
A Parameterized Complexity Analysis of
Combinatorial Feature Selection Problems?

Vincent Froese, René van Bevern, Rolf Niedermeier, and Manuel Sorge

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{vincent.froese, rene.vanbevern, rolf.niedermeier,

manuel.sorge}@tu-berlin.de

Abstract. We examine the algorithmic tractability of NP-hard combi-
natorial feature selection problems in terms of parameterized complexity
theory. In combinatorial feature selection, one seeks to discard dimen-
sions from high-dimensional data such that the resulting instances fulfill
a desired property. In parameterized complexity analysis, one seeks to
identify relevant problem-specific quantities and tries to determine their
influence on the computational complexity of the considered problem.
In this paper, for various combinatorial feature selection problems, we
identify parameterizations and reveal to what extent these govern com-
putational complexity. We provide tractability as well as intractability
results; for example, we show that the Distinct Vectors problem on
binary points is polynomial-time solvable if each pair of points differs in
at most three dimensions, whereas it is NP-hard otherwise.

1 Introduction

Feature selection in a high-dimensional data space means to choose a subset
of features (that is, dimensions) such that some desirable data properties are
preserved or achieved. Combinatorial feature selection [14, 5] is a well-motivated
alternative to the more frequently studied affine feature selection: While affine
feature selection combines features to reduce dimensionality, combinatorial fea-
ture selection chooses a subspace by discarding some dimensions. The advantage
of the latter is that the resulting reduced feature space is easier to interpret. See
Charikar et al. [5] for a more extensive discussion in favor of combinatorial feature
selection. Unfortunately, combinatorial feature selection problems are typically
computationally very hard to solve (NP-hard and also hard to approximate [5]),
resulting in the use of heuristic approaches in practice [2, 8, 12, 13].

In this work, mainly following Charikar et al. [5], who provided classical
computational hardness results (NP-hardness and inapproximability), we adopt
the fresh perspective of parameterized complexity analysis. We thus refine the
known picture of the computational complexity landscape of combinatorial feature
selection problems. Intuitively speaking, our guiding principle is to identify
? Vincent Froese was supported by DFG, project DAMM (NI 369/13). René van Bevern

and Manuel Sorge were supported by DFG, project DAPA (NI 369/12).

To appear in Proceedings of the 38th International Symposium on Mathematical
Foundations of Computer Science (MFCS’13), Klosterneuburg, Austria, August
2013. c© Springer.

problem-specific parameters (quantities such as number of dimensions to discard
or number of dimensions to keep) and to analyze how these quantities influence
the problem complexity. The point here is that in relevant applications these
parameters can be small. Hence, the central question is whether the considered
problems become computationally tractable in the case of small parameters.

We revisit two categories of combinatorial feature selection problems (namely
dimension reduction and clustering problems) as introduced by Charikar et al. [5].
Within their framework they defined (amongst others) two problems called
Distinct Vectors and Hidden Clusters. In this work, we consider Distinct
Vectors and introduce a new problem called Lp-Hidden Cluster Graph
which is based on Hidden Clusters. For both problems, we shed new light on
the (non-)existence of provably tractable special cases.

Distinct Vectors is a dimension reduction problem defined as follows:

Distinct Vectors
Input: A multiset S = {x1, . . . , xn} ⊆ Σd of n distinct points in d dimensions

and k ∈ N.
Question: Is there a subset K ⊆ {1, . . . , d} of dimensions with |K| ≤ k such

that all points in S|K are still distinct?

Throughout this work, S|K := {x1|K , . . . , xn|K} denotes the multiset of projec-
tions xi|K of the points in S into the dimensions in K, that is, dimensions not
in K are set to zero. Distinct Vectors is NP-hard to approximate within
a logarithmic factor [5]. It is also known as the Minimal Reduct problem in
rough set theory [17] and was already earlier proven to be NP-hard [18].

In the clustering category, we assume that the input data would cluster well
once some noise is removed. The representative problem for this category is
Hidden Clusters [5]. The goal is to maximize the number of dimensions that
allow for a clustering of the data into a predefined number of cluster centers of a
given radius. Notably, the number of sought clusters has to be known in advance.
This is not always realistic. Hence, we would like also to reveal clusterings in our
data without knowing the number of clusters beforehand. To this end, we employ
a clustering notion from graph-based data clustering: Instead of formulating a
cluster as a point set within a given radius r from some center as in Hidden
Clusters, we now formulate a cluster as a set of points of pairwise distance at
most r. Such sets of points form cliques in a “threshold graph” that contains
an edge between two points whenever their distance is at most r. The search
for a clustering now essentially becomes the search for a graph whose connected
components are cliques. In contrast to Hidden Clusters, this also expresses
the need of points in different clusters to be dissimilar to each other.

Lp-Hidden Cluster Graph
Input: A set S = {x1, . . . , xn} ⊆ Σd with Σ ⊆ Q, r ∈ Q+

0 , k ∈ N.
Question: Is there a subset K ⊆ {1, . . . , d} of dimensions with |K| ≥ k such

that the graph GK = (V,EK) with V := S, EK := {{xi, xj} | xi 6= xj ∈
V, dist(p)

|K (xi, xj) ≤ r} is a cluster graph (that is, a union of disjoint cliques)?

2

Herein, dist(p)
|K is a metric computing the distance between two points from Σd

projected to the dimensions in K. We explicitly consider the distance func-
tions induced by the Lp-norm: dist(p)(x, y) :=

∑d
j=1 |(x − y)j |p for p ∈ N and

dist(∞)(x, y) := maxj∈{1,...,d} |(x− y)j |. By (x)j we denote the value of x ∈ Σd

in the j-th dimension. Note that GK is a so-called unit ball graph.

Parameterized complexity preliminaries. The computational complexity of a
parameterized problem is measured in terms of two quantities: one is the input
size, the other is the parameter (usually a positive integer). A parameterized
problem L ⊆ Σ∗ × N is called fixed-parameter tractable with respect to a param-
eter k if it can be solved in f(k) · |x|O(1) time, where f is a computable function
only depending on k, and |x| is the size of the input instance x. A problem
kernel for a parameterized problem is a many-one self-reduction that runs in
polynomial time such that the produced instances have size upper-bounded by
some function exclusively depending on the parameter. Existence of a problem
kernel is equivalent to fixed-parameter tractability [10, 11, 16].

A parameterized reduction from a parameterized problem P to another pa-
rameterized problem P ′ is a function that, given an instance (x, k), computes
in f(k) · |x|O(1) time an instance (x′, k′) (with k′ only depending on k) such
that (x, k) is a “yes”-instance of P if and only if (x′, k′) is a “yes”-instance of P ′.
The two basic complexity classes for showing (presumable) fixed-parameter in-
tractability are called W[1] and W[2]; the standard assumption is that W[1]-hard
and W[2]-hard problems are not fixed-parameter tractable [10, 11, 16].

Throughout this work we assume that arithmetic operations such as additions
and comparisons of numbers can be done in O(1) time.

Our contributions. For Distinct Vectors we prove W[2]-hardness with respect
to the solution size k. In addition, we observe that it cannot be solved in do(k) ·
|x|O(1) time unless W[1] = FPT (which is strongly believed not to be the case).
Moreover, for Distinct Vectors restricted to a binary input alphabet, we give
the following complexity dichotomy: if the maximum pairwise Hamming distance h
between input points is at most three, then Distinct Vectors is polynomial-
time solvable, and it is NP-complete for h ≥ 4. The latter NP-completeness proof
also implies W[1]-hardness with respect to the parameter d−k (“number of dimen-
sions to discard”). In contrast, we provide some problem kernels with respect to the
combined parameters “alphabet size combined with k” and “h combined with k”.

For Lp-Hidden Cluster Graph, we show that it is W[2]-hard with respect to
the number t of discarded dimensions for all p ∈ N, whereas it is fixed-parameter
tractable with respect to t combined with the radius r. L∞-Hidden Cluster
Graph even is polynomial-time solvable in general.

Due to the lack of space, several technical details are deferred to a full version.

2 Distinct Vectors

Skowron and Rauszer [18] first proved NP-hardness for Minimal Reduct (which
is equivalent to Distinct Vectors) by a reduction from Hitting Set. Charikar

3

et al. [5] additionally showed that there is some constant c such that Distinct
Vectors is not polynomial-time approximable within a factor of c log d unless
P = NP. We analyze various restricted scenarios for the Distinct Vectors
problem and conduct a more fine-grained computational complexity analysis
which, unfortunately, yields further hardness results in most cases. More specif-
ically, we consider the cases of (i) retaining few dimensions, (ii) deleting few
dimensions, and (iii) small pairwise differences between points.

We first present results for a binary input alphabet in Section 2.1 and then
proceed with results for larger and unbounded alphabet size in Section 2.2.

2.1 Bounded Pairwise Hamming Distance: A Complexity Dichotomy

Throughout this subsection we focus on instances with a binary input alpha-
bet Σ = {0, 1}. We further restrict our considerations to instances with points of
bounded “degree of distinctiveness”. Herein, we refer to instances where each pair
of points differs in at most h dimensions. In other words, the Hamming distance
of any pair of points is bounded from above by h. For example, this situation
can arise for sparse data sets where the points mainly contain 0’s. Intuitively,
if the data set consists of points that are all “similar” to each other, one could
hope to be able to solve the instance efficiently since there are at most h dimen-
sions to choose from in order to distinguish two points. The following theorem,
however, shows that this intuition is deceptive: when crossing a certain threshold
of dissimilarity, the complexity suddenly changes.

Theorem 1. For a binary input alphabet Σ = {0, 1}, Distinct Vectors is

i) solvable in O(n3d) time if the maximum pairwise Hamming distance h of
the input vectors is at most three, and

ii) NP-hard for h ≥ 4.

In order to prove (i), we use the following combinatorial lemma.

Lemma 2. Let m,n ∈ N with m > n+ 1 and let A = {A1, . . . , Am} be a family
of pairwise different sets of size n each with ∀Ai 6= Aj : |Ai ∩Aj | = n− 1. Then,
∀Ai 6= Aj : Ai ∩Aj =

⋂m
k=1 Ak.

Now, we can sketch a proof of Theorem 1(i).

Proof (Sketch, Theorem 1(i)). We give a search tree algorithm that solves a
given Distinct Vectors instance (S, k). The restriction h = 3 guarantees
that there are not “too many” branches in the search tree to consider and,
hence, that the search tree has polynomial size. For x ∈ S and i ∈ N we define
Dx := {j ∈ {1, . . . , d} | (x)j = 1} and Si := {x ∈ S | i = |Dx|}. Without loss of
generality, we can assume that 0 := (0, . . . , 0) ∈ S. If this is not the case, then we
can simply fix an arbitrary point x0 ∈ S and exchange 1’s and 0’s in all points
in S in all dimensions where x0 equals 1. This yields an equivalent instance with
x0 = 0 ∈ S in linear time.

4

x1

1 1

1
x2

1 1

1
x3 1 1 1
x4

1 1

1
x5

1 1

1

Fig. 1: The points in S3|D3 ⊆ {0, 1}7 represented as
rows of a matrix with columns corresponding to the
dimensions in D3. Empty cells represent zero entries.
Each pair of points shares a 1 in two dimensions. For
more than four points there exist two dimensions in
which all points equal 1. At most one of the other
dimensions is not contained in a solution.

Let (S, k), S ⊆ {0, 1}d, be an instance of Distinct Vectors with |S| = n.
The bound h = 3 implies that each point in S contains at most three 1’s since
otherwise it differs in more than three dimensions from 0. Thus, we can partition
the data set S = {0}] S1] S2] S3. Moreover, the restriction h = 3 also implies
the following two conditions, which constitute the crucial aspects for our proof.

∀x, y ∈ S3 : |Dx ∩Dy| = 2, (1)
∀x, y ∈ S2 : |Dx ∩Dy| = 1. (2)

Both conditions have to be met since otherwise there exists a pair of points
differing in at least four dimensions. The algorithm starts with considering the
subset S3. The points in S3 can only be distinguished from each other by a subset
of the dimensions D3 :=

⋃
x∈S3

Dx. If |S3| ≤ 4, then we simply branch over all
possible subsets of D3. With a constant number of at most four distinct points
in S3, the size of D3 is also bounded by a constant and so there are only constantly
many subsets to try. If |S3| > 4, then statement (1) together with Lemma 2
implies that C3 :=

⋂
x∈S3

Dx contains two dimensions. It follows that for each
dimension j ∈ D3 \ C3 there exists exactly one point x ∈ S3 with (x)j = 1. This
situation is depicted in Figure 1. In order to distinguish all points in S3 from each
other, any solution contains at least all but one dimension from D3 \ C3. Hence,
we can try out all subsets of D3\C3 of size at least |S3|−1. Together with the four
possible subsets of C3 we end up with at most 4(n+ 1) subsets of D3 to branch
over. Similarly, we obtain that we have to branch over at most 2(n+ 1) subsets of
dimensions to distinguish all points in S2. Thus, we end up with O(n2) possible
subset selections. For the set S1 no branching is necessary. For each selection we
check whether it is a solution or not. This can be done in O(nd) time by sorting
the data set lexicographically with radix sort and comparing successive points.
Overall, we obtain a search tree algorithm with running time of O(n3d). ut

When the pairwise Hamming distance h of the input vectors is at least four, the
conditions (1) and (2) from the proof of Theorem 1(i) do not hold. Therefore, we
cannot apply Lemma 2, which is crucial in that it guarantees a regular structure
of the data set that makes the instance easy to solve. Instead, we can observe
that, if a pair of points is allowed to take on different values in at least four
dimensions, then the data set can “encode” arbitrary graphs. We exploit this to
prove Theorem 1(ii), that is, that Distinct Vectors is NP-complete for h ≥ 4.
To this end, we describe a polynomial-time many-one reduction from a special
variant of the Independent Set problem in graphs, which is defined as follows.

5

Distance-3 Independent Set
Input: An undirected graph G = (V,E) and k ∈ N.
Question: Is there a subset of vertices I ⊆ V of size at least k such that any

pair of vertices from I has distance at least three?

Here, the distance of two vertices is the number of edges contained in a shortest
path between them. Distance-3 Independent Set can easily be shown to be
NP-hard by a reduction from Induced Matching [3].

We are now ready to prove that Distinct Vectors is NP-complete for
h ≥ 4, even if the input alphabet Σ is binary.

Proof (Theorem 1(ii)). It is easy to check that Distinct Vectors is in NP. To
show NP-hardness, let (G = (V,E), k) with |V | = n and |E| = m be an instance
of Distance-3 Independent Set and let Z be the m× n transposed incidence
matrix of G with rows corresponding to edges and columns to vertices. The data
set S of our Distinct Vectors instance (S, k′) is defined to contain all m row
vectors of Z and the null point 0 = (0, . . . , 0) ∈ {0, 1}n. The sought solution
size is set to k′ := n − k. Notice that each point in S contains exactly two 1’s
(except for 0). Thus, each pair of points differs in at most h = 4 dimensions. The
instance (S, k′) can be computed in O(nm) time.

Correctness of the reduction follows by the following argument: The subset
I ⊆ V is a solution of (G, k) if and only if it is of size k and every edge in G has
at least one endpoint in V \ I and no vertex in V \ I has two neighbors in I. In
other words, the latter condition says that no two edges with an endpoint in I
share the same endpoint in V \ I. Equivalently, for the subset K of dimensions
corresponding to the vertices in V \ I, it holds that all row vectors of Z in S|K
contain at least one 1 and no two vectors contain only a single 1 in the same
dimension. This holds if and only if K is a solution for (S, k′), because S contains
the null point and thus two points can only be identical in S|K if either they
consist of 0’s only or contain a single 1 in the same dimension. ut

We remark that from a W[1]-hardness result for Induced Matching [15] we can
infer W[1]-hardess for Distance-3 Independent Set with respect to k. Since
the proof of Theorem 1(i) yields a parameterized reduction from Distance-3
Independent Set parameterized by k to Distinct Vectors parameterized
by the number n− k′ = k of dimensions to discard, we have the following:

Corollary 3. Distinct Vectors is W[1]-hard with respect to the number of
dimensions to delete.

2.2 Distinct Vectors with an Arbitrary Alphabet

As we have seen in Section 2.1, Distinct Vectors is NP-complete and W[1]-
hard with respect to the number of dimensions to be deleted even in the case of a
binary alphabet when the pairwise Hamming distance of the vectors is bounded
by four. Nevertheless, we note later in this section that some tractability results
are achievable even for larger alphabets. First, however, we mention that Hitting

6

Set parameterized by the sought solution size (which is W[2]-hard, as shown by
Downey and Fellows [10]) is parameterized reducible to Distinct Vectors in
the case of an arbitrary alphabet size, which yields the following:

Theorem 4. Allowing an arbitrary alphabet size, Distinct Vectors is W [2]-
hard with respect to the parameter k.

Proof. We give a parameterized reduction from Hitting Set:

Hitting Set
Input: A finite universe U , a collection C of subsets of U and a nonnegative

integer k.
Question: Is there a subset K ⊆ U with |K| ≤ k such that K contains at least

one element from each subset in C?

Given an instance (U, C, k) of Hitting Set with U = {u1, . . . , um} and C =
{C1, . . . , Cn}, we construct a Distinct Vectors instance (S, k′) with S :=
{x1, . . . , xn,0} ⊆ Nm and k′ := k, where 0 = (0, . . . , 0) and

(xi)j :=
{
i, uj ∈ Ci
0, uj 6∈ Ci

for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.

The above instance is polynomial-time computable. If K ⊆ U is a solution
of (U, C, k), then K ∩ Ci 6= ∅ for all Ci ∈ C and thus for each xi ∈ S there is
a dimension corresponding to some element in K, such that xi equals i in this
dimension and is thus different from all other points in S. Conversely, in order to
distinguish any xi ∈ S from 0, any solutionK ′ of (S, k′) has to contain a dimension
where xi is different from 0. This implies that the subset of U corresponding to K ′
contains at least one element of each Ci and is thus a solution of the original
instance. Finally, note that this is a parameterized reduction since k′ = k. ut

It was shown by Chen et al. [6] that, unless FPT = W[1], Hitting Set cannot
be solved in |U |o(k) · |x|O(1) time. Since the reduction from Hitting Set yields
an instance with d = |U | dimensions and solution size k in polynomial time, it
follows that Distinct Vectors cannot be solved in do(k) · |x|O(1) time unless
FPT = W[1]. On the positive side, Distinct Vectors can trivially be solved by
trying out all subsets of dimensions of size k within dk · |x|O(1) time. Consequently,
we obtain the following corollary.

Corollary 5. If FPT 6= W[1], then the fastest algorithm solving Distinct
Vectors has a running time of dΘ(k) · |x|O(1).

Although Theorem 4 shows that Distinct Vectors is W[2]-hard with respect
to the parameter k, we can provide a problem kernel for Distinct Vectors if
we additionally consider the input alphabet size |Σ| as parameter. The size of the
problem kernel is superexponential in the parameter (k, |Σ|). Clearly, a problem
kernel of polynomial size would be desirable. However, based on the complexity-
theoretic assumption that the polynomial hierarchy does not collapse, polynomial-
size kernels do not exist even with the additional parameter n of input points:

7

Theorem 6.

i) There exists an O(|Σ||Σ|
k+k

/|Σ|! · log |Σ|)-size problem kernel computable
in O(d2n2) time for Distinct Vectors.

ii) Unless NP ⊆ coNP/poly, Distinct Vectors does not admit a polynomial-
size kernel with respect to the combined parameter (n, |Σ|, k).

Proof (Sketch). (i) The idea is that k dimensions can distinguish at most |Σ|k points.
Observe that every dimension partitions the data set into at most |Σ| non-empty
subsets. If any two dimensions yield the same partitioning, we can simply delete
one of them. Thus, any “yes”-instance has at most |Σ||Σ|

k

/|Σ|! essentially different
dimensions. Any larger instance can be discarded as “no”-instance.

(ii) The reduction from Hitting Set in the proof of Theorem 4 can easily be
turned into a reduction from the closely related Set Cover. For Set Cover,
Dom et al. [9] showed that there is no polynomial-size kernel, which in combi-
nation with the reduction also excludes polynomial-size kernels for Distinct
Vectors. ut

Besides parameterizing by the alphabet size, the maximum Hamming dis-
tance h of all pairs of points also yields tractability results. It is possible to
reduce Distinct Vectors to h-Hitting Set for which problem kernels with
respect to (h, k) are known [1]. These can be used to obtain problem kernels for
Distinct Vectors in turn. We omit the details here and refer to a full version.

In this subsection we have seen that Distinct Vectors can basically be
regarded as a special Hitting Set problem. Interestingly, Hitting Set with
respect to the solution size is W[2]-hard in general, but for constant-size alphabets,
Distinct Vectors is fixed-parameter tractable (Theorem 6). Thus, the set
systems induced by instances of Distinct Vectors involve a certain structure
that makes them easier to solve.

3 Hidden Cluster Graph

This section investigates the complexity of Hidden Cluster Graph. It turns out
that, in contrast to the Hidden Clusters problem—which is NP-hard for the
radius r = 0 and, hence, for arbitrary metrics—the choice of the distance function
has a considerable influence on the tractability of Hidden Cluster Graph.

Theorem 7.

i) L∞-Hidden Cluster Graph is solvable in O(d(n2d+ n3)) time.
ii) For p ∈ N, Lp-Hidden Cluster Graph is NP-complete and even W[2]-

hard with respect to the parameter “maximum number t of allowed dimension
deletions”.

Proof (Sketch). The proof of (i) is deferred to a full version of the paper. The
basic idea is to insert missing edges by deleting all dimensions in which the
corresponding endpoints differ more than r.

8

To prove (ii), first observe that Lp-Hidden Cluster Graph is contained
in NP: given a solution set K, we can build the corresponding graph GK and check
whether it is a cluster graph in polynomial time. To show NP- and W[2]-hardness,
we give a polynomial-time executable parameterized many-one reduction from
the NP-hard and W[2]-hard Lobbying problem [7, 4] occurring in computational
social choice.

Lobbying
Input: A matrix A ∈ {0, 1}m×n with an odd number n of columns and an

integer k > 0.
Question: Can one modify (set to zero) at most k columns in A such that in

the resulting matrix each row contains at least as many zeros as ones?

Compared with the problem definition of Bredereck et al. [4], we exchanged the
roles of ones and zeros and of rows and columns. This clearly does not change the
complexity. Moreover, we ask for “at least as many” instead of “more” zeros than
ones per row. Since the problem is W[2]-hard with respect to k if the number of
columns n is odd [7], these conditions are equivalent and our variant is also W[2]-
hard. We assume that every row of A contains more ones than zeros because other-
wise we could delete it from the input without changing the answer to the question.

Our reduction works as follows: Let (A, k) be an instance of Lobbying with
A ∈ {0, 1}m×n containing m rows a1, . . . , am ∈ {0, 1}n. We define an Lp-Hidden
Cluster Graph instance (S, r, k′) with

S :=
⋃

1≤i≤m
{ui, vi, wi} ⊆ Σn, r := 2p−1n, k′ := n− k.

The idea is to let S contain three data points ui, vi, and wi for every row ai in A
such that their induced subgraph Hi := G{1,...,n}[{ui, vi, wi}] is a P3, that is, a
path with three vertices. To this end, let

u1 := 0, w1 := 2a1, v1 := u1 + w1

2 ,

ui := wi−1 + 2n, wi := ui + 2ai, vi := ui + wi
2 ,

for i ∈ {2, . . . ,m}, where x := (x, . . . , x) ∈ Σn for x ∈ Σ. The above construction
requires N ⊆ Σ in order to be well-defined. It is computable in O(mn) time. Note
that this is a parameterized reduction with respect to t since t = n − k′ = k.
Figure 2 illustrates the constructed data set. Now, for all i = 1, . . . ,m,

dist(p)(ui, wi) =
n∑
j=1

2p · |(ai)j |p ≥ 2p ·
(
n+ 1

2

)
> r

and dist(p)(ui, vi) = dist(p)(vi, wi) ≤ n ≤ r. Since G{1,...,n} is defined to contain
an edge between two vertices if and only if the distance of their corresponding
points in S is at most r, it follows indeed that Hi is a P3. By construction, the
subgraphs Hi are independent of each other in the sense that, for every non-empty

9

Fig. 2: A two-dimensional
illustration of the con-
structed Lp-Hidden
Cluster Graph instance:
For each row ai in the
lobbying matrix A there
are three points ui, vi, wi

in the data set S such
that, for every non-empty
subset of dimensions K,
they induce a P3 in GK .
This is achieved by recur-
sively setting vi = ui + ai,
wi = vi + ai and choosing
an appropriate radius
‖ai‖p

p ≤ r < ‖2ai‖p
p. Note

that the point ui+1 is de-
fined such that its distance
to wi is greater than r in
every dimension, which
ensures that there is no
edge between vertices from
different P3’s for any K.

> r

> r

> r

≤ r

≤ r

≤ r

≤ r

≤ r
≤ r

> r

> r

> r

u1

v1

w1

u2

v2

w2

u3

v3

w3

subset K ⊆ {1, . . . , n} of dimensions, GK never contains an edge between any ver-
tices from Hi and Hj for i 6= j. To verify this, let 1 ≤ i < j ≤ m and note that, by
construction, the smallest distance between any vertices from Hi and Hj is the dis-
tance of wi and uj . For every non-empty subset K of dimensions, dist(p)

|K (uj , wi) is

∑
l∈K

∣∣∣(wi + (j − i) · 2n +
j−i−1∑
k=1

2ai+k
)
l
− (wi)l

∣∣∣p
≥
∑
l∈K

2p|(n)l|p = 2p|K| · n ≥ 2pn > r.

Thus, there cannot be an edge in GK between vertices from Hi and Hj for any K.
It follows that the only solution of this instance is the cluster graph consisting
of the m disjoint triangles obtained by inserting the missing edge in each Hi. In
order to insert the missing edge between ui and wi in every Hi, we have to find
a subset of dimensions K such that

dist(p)
|K (ui, wi) = 2p

∑
j∈K
|(ai)j |p ≤ r = 2p−1n

holds for all i = 1, . . . ,m. In other words, we have to delete at most t dimensions
(that is, setting entries in ai to zero) such that for the remaining dimensions K
it holds that

∑
j∈K |(ai)j |p ≤ n/2. Since ai is a binary vector, this upper bound

states that the modified ai contains at least as many zeros as ones, which is exactly

10

our Lobbying problem. So, the Lp-Hidden Cluster Graph instance is a “yes”-
instance if and only if the initial Lobbying instance is a “yes”-instance. ut

The reduction in the proof of Theorem 7(ii) is not only running in polynomial
time but also is a polynomial parameter transformation in the sense that the
number of data points n equals three times the number of rows of A, the number t
of dimensions to discard equals k and the number d of dimensions equals the
number of columns of A. Hence, we can transfer some problem kernel lower bound
results for Lobbying [4, Theorems 3 & 4] to Lp-Hidden Cluster Graph.

Corollary 8. Unless NP ⊆ coNP/poly, Lp-Hidden Cluster Graph does
neither admit a polynomial-size kernel with respect to (n, t) nor with respect to d.

One easily observes that the proof of Theorem 7(ii) generates instances of Lp-
Hidden Cluster Graph of unbounded diameter δ, which is defined as the
maximum distance between any two vectors in S. This scenario seems not always
realistic in practice since features often take on values around some expected
value. And indeed, we can show that if δ and the number t of dimensions to
be deleted are constant, then Lp-Hidden Cluster Graph is solvable in cubic
time. To this end, observe that if r > δ in an input instance, we can immediately
answer “yes”, since the graph G{1,...,d} is then a clique and thus a cluster graph.
For r ≤ δ, we can prove the following theorem using a search tree algorithm. For
bounding the search tree size, we need the additional condition that the data set
only contains integers.

Theorem 9. Lp-Hidden Cluster Graph is O((2pr)t ·(n2d+n3))-time solvable
for p ∈ N and an alphabet Σ ⊆ Z.

Obviously, Theorem 9 does not yield an algorithm that is applicable to large
data sets. Yet it shows that, despite the hardness of the problem in the general
case, the development of efficient algorithms on realistic data might be possible.

4 Outlook

We conclude with some directions for future research. As to Distinct Vectors,
our kernelization results in Theorem 6 (lower and upper bounds) are still far
apart and ask for closing this gap. Further, it would be interesting to find
improved kernels for the parameterization by Hamming distance h and number
of retained dimensions k. Here, exploiting structural restrictions in context with
connections to Hitting Set seems promising. Finally, we left open to generalize
the polynomial-time algorithm for pairwise Hamming distance at most three
from binary alphabets (see Theorem 1) to general alphabets.

As to Hidden Cluster Graph, spotting further natural and useful parame-
terizations is desirable.

Acknowledgements. We are grateful to anonymous MFCS referees for extensive
and constructive feedback.

11

Bibliography

[1] R. van Bevern. Towards optimal and expressive kernelization for d-hitting
set. Algorithmica, 2013. Online available. 8

[2] A. Blum and P. Langley. Selection of relevant features and examples in
machine learning. Artificial Intelligence, 97(1-2):245–271, 1997. 1

[3] A. Brandstädt and R. Mosca. On distance-3 matchings and induced match-
ings. Discrete Appl. Math., 159(7):509–520, 2011. 6

[4] R. Bredereck, J. Chen, S. Hartung, S. Kratsch, R. Niedermeier, and O. Suchy̌.
A multivariate complexity analysis of lobbying in multiple referenda. In
Proc. 26th AAAI, pages 1292–1298, 2012. 9, 11

[5] M. Charikar, V. Guruswami, R. Kumar, S. Rajagopalan, and A. Sahai.
Combinatorial feature selection problems. In Proc. 41st FOCS, pages 631–
640, 2000. 1, 2, 4

[6] J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. A. Kanj, and G. Xia.
Tight lower bounds for certain parameterized NP-hard problems. Information
and Computation, 201(2):216–231, 2005. 7

[7] R. Christian, M. R. Fellows, F. Rosamond, and A. Slinko. On complexity of
lobbying in multiple referenda. Review of Economic Design, 11(3):217–224,
2007. 9

[8] A. Dasgupta, P. Drineas, B. Harb, V. Josifovski, and M. W. Mahoney. Feature
selection methods for text classification. In Proc. 13th ACM SIGKDD, pages
230–239, 2007. 1

[9] M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through colors
and IDs. In Proc. 36th ICALP, volume 5555 of LNCS, pages 378–389.
Springer, 2009. 8

[10] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
3, 7

[11] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006. 3
[12] G. Forman. An extensive empirical study of feature selection metrics for

text classification. J. Mach. Learn. Res., 3:1289–1305, 2003. 1
[13] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.

J. Mach. Learn. Res., 3:1157–1182, 2003. 1
[14] D. Koller and M. Sahami. Towards optimal feature selection. In Proc. 13th

ICML, pages 284–292, 1996. 1
[15] H. Moser and D. M. Thilikos. Parameterized complexity of finding regular

induced subgraphs. J. Discrete Algorithms, 7(2):181–190, 2009. 6
[16] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University

Press, 2006. 3
[17] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer

Academic, 1991. 2
[18] A. Skowron and C. Rauszer. The discernibility matrices and functions in

information systems. In R. Slowinski, editor, Intelligent Decision Support—
Handbook of Applications and Advances of the Rough Sets Theory, pages
331–362. Kluwer Academic, 1992. 2, 3

12

	A Parameterized Complexity Analysis of Combinatorial Feature Selection Problems

