing DAG is our core tool
to develop the data reduction rule and is formally stated in the next lemma.
See Figure 6 for a schematic view on the requirements and the statement of the
lemma.

Lemma 5.2. Let D = (V,A) be a realizing DAG for a degree sequence S, and
let vp, vt ∈ V be two vertices with (vp, vt) ∈ A. Furthermore, let K be the
vertices of the connected component in D[V \ {vt}] containing the vertex vp and
let vs, u, w,w′ ∈ V \ {vt} be vertices such that:

29

K
vp vt

vs

u

w

w′

Figure 6: The situation when Lemma 5.2 is applicable: The underlying undirected
graph of the induced subgraph K is acyclic and there is only one arc connecting
a vertex inside K with a vertex outside K: the arc (vp, vt). The vertex vs is
inside of K with the outneighbor u lying on the uniquely defined undirected path
(indicated by the thin edge) between vs and vp (with the possibility that u = vp).
Furthermore (w,w′) is some arc with w and w′ lying outside of K (with w 6= vt

and w′ 6= vt). Then deleting the solid arcs in the picture and adding the dashed
arcs results again in a DAG where the degrees of the vertices remain unchanged.

(i) (vs, u), (w,w′) ∈ A,

(ii) vs, vp ∈ K, but w,w′ /∈ K,

(iii) the underlying undirected graph of D[K] is acyclic,

(iv) u lies on the uniquely defined undirected path between vp and vs or u = vp,
and

(v) vp is the only neighbor of vt in K.

Then, the digraphD′ = (V, (A\{(vs, u), (vp, vt), (w,w′)})∪{(vs, vt), (w, u), (vp, w′)})
is a realizing DAG for S. Furthermore, the underlying undirected graph of the
connected component in D′[V \ {vt}] which contains vs is acyclic and contains
no further neighbor of vt.

Proof. Let K ′ be the connected component in D′[V \ {vt}] which contains the
vertex vs and let K ′u be the underlying undirected graph of K ′. We first prove
that K ′u is acyclic. Observe that by Assumption (iii) the underlying undirected
graph Ku of K is acyclic. Hence, Ku is a tree. Next, root the tree Ku in the
vertex vp. Since by Assumption (iv) the vertex u lies on the (uniquely defined)
path between vs and vp, the graph K ′u accords in Ku to the subtree with root vs.
Hence, K ′u is acyclic and contains no further neighbor of vt.

Next, we prove that D′ is a realizing DAG for S. Clearly, the vertices vs, u,
vt, vp, w, and w′ have the same indegree and outdegree in D′ as in D. To show
that D′ does not contain any cycle, assume towards a contradiction that there is
a directed cycle C ′ in D′. Recall that K ′u is acyclic and, hence, also K ′ is acyclic.
From this and from Assumption (v) it follows that C ′ cannot contain any vertex
of K ′. Since D is acyclic, this implies that at least one of the arcs (w, u), (vp, w′)

is contained in C ′. Denote with K̃ the subgraph containing all vertices that are
in K but not in K ′, that is, the graph induced by the vertices that are cut-out

30

of K. By Assumption (iii) also K̃ is acyclic and, thus, by Assumption (ii) C ′

has to contain both arcs (w, u), (vp, w′). This implies that in D′ and so in D
there is a directed path from w′ to w, implying that, since (w,w′) ∈ A, there is
also a cycle in D, a contradiction.

Observe that the version of Lemma 5.2, where all arcs appear in the reversed
direction, is also true. To see this, first swap in every tuple

(
a
b

)
in S the values

of a and b and, correspondingly, swap in a realizing DAG the direction of each
arc. Then, apply Lemma 5.2 and finally swap again the values in the tuples and
the arcs in the restructured DAG.

Using the restructuring operation provided by Lemma 5.2 and its reversed-arc
version, we can show the following.

Lemma 5.3. Let S be a realizable degree sequence with k = m − n + 1 > 0
and let t =

(
a
b

)
∈ S be a tuple with a > 2k. Furthermore, let smin ∈ S be a

source with minimum outdegree. Then, there is a realizing DAG for S such
that the vertex that corresponds to t is an outneighbor of the vertex vsmin which
corresponds to smin. Furthermore, all other outneighbors of vsmin are degree-one
sinks.

Proof. Let S be a realizable degree sequence and let t =
(
a
b

)
∈ S be a tuple with

a > 2k. Furthermore, let D = (V,A) be a connected realizing DAG for S and
denote by vt the vertex that corresponds to t. We prove the statement of the
lemma in three steps. First, we show in Step 1 that we can assume that vt has
some source vs as inneighbor such that the underlying undirected graph of the
connected component Ks of D[V \ {vt}] containing vs is acyclic, vs is the only
vertex in Ks that is adjacent to vt, and vs is a minimum-outdegree source in Ks.
In Step 2, we prove that we can replace this source by vsmin such that the connected
component of the underlying undirected graph of D[V \ {vt}] containing vsmin is
acyclic and vsmin is the only vertex in this connected component that is adjacent
to vt. Finally, in Step 3 we show that we can replace all outneighbors of vsmin

except vt by degree-one sinks. The reason for these restrictive requirements for
the outcome in Steps 1 and 2 is that we apply Lemma 5.2 in Steps 2 and 3.

Step 1: Assume that vt has no source as inneighbor satisfying the outcome
we want after Step 1; otherwise go to Step 2. As k is the size of a feedback
edge set in the underlying undirected graph of D and a > 2k, there are at
least k + 1 connected components in D[V \ {vt}] and at most k of them can
contain a cycle or more than one neighbor of vt. Thus, there is at least one
connected component K in D[V \ {vt}] that contains only one neighbor (an
inneighbor), say vp, of vt and does not contain any cycle in the underlying
undirected graph of D[V \ {vt}]. Let vs be a source in K that has a minimum
outdegree (within K). The underlying undirected graph of K is a tree and,
hence, contains a unique path from vs to vp. Let u be the outneighbor of vs

lying on this path (with u not necessarily being distinct from vp). Furthermore,
let (w,w′) ∈ A be an arc where both endpoints w and w′ are in D[V \ {vt}] in a
connected component different from that of vs. Observe that such an arc must
exist, as otherwise, by the choice of vs, the underlying undirected graph of D
would be acyclic, contradicting the assumption k > 0. Then, by Lemma 5.2,

D′ = (V, (A \ {(vs, u), (vp, vt), (w,w′)}) ∪ {(vs, vt), (w, u), (vp, w′)})

31

is also a realizing DAG for S. Furthermore, denoting the connected component
in D′[V \ {vt}] containing vs by Ks, the underlying undirected graph of Ks

is acyclic, only vs in Ks is a neighbor of vt, and no source in Ks has a smaller
outdegree than vs.

Step 2: Towards proving that vt has vsmin as inneighbor, assume that d+(vs) >
d+(vsmin); otherwise go to Step 3. We show that we can replace vs as inneighbor
of vt by vsmin. Observe that since vs is within Ks a source with minimum
outdegree, it follows that vsmin /∈ Ks. Let s1, . . . , sx be the outneighbors of vs

with s1 = vt and let os1, . . . , o
s
y be the outneighbors of vsmin. Observe that x > y

and that vsmin and vs can have at most one common outneighbor: vt. Thus,
the vertices s2, . . . , sx are no outneighbors of vsmin. Now, we obtain a directed
graph D′′ from D′ by deleting the arcs from vs to all sy+1, . . . , sx and by adding
arcs from vsmin to all sy+1, . . . , sx. Clearly, since in D′′ in- and outdegrees of vsmin

and vs have been exchanged, vs is a minimum-degree source in D′′. Since vsmin

and vs are sources and all arcs that have been modified to get D′′ from D′

have either vsmin or vs as an endpoint and a source can never be contained in
a directed cycle, D′′ is a realizing DAG for S. Furthermore, since Ks does not
contain any cycle in D[V \{vt}] and all modifications involving vs did only delete
arcs, it follows that also the connected component of vs in D′′[V \ {vt}] does not
contain any undirected cycle. For convenience, we also exchange the names of vs

and vsmin so that in the following vsmin is the source with minimum outdegree.
Step 3: By the argumentation above there is a realizing DAG D′′ for S

such that there is an inneighbor of vt that is a minimum degree source vsmin.
Furthermore, the connect component K ′′ that contains vsmin in D′′[V \ {vt}]
in vsmin contains no further in- or outneighbor of vt, and the underlying undirected
graph of K ′′ is acyclic.

By restructuring the arcs in D′′, we show that there is also a realizing DAG
such that except for vt all outneighbors of vsmin are degree-one sinks. Towards
this, assume that vsmin does have an outneighbor u that is not a degree-one
sink and that is different from vt; otherwise we are done. Root the connected
component K ′′ of vsmin in D′′[V \ {vt}] in vsmin. Then there is at least one leaf v`

in the subtree with root u. Since vsmin is the source with the minimal outdegree
and vsmin has at least two outneighbors (vt and u), it follows that v` is a degree-

one sink. Let v`
′

be the inneighbor of this sink. Furthermore, let (w,w′) ∈ A′′
be an arc that is not contained in K ′′. Since the underlying undirected graph
of K ′′ is a tree, by the version of Lemma 5.2 with all arcs being reversed (see
the discussion before Lemma 5.3), the digraph

D′′′ = (V,A′′ \ {(w,w′), (vsmin, u), (v`
′
, v`)} ∪ {(vsmin, v

`), (w, u), (v`
′
, w′)})

is also a realizing DAG for S. Let K ′′′ the connected component of vsmin

in D′′′[V \ {vt}]. Observe that the underlying undirected graph of K ′′′ is, again,
acyclic: the underlying undirected graph of K ′′ is acyclic and K ′′′ was obtained
by replacing a subtree in K ′′ by a leaf. By the same argument, K ′′′ contains
only one neighbor of vt, namely vsmin. Thus, D′′′ fulfills all conditions required in
Step 3, but compared to D′′, vsmin has one more degree-one sink as outneighbor.
Hence, by induction on the number of degree-one sinks vsmin has as outneighbor, it
follows that there is a realizing DAG such that all outneighbors of vsmin except vt

are degree-one sinks.

Lemma 5.3 shows how we can restructure a realizing DAG if there is a

32

vertex with indegree greater than 2k. By applying the same procedure as for
Lemma 5.2, one obtains similar results in case of a high outdegree: First, swap
in every tuple

(
a
b

)
in the corresponding degree sequence the values of a and b

and, correspondingly, swap in a realizing DAG the direction of each arc. Then,
apply the Lemmas 5.2 and 5.3 and finally swap again the values in the tuples and
the arcs in the restructured DAG. This proves the correctness of an analogous
version of Lemma 5.3 for a vertex with outdegree greater than 2k, which leads
to the following data reduction rule.

Reduction Rule 5.4. Let S be a degree sequence containing a tuple
(
at
bt

)
with

at > 2k (bt > 2k). Furthermore, let s =
(
as
bs

)
∈ S be a tuple with as = 0 (bs = 0)

and bs (as) be minimal among all tuples with as = 0 (bs = 0). Then, replace
(
at
bt

)
by
(
at−1
bt

)
(
(
at
bt−1

)
), delete s, and delete bs − 1 (as − 1) tuples of the form

(
1
0

)
(
(

0
1

)
).

Clearly, Reduction Rule 5.4 can be applied in polynomial time. The correct-
ness is also not hard to see: Lemma 5.3 shows that if S is a yes-instance, then
so is the reduced instance. Conversely, if the reduced instance is a yes-instance,
then adding a star realizing the removed tuples and making the center of the star
adjacent to the vertex realizing

(
at−1
bt

)
(respectively

(
at
bt−1

)
) shows that also S is

a yes-instance. Furthermore, each application of Reduction Rule 5.4 decreases
the number of tuples in the input by one and does not change the parameter k.
Thus, exhaustively applying Reduction Rule 5.4 can be done in polynomial time.
In addition, the maximum degree in an instance that is reduced with respect
to Reduction Rule 5.4 is upper-bounded by 2k. Together with Theorem 4.30
this implies the following.

Theorem 5.5. DAG Realization is fixed-parameter tractable with respect
to the parameter k = m− n+ 1.

6 Outlook

Answering an open question of Berger and Müller-Hannemann [2] we proved
the NP-completeness of DAG Realization even in sparse and in dense graphs.
Following the spirit of deconstructing intractability [19] we proved the necessity
of large degrees in the NP-hardness proof by showing fixed-parameter tractability
of DAG Realization with respect to the maximum degree ∆. Furthermore,
we showed fixed-parameter tractability with respect to the feedback edge set size
of the underlying undirected graph of a realizing DAG. It is open whether DAG
Realization is solvable in single-exponential FPT time and whether it admits
polynomial-size problem kernels with respect to these two parameters. In our NP-
hardness reduction other parameters occur with unbounded values, for instance,
the number of types. Note that this is a “stronger parameterization” [18] than
the parameter maximum degree ∆ as the number of types is at most (∆ + 1)2.
Hence, investigating this parameter is an interesting task for future work.

Acknowledgements We thank Annabell Berger and Matthias Müller-Hannemann
for fruitful discussions about DAG Realization. Moreover, we are grateful
to Rolf Niedermeier for helpful comments improving the presentation. We are

33

also grateful to two anonymous SIDMA reviewers for their very detailed and
constructive feedback. In particular, we thank one of the reviewers for pointing
out a simplification of the arguments presented in Section 4.3.

Bibliography

[1] A. Berger. Directed Degree Sequences. PhD thesis, Institut für Informatik,
Martin-Luther-Universität Halle-Wittenberg, 2011. pp. 2 and 12.

[2] A. Berger and M. Müller-Hannemann. Dag Realizations of Directed Degree
Sequences. In Proceedings of the 18th International Symposium on Funda-
mentals of Computation Theory (FCT ’11), volume 6914 of LNCS, pages
264–275. Springer, 2011. pp. 1, 2, 7, 8, and 33.

[3] A. Berger and M. Müller-Hannemann. How to Attack the NP-complete DAG
Realization Problem in Practice. In Proceedings of the 11th International
Symposium on Experimental Algorithms (SEA ’12), volume 7276 of LNCS,
pages 51–62. Springer, 2012. pp. 2, 3, 8, 9, 12, and 29.

[4] W.-K. Chen. On the realization of a (p, s)-digraph with prescribed degrees.
J. Franklin Inst., 281(5):406–422, 1966. p. 2.

[5] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Com-
plexity. Springer, 2013. p. 4.

[6] P. Erdős and T. Gallai. Graphs with Prescribed Degrees of Vertices (in
Hungarian). Math. Lapok, 11:264–274, 1960. p. 2.

[7] M. R. Fellows, B. M. P. Jansen, and F. A. Rosamond. Towards fully
multivariate algorithmics: Parameter ecology and the deconstruction of
computational complexity. Eur. J. Comb., 34(3):541–566, 2013. p. 8.

[8] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
p. 4.

[9] A. Frank and É. Tardos. An application of simultaneous diophantine
approximation in combinatorial optimization. Combinatorica, 7(1):49–65,
1987. p. 28.

[10] D. Fulkerson. Zero-one matrices with zero trace. Pacific J. Math., 10(3):
831–836, 1960. p. 2.

[11] D. Gale. A theorem on flows in networks. Pacific J. Math., 7:1073–1082,
1957. p. 2.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, 1979. p. 4.

[13] S. Hakimi. On Realizability of a Set of Integers as Degrees of the Vertices
of a Linear Graph. I. J. SIAM, 10(3):496–506, 1962. p. 2.

[14] V. Havel. A remark on the existence of finite graphs. Casopis Pest. Mat.,
80:477–480, 1955. p. 2.

34

[15] H. Hulett, T. G. Will, and G. J. Woeginger. Multigraph realizations of
degree sequences: Maximization is easy, minimization is hard. Oper. Res.
Lett., 36(5):594–596, 2008. p. 2.

[16] R. Kannan. Minkowski’s convex body theorem and integer programming.
Math. Oper. Res., 12:415–440, 1987. p. 28.

[17] D. Kleitman and D. Wang. Algorithms for constructing graphs and digraphs
with given valences and factors. SIAM J. Discrete Math., 6(1):79–88, 1973.
p. 2.

[18] C. Komusiewicz and R. Niedermeier. New races in parameterized algorith-
mics. In Proceedings of the 37th International Symposium on Mathematical
Foundations of Computer Science (MFCS ’12), volume 7464 of LNCS, pages
19–30. Springer, 2012. p. 33.

[19] C. Komusiewicz, R. Niedermeier, and J. Uhlmann. Deconstructing
Intractability—A Multivariate Complexity Analysis of Interval Constrained
Coloring. J. Discrete Algorithms, 9(1):137–151, 2011. pp. 8 and 33.

[20] H. W. Lenstra. Integer programming with a fixed number of variables.
Math. Oper. Res., 8:538–548, 1983. p. 28.

[21] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006. p. 4.

[22] R. Niedermeier. Reflections on Multivariate Algorithmics and Problem
Parameterization. In Proceedings of the 27th International Symposium on
Theoretical Aspects of Computer Science (STACS ’07), volume 5 of LIPIcs,
pages 17–32. IBFI Dagstuhl, Germany, 2010. p. 8.

[23] H. Ryser. Combinatorial properties of matrices of zeros and ones. Canadian
J. Math., 9:371–377, 1957. p. 2.

35

	Introduction
	Preliminaries
	NP-Completeness
	Fixed-Parameter Tractability with Respect to Maximum Degree
	General Terms and Observations
	High-Potential Sequences
	Low-Potential Sequences

	Fixed-Parameter Tractability with Respect to m-n+1 and enum()n2-m
	Outlook

