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Abstract. The DEGREE ANONYMITY problem arises in the context of
combinatorial graph anonymization. It asks, given a graph G and two
integers k and s, whether G can be made k-anonymous with at most s
modifications. Here, a graph is k-anonymous if the graph contains for every
vertex at least k — 1 other vertices of the same degree. Complementing
recent investigations on its computational complexity, we show that this
problem is very hard when studied from the viewpoints of approximation
as well as parameterized approximation. In particular, for the optimization
variant where one wants to minimize the number of either edge or vertex
deletions there is no factor-n!~¢ approximation running in polynomial
time unless P = NP, for any constant 0 < € < 1. For the variant where one
wants to maximize k and the number s of either edge or vertex deletions is
given, there is no factor-n/>~¢ approximation running in time f(s)- nOMW
unless W[1] = FPT, for any constant 0 < € < 1/2 and any function f.
On the positive side, we classify the general decision version as fixed-
parameter tractable with respect to the combined parameter solution
size s and maximum degree.

1 Introduction

Releasing social network data without violating the privacy of the users
has become an important and active field of research [15]. One model
aiming for this goal was introduced by Liu and Terzi [13] who transferred
the k-anonymity concept from tabular data in databases [9] to graphs.
Herein, Liu and Terzi [13] require that a released graph contains for every
vertex at least k — 1 other vertices with the same degree. The parameter k
controls how many individuals are at least linked to one particular degree
and thus higher values for k give higher levels of anonymity. We remark
that this model has also some weaknesses. Refer to Wu et al. [15] for more
details and further anonymization models.

Here, we study the following variant of the model of Liu and Terzi [13].



DEGREE ANONYMITY (ANONYM)

Input: An undirected graph G = (V, E) and two positive integers k
and s.

Question: Can G be transformed with at most s modifications into a
k-anonymous graph G’ = (V' E’), that is, for each vertex
in G’ there are k — 1 other vertices of the same degree?

We will use the name scheme ANONYM-{E/V}-{INS/DEL/EDT} to dis-
tinguish the different graph modification operations edge/vertex inser-
tion/deletion/editing. Liu and Terzi [13] studied edge insertions (ANONYM-
E-INs), but also vertex deletions (ANONYM-V-DEL) [2] and vertex in-
sertions (ANONYM-V-INS) [3, 5] have been considered. While the fo-
cus of previous work was on experimentally evaluated heuristics and
algorithms [12, 13] or computational complexity and fixed-parameter al-
gorithms [2, 3, 11], we study the polynomial-time and parameterized
approximability of these problems. To this end, we mostly concentrate
on natural optimization variants of the two problems where either edge
deletions (ANONYM-E-DEL) or vertex deletions (ANONYM-V-DEL) are
allowed. Partially answering an open question of Chester et al. [4], we
show strong inapproximable results, even when allowing the running time
to be exponential in s. We remark that our results do not transfer to the
problem variants allowing to edit up to s edges (ANONYM-E-EDT) and
the status of the (parameterized) approximability of the corresponding
optimization problems remains unsolved.

Related Work. The basic degree anonymization model was introduced by
Liu and Terzi [13] (also see Clarkson et al. [6] for an extended version);
they also gave an experimentally evaluated heuristic for ANONYM-E-INS.
One of the first theoretical works on this model was done by Chester et
al. [4]. They provided polynomial-time algorithms for bipartite graphs
and showed NP-hardness of generalizations of ANONYM-E-INS with edge
labels. In particular, they asked for effective approximation algorithms
for ANONYM-E-INS and generalizations. Hartung et al. [11] proved that
ANONYM-E-INS is NP-hard and W[1]-hard with respect to (w.r.t.) the
solution size s, even if k = 2. On the positive side, using the heuristic of Liu
and Terzi [13], they showed fixed-parameter tractability of ANONYM-E-INS
w.r.t. the maximum degree in the input graph.

Chester et al. [5] considered a variant of ANONYM-V-INS and gave an
approximation algorithm with an additive error of at most k. Bredereck
et al. [3] investigated the parameterized complexity of several variants of
ANONYM-V-INS which differ in the rules how the inserted vertices can be



made adjacent to existing vertices. The ANONYM-V-DEL variant studied
by Bredereck et al. [2] turned out to be NP-hard even on very restricted
graph classes such as trees, split graphs, or trivially perfect graphs.

Our Results. We investigate the approximability of natural optimization
variants of ANONYM-V-DEL and ANONYM-E-DEL: Either the budget s is
given and one wants to maximize the level k of anonymity, or k is given and
the goal is to minimize the number of modifications s. The optimization
problems maximizing k with a given budget s are denoted by Max
ANONYM-V-DEL and MAX ANONYM-E-DEL. The variants minimizing s
with given k are denoted by MIN ANONYM-E-DEL and MIN ANONYM-V-
DEL.

We show that one cannot approximate MAX ANONYM-E-DEL (MAX
ANONYM-V-DEL) within a factor of n'~¢ (n'/>7¢) in f(s)n°® time unless
FPT = W[1], for any function f and any 0 < e <1 (0 < e < 1/2). As the
parameter k has size ©(n) in all employed gap-reductions, we only manage
to exclude polynomial-time approximations for the minimization versions.
More precisely, both MIN ANONYM-E-DEL and MIN ANONYM-V-DEL
cannot be approximated in polynomial time within a factor of n'~¢ unless
P = NP.

Complementing the NP-hardness of ANONYM-V-DEL with k= 2 on
trees [2], we show that ANONYM-E-DEL remains NP-hard on caterpillars
(a tree having a dominating path), even if k = 2. Extending the fixed-
parameter tractability of ANONYM-V-DEL w.r.t. the combined parameter
budget and maximum degree (s, A), we classify ANONYM (allowing edge
and vertex insertion as well as deletion) as fixed-parameter tractable w.r.t.
(s,A).

Due to the space constraints, some proofs are deferred to a full version.

2 Preliminaries

Graph terminology. We use standard graph-theoretic notation. All graphs
studied in this paper are undirected and simple, that is, there are no self-
loops and no multi-edges. For a given graph G = (V| E) with vertex set V'
and edge set E we set n := |V| and m := | E|. Furthermore, by deg(v) we
denote the degree of a vertex v € V in G, and Ag denotes the maximum
degree of any vertex of G. For 0 < d < Ag, let Dg(d) := {v € V|
degq(v) = d} be the block of degree d, that is, the set of all vertices with
degree d in G. Thus, being k-anonymous is equivalent to each block being
of size either zero or at least k.



The subgraph of G induced by a vertex subset V' C V is denoted
by G[V']. For an edge subset E' C E, V(E') denotes the set of all
endpoints of edges in E' and G[E'] := (V(E'), E'). Furthermore, for
a vertex subset V' C V we set G — V' := G[V \ V'] and for an edge
set B/ C (V) weset G— E' == (V,E\E') and G+ E' = (V,EUE'). A
graph G is k-anonymous if for every vertex v € V there are at least k — 1
other vertices in G having the same degree.

A vertex subset V' C V (an edge subset E' C F) is called k-deletion set
if G—V' (G — F’, respectively) is k-anonymous. Analogously, for a set E”
of edges with endpoints in a graph G such that V + E” is k-anonymous,
we call E” an k-insertion set for G. We omit subscripts if the graph is
clear from the context.

Approzimation. Let X be a finite alphabet. Given an optimization prob-
lem @ C X* and an instance I of @), we denote by |I| the size of I, by
opt(I) the optimum value of I and by val(I,S) the value of a feasible
solution S of I. The performance ratio of S (or approzimation factor)

isr(l,S) = max{vzzl)%’[‘?), UZ%EI;)} . For a function p, an algorithm is a
p(n)-approximation, if for every instance I of @), it returns a solution S
such that r(1,S) < p(|I]). An optimization problem is p(n)-approzimable
in polynomial time if there exists a p(n)-approximation algorithm running
in time [I|°() for any instance I. A parameterized optimization prob-
lem @ C X* x N is p(n)-approximable in fpt-time w.r.t. the parameter k if
there exists a p(n)-approximation algorithm running in time f(k) - [I|°()
for any instance (I, k) and f is a computable function [14]. It is worth
pointing that in this case, k is not related to the optimization value.

In this paper we use a gap-reduction between a decision problem and
a minimization or maximization problem. A decision problem A is called
gap-reducible to a maximization problem ) with gap p > 1 if there exists
a polynomial-time computable function that maps any instance I of A
to an instance I’ of @), while satisfying the following properties: (i) if [
is a yes-instance, then opt(I') > cp, and (ii) if I is a no-instance, then
opt(I') < ¢, where ¢ and p are functions of |[I’|. If A is NP-hard, then @ is
not p-approximable in polynomial time, unless P = NP. In this paper we
also use a variant of this notion, called fpt gap-reduction.

Definition 1 (fpt gap-reduction). A parameterized (decision) prob-
lem A is called fpt gap-reducible to a parameterized maximization problem
@ with gap p > 1 if any instance (I, k) of A can be mapped to an instance
(I', k") of Q in f(k)-|I|°"M) time while satisfying the following properties: (i)



k' < g(k) for some function g, (ii) if I is a yes-instance, then opt(I') > ¢p,
and (iii) if I is a no-instance, then opt(I’) < ¢, where ¢ and p are functions
of [I'| and k.

The interest of the fpt gap-reduction is the following result that imme-
diately follows from the previous definition:

Lemma 1. If a parameterized problem A is C-hard and fpt gap-reducible
to a parameterized optimization problem Q with gap p, then Q is not
p-approximable in fpt-time, unless FPT = C, where C is any class of the
parameterized complexity hierarchy.

3 Inapproximability of vertex deletion versions

In this section we consider the optimization problems associated to
ANONYM-V-DEL, that is MIN ANONYM-V-DEL and MAX ANONYM-
V-DEL. We prove that MIN ANONYM-V-DEL is not n'~¢-approximable in
polynomial time, while MAX ANONYM-V-DEL is not n"/2~=-approximable
in fpt-time w.r.t. parameter s, even on trees.

Theorem 1. MIN ANONYM-V-DEL is not n' ~¢-approzimable for any 0 <
€ <1, unless P = NP.

Theorem 2. For every 0 < ¢ < 1/2, MAX ANONYM-V-DEL is not n'/>~¢-
approximable in fpt-time w.r.t. parameter s, even on trees, unless FPT =

W/2).

Proof. Let 0 < ¢ < 1/2 be a constant. We provide an fpt gap-reduction
from the W[2]-hard SET COVER problem [7] parameterized by the solution
size h. SET COVER is defined as follows: given a universe U = {e1,...,en},
a collection C = {S,...,5,} of sets over U, and h € IN the task is to
decide whether there is a set cover ' C C of size |C'| < h, that is
Useer S = U. Let I = (U,C,h) be an instance of SET COVER. We
assume without loss of generality that for each element e; € U there
exists a set S; € C with e; € §;. To reduce the amount of indices in the
construction given below we introduce the function f: U — IN that maps
an element e; € U to f(e;) = (h +4)i. Let t be an integer greater than or
equal to (mn)(1=2)/(29) (We will aim for making the constructed graph
t-anonymous. )

The instance I’ of MAX ANONYM-V-DEL is defined by s = h and on
a graph G = (V, E) constructed as follows: For each element e; € U add



a star Ky g(c,) with the center vertex v§. Denote with Viy = {vf,..., v}, }
the set of all these center vertices. Furthermore, for each element e; € U
add t stars Ky f(c;)4+1-

For each set S; € C add a tree rooted in a vertex vf. The root has |S;|t
child vertices where each element e; € S; corresponds to exactly ¢ of these
children, denoted by vii’sj, . ,vfi’sj. Additionally, for each ¢ € {1,...,t}
we add to vzi’sj exactly f(e;) degree-one neighbors. Hence, the set gadget
is a tree of depth two rooted in UJS . To ensure that the root vjs does not

violate the t-anonymous property we add ¢ stars K, deg(vS)- We denote
’ J

with Ve = {vy,..., v} the set of all root vertices. Finally, to end up with
one tree instead of a forest, repeatedly add edges between any degree-one-
vertices of different connected components.

We now show that if I is a yes-instance then opt(I’) >t and if [ is a
no-instance then opt(I') = 1.

Suppose that I has a set cover of size h. Observe that for each el-
ement e; € U the only vertex of degree f(e;) is vf, and there are no
other vertices violating the t-anonymous property. The key point in the
construction is that, in order to get a t-anonymous graph, one has to
delete vertices of Vp. Indeed, let e; € U be an element and vf a root

vertex such that e; € Sj. By construction the child vertices in’Sj of vf

correspond to e; and therefore have f(e;) child vertices. Thus, deleting Uf
lowers the degree of all vji’sj to f(e;) and, hence, v{ no longer violates the
t-anonymous property. Hence, given a set cover of size h one can construct

a corresponding t-deletion set for G.

Conversely, we show that if there exists a 2-deletion set of size at
most h in G, then (U,C,h) is a yes-instance of SET COVER. Let S CV
be a 2-deletion set of size at most h. First, we show how to construct
a 2-deletion set S" C V¢ such that |S’| < |S|. To this end, initialize S’
as S’ = SNV If S is a 2-deletion set, then the construction of S’ is
finished. Otherwise, there is a vertex v in G — S’ such that there is no other
vertex with the same degree as v. Observe that since S’ C Vg, it follows
that v € Vy, that is v = v§ for some 1 <7 < m. Furthermore, observe that
is exactly one vertex in G having a degree d between f(e;)—h < d < f(e;),
namely v{. As S is a 2-deletion set, it follows that S either contains v{ or a
vertex u that is adjacent to a vertex w with degg(w) > deg(v§). In either
case, we add to S’ a vertex vf € V¢ such that e; € S;. By exhaustively
applying this procedure, we end up with S’ being a 2-deletion set. Since
the vertices in V¢ are the only ones in G that are adjacent to more than



one vertex of degree at least three and all vertices in Viy have degree more
than three, it follows that |S'| < |S].

It remains to show that the set C’ of sets corresponding to the vertices
in S’ forms a set cover. To this end, assume by contradiction that C’ is
not a set cover, that is, there is an element e; ¢ | s, e S;. However, this
implies that in G — 5’ there is exactly one vertex of degree f(e;), namely vf,
implying that S’ is not a 2-deletion set, a contradiction. As |[C'| = |S'| <
|S| < h, it follows that if G contains a 2-deletion set of size h, then (U, C, h)
is a yes-instance. Hence, if (U,C, h) is a no-instance, then there exist no
2-deletion set of size at most h.

Thus, we obtain a fpt gap-reduction with the gap ¢t = (mn)% =
(t?>m?n?)/2=¢ > V|2~ since |V| < t*m?n?. From Lemma 1 and since
SET COVER is W[2]-hard [7], we have that MAX ANONYM-V-DEL is not
n'/>~c_approximable in fpt-time w.r.t. parameter s, even on trees, unless

FPT = W[2]. 0

4 Inapproximability of edge deletion versions

In this section, we first show that ANONYM-E-DEL is NP-hard on caterpil-
lars; the corresponding proof is an adaption of the reduction provided in the
proof of Theorem 2. A caterpillar is a tree that has a dominating path [1],
that is, a caterpillar is a tree such that deleting all leaves results in a
path. Then we provide polynomial-time inapproximability results for MIN
ANONYM-E-DEL and MAX ANONYM-E-DEL for bounded-degree graphs
and parameterized inapproximability results for MAX ANONYM-E-DEL
on general graphs.

Theorem 3. ANONYM-E-DEL is NP-hard on caterpillars, even if k = 2.

Theorem 4. For every 0 < e < 1, MAX ANONYM-E-DEL is not n'~¢-
approzimable even on bounded-degree graphs, unless P = NP.

Theorem 5. For every 0 < ¢ < 1, MIN ANONYM-E-DEL is not n'—¢-
approrimable even on bounded-degree graphs, unless P = NP.

Theorem 6. For every 0 < e < 1, MAX ANONYM-E-DEL is not n'~¢-
approzimable in fpt-time w.r.t. parameter s, unless FPT = W/[1].



Proof. We provide an fpt gap-reduction from the W[1]-hard CLIQUE
problem [7] parameterized by the solution size h. CLIQUE is defined
as follows: given a graph G = (V, F) and an integer h € N, the task
is to decide whether there is a subset V/ C V of at least h pairwise
adjacent vertices. Let I = (G,h) be an instance of CLIQUE. Assume
w.lo.g. that Ag +2h + 1 < n, where n = |V|. If this is not the case, then
one can add isolated vertices to G until the bound holds.

We construct an instance I’ = (G' = (V/, E’), s) of MAX ANONYM-E-
DEL as follows: First, copy G into G’. Then, add a vertex uw and connect
it to the n vertices in G'. Next, for each vertex v € V add to G’ degree-
one vertices that are adjacent only to v such that degqy/(v) = n — h.
This is always possible, since we assumed Ag + 2h + 1 < n. Observe
that in this way at most n(n — h) degree-one vertices are added. Now,
set x := [(4n)%/¢] and add cliques with two, n — 2h + 1, and n — h + 1
vertices such that after adding these cliques the number of degree-d vertices
in G, for each d € {1,n — 2h,n — h}, is between =+ h and = + h +n, that
is, x + h < |Dgs(d)| < & + h + n. After inserting these cliques, the graph
consists of four blocks: of degree one, n — h, n — 2h, and n, where the first
three blocks are roughly of the same size (between z + h and z + h +n
vertices) and the last block of degree n contains exactly one vertex. To
finish the construction, set s := (g) + h.

Now we show that if I is a yes-instance, then opt(I') > z and if I is a
no-instance, then opt(I') < 2s.

Suppose that I contains a clique C' C V of size h. Then, deleting
the (g) edges within C' and the h edges between the vertices in C and u
does not exceed the budget s and results in an z-anonymous graph G”.
Since h edges incident to u are deleted, it follows that degqn(u) = n — h.
Furthermore, for each clique-vertex v € C' also h incident edges are deleted
(h — 1 edges to other clique-vertices and the edge to u), thus it follows
that degqr (v) = n — 2h. Since the degree of the remaining vertices remain
unchanged, and |Dgr(n — h)| > = + h, it follows that each of the three
blocks in G” has size at least x. Hence, G” is z-anonymous.

For the reverse direction, suppose that there is a 2s-deletion set S of
size at most s in G’. Since u is the only vertex in G’ with degree n, and all
other vertices in G’ have degree at most n — h, it follows that S contains at
least h edges that are incident to u. Since Ngv(u) =V, it follows that the
degree of at least h vertices of the block D¢gr(n — h) is decreased by one.
Denote these vertices by C. Since |S| < s and h edges incident to u are
contained in S, it follows that at most 2s — h 4 1 vertices are incident to
an edge in S. Furthermore, since S is a 2s-deletion set, it follows that the



vertices in C' are in G’ — S either contained in the block of degree one or
in the block of degree n — 2h. Thus, by deleting the at most (g) remaining
edges in S, the degree of each of the h vertices in C' is decreased by at
least h — 1. Hence, these (g) edges in S form a clique on the vertices in C
and thus [ is a yes-instance. Therefore, it follows that if I is a no-instance,
then there is no 2s-deletion set of size s in G’ and hence opt(I') < 2s.

Thus we obtain a gap-reduction with the gap at least 5=. Set n’ := |V|.
By construction we have 3z < n’ < n? + 3z + 3h + 3n + 1. By the choice
of z it follows that x > n'/4, since

| 1
% < (07 £ 304 3h+ 30+ 1) = a4 (n* +3h+3n+1-w) <w.
<0
Hence the gap is
n/l—ete n'e € (4n)35/5
=S > p/l-e > N—e > _ —¢ > I1—e
2s 42+ h) = 8R2” " sz sz "

5 Fixed-Parameter Tractability

In previous work, it was shown that ANONYM-E-INS and ANONYM-V-DEL
are both fixed-parameter tractable with respect to the combined parameter
budget s and maximum degree A [2, 11]. Here we generalize the ideas
behind these results and show fixed-parameter tractability for the general
problem variant where one might insert and delete specified numbers of
vertices and edges.

k-DEGREE ANONYMITY EDITING (ANONYM-EDT)

Input: An undirected graph G = (V, E) and five positive inte-
gers S1, So, 3,4 and k.

Question: Is it possible to obtain a graph G' = (V/,E’) from G
using at most s; vertex deletions, so vertex insertions,
s3 edge deletions, and s4 edge insertions, such that G’ is
k-anonymous?

Observe that here we require that the inserted vertices have degree zero
and we have to “pay” for making the inserted vertices adjacent to the
existing ones. In particular, if s4 = 0, then all inserted vertices are isolated
in the target graph. Note that there are other models where the added



vertices can be made adjacent to an arbitrary number of vertices [3, 5].

Our ideas, however, do not directly transfer to this variant.
For convenience, we set s := s1 + s2 + s3 + s4 to be the number of
allowed graph modifications.

Theorem 7. ANONYM-EDT is fized-parameter tractable w.r.t. (s, A).

Proof (sketch). Let I = (G = (V,E),k, s1, 2, 83,54) be an instance of
ANONYM-EDT. In the following we give an algorithm finding a solution if
existing. Intuitively, the algorithm first guesses a “solution structure” and
then checks whether the graph modifications associated to this solution
structure can be performed in G. A solution structure is a graph S with
at most s(A 4 1) vertices where

1. each vertex is colored with a color from {0,..., A} indicating the
degree of the vertex in G and
2. each edge and each vertex is marked either as “to be deleted”, “to be
inserted”, or “not to be changed” such that:
(a) all edges incident to a vertex marked as “to be inserted” are also
marked as “to be inserted”,
(b) at most s; vertices and at most s3 edges are marked as “to be
deleted”, and
(c) at most sp vertices and at most s4 edges are marked as “to be
inserted”.

The intuition about this definition is that a solution structure S contains
all graph modifications in a solution and the vertices that are affected
by the modifications, that is, the vertices whose degree is changed when
performing these modifications. Observe that any solution for I defines
such a solution structure with at most s(A + 1) vertices as each graph
modification affects at most A + 1 vertices. This bound is tight in the
sense that deleting a vertex v affects v and his up to A neighbors. Fur-
thermore, observe that once given such a solution structure, we can check
in polynomial time whether performing the marked edge/vertex inser-
tions/deletions results in a k-anonymous graph G, since the coloring of
the vertex indicates the degrees of the vertices that are affected by the
graph modifications.

Our algorithm works as follows: First it branches into all possibilities
for the solution structure S. In each branch it checks whether performing
the graph modifications indicated by the marks in S indeed result in a
k-anonymous graph. If yes, then the algorithm checks whether the graph
modifications associated to S can be performed in G: To this end, all edges



and vertices marked as “to be inserted” are removed from S and the marks
at the remaining vertices and edges are also removed and the resulting
“cleaned” graph is called S’. Finally the algorithm tries to find S" as an
induced subgraph of G such that the vertex degrees coincide with the
vertex-coloring in S’. This is done by a meta-theorem for bounded local
tree-width graphs [8]. If the algorithm succeeds and finds S’ as an induced
subgraph, then the graph modifications encoded in S can be performed
which proves that I is a yes-instance. If the algorithm fails in every branch,
then, due to the exhaustive search over all possibilities for S, it follows
that I is a no-instance. Thus, the algorithm is indeed correct.

6 Conclusion

We have shown strong inapproximability results for the optimization vari-
ants of ANONYM-E-DEL and ANONYM-V-DEL. We leave two major open
questions concerning polynomial-time approximability and parameterized
approximability: In all our gap reductions the value of k is in the order
of n. This leads to the question whether with constant & MIN ANONYM-
E-DEL or MIN ANONYM-V-DEL are constant-factor approximable in
polynomial time? Second, we failed to transfer the inapproximability
results to ANONYM-E-EDT where we require that the number of edge
insertions plus deletions is at most s. Here, handling the possibility to
revert already changed degrees seems to be crucial in order to obtain any
approximation result (positive or negative) for the optimization variants of
ANONYM-E-EDT. This leads to the question whether there are “reasonable”
(parameterized) approximation algorithms for the optimization variants
of ANONYM-E-EDT?
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A Proofs

A.1 Proof 1 (Theorem 1)

Proof. We establish a gap-reduction from the NP-hard VERTEX COVER
problem to MIN ANONYM-V-DEL. Given a graph G and a positive in-
teger h, the task in the VERTEX COVER is to decide whether there are
at most h vertices such that each edge in G is incident to at least one of
the h vertices [10, GT1].

Now, given an instance I = (G = (V, E), h) of VERTEX COVER, we
construct an instance I’ = (G’ = (V', E'), k) of MIN ANONYM-V-DEL as
follows: G’ contains a copy of the graph G, an independent set IS of size
x, and a complete graph of size n + x — h, where z is an integer greater
than or equal to ne2 = —n. Further, set k := n + x — h. Denote by n’
the number of vertices of G/, thus n’ = 2n + 2z — h.

If G contains a vertex cover S of size h, then S is a k-deletion set for
G’ since removing S from G’ results in a graph with two blocks, one of
degree 0 and one of degree n +x — h — 1. Thus opt(I’) < h.

If G has no vertex cover of size h, in order to obtain a graph that is
k-anonymous, we have to remove at least n + x vertices corresponding to
vertices of G and I.S. In this case opt(I') = n + z.

Thus we obtain a gap-reduction with the gap at least ”—?f > (n+
$)1—521—5 > (n/)l—e‘ 0

A.2 Proof 2 (Theorem 3)

Proof. We provide a polynomial-time reduction from EXAcT COVER BY
3-SETS. Let I = (U,C, h) be an instance of EXACT COVER BY 3-SETS.
We assume without loss of generality that for each element e; € U there
exists a set S; € C with ¢; € S;. To reduce the amount of indices in the
construction given below we introduce the function f: U — IN that maps
an element e; € U to f(e;) = (2h + 3)i.

The instance I’ of ANONYM-E-DEL is defined on a graph G = (V, E)
constructed as follows. For each element e; € U add a star Ky (., with the
center vertex v§. Denote with Vi = {vf,...,v5,} the set of all these center
vertices. Furthermore, for each element e; € U add two stars Ky r,)4+1
and two stars Ky r(e;)42-

For each set S; € C with S; = {eq, €3, e} add a set-gadget consisting
of the stars K7 (c,), K1 f(eg)s and K7 (.. Denote with vg, Ué, and vz, the
center vertices of these stars and denote with V¢ the set of all these center



vertices, formally Vo = {vf |1<i<3hA1<j<nAe €S} Next,add
the edges {va, v} and {vp, o]} to E. Observe that deg(vd) = f(ea) + 1,
deg(vy) = f(ep) + 2, and deg(v}) = f(ey) + 1. To end up with one
caterpillar instead of a forest of caterpillars, do the following exhaustively:
Take two different connected components (caterpillars) C and Cy, let vy
be an endpoint of a dominating path in C, and let v be an endpoint of
the dominating path in Cy, such that degq(vi) = degg(v2) = 1. Then, add
the edge {v1,v2} to reduce the number of connected components by one.

The resulting graph is clearly a caterpillar. We complete the construction
of I’ by setting s = 2h and k = 2.

We now prove that I is a yes-instance of EXAcT COVER BY 3-SETS if
and only if I’ = (G, k, s) is a yes-instance of ANONYM-E-DEL.

Let C' C C be an exact cover of size h. Then we construct a 2-deletion
set S C E of size 2h as follows: For each set S; € C’' with S; = {eq, €3, e}
insert the edges {v, v%} and {vé, v%} into S. First, observe that |S| = 2h.
Next, we show that S is indeed a 2-deletion set. Suppose towards a
contradiction that there exist a vertex v € V such that there is no further
vertex of the same degree in G — S. Then, by construction of G, it follows
that v = v{ € Viy for some ¢ € {1,...,3h} and, by construction of S, it
follows that e; ¢ USj cc Sj, a contradiction.

Let S be a 2-deletion set of edges of size at most 2h. Observe that the
only vertices in G that violate the 2-anonymous property are the vertices
in V7. Furthermore, for each e; € U there is exactly one vertex in G with a
degree d between f(e;) —2h < d < f(e;), namely v. Since S is a 2-deletion
set, it follows that for each v{ € Vis there is a vertex v € V(S) having the
same degree as v in G — 5. Since |Vy7| = 3h and |deg(v) — deg(vf)| > 2h
for all 4,4/ € {1,...,3h}, it follows that |V (S)| > 3h. For the further
argumentation we need some notation. A vertex v € V is a type-¢ vertex,
¢ € N, if there exist a vertex vf € Vi such that degg(v) = degg(v) + L.
Now, observe that in G the type-1 vertices are all pairwise non-adjacent.
Since |V(S)| > 3h, this implies that V(S) contains 2h type-1 vertices
and h type-2 vertices and that |V (S)| = 3h. Thus, for each edge in S it
follows that one endpoint is a type-1 vertex and the other endpoint a
type-2 vertex. Note that the only edges fulfilling this requirement are the
ones making two vertices in V¢ adjacent and, thus, V' (S) C V. Thus, each
type-2 vertex of V() is contained in some set-gadget. Denote with C’ the
set of h sets corresponding to the set-gadgets that contain the h type-2
vertices in V(S). We now prove that C’ is an exact cover. Suppose towards
a contradiction that there is an element e; ¢ J s;ec! S;. This implies, that



no vertex vzj such that j € {1,...,n} and e; € S; is contained in V(5).
However, as V(S) C Ve, this means that v{ has a unique degree in G — 5,
a contradiction to the fact that S is a 2-deletion set. Finally, since |C'| = h,
Usjec, Sj = U, each set contains exactly three elements, and |U| = 3h, it
follows that no element is covered twice. Hence, C’ is an exact cover and,
thus, I is a yes-instance. O

A.3 Proof 3 (Theorem 4)

Proof. We provide a gap-reduction from ExacT COVER BY 3-SETS proved
NP-hard even when no element occurs in more than three subsets [10,
SP2|. For these instances we have h < n < 3h.

Let I = (U,C, h) be an instance of EXACT COVER BY 3-SETS where
no element occurs in more than three subsets. We construct an instance
I' = (G, s) of MAX ANONYM-E-DEL as follows. The graph G contains a
vertex u; for each element e; from U and a vertex c; for each subset §;
from C. There is an edge in G between u; and c; if S; contains e;. For
each vertex c¢; we add four degree-one vertices that are adjacent to c;,
thus the degree of each vertex c; is 7. For each vertex u; we add up to
three degree-one vertices that are adjacent to u; such that the degree of u;
is 3 (observe that each element occurs in at most three sets). Let « be an
integer greater than or equal to (3h40'~%)1/%. We add in G z stars K 7,
x stars K 4 and x stars K . Consider s = 3h. Thus graph G has n 4+«
vertices of degree 7, = of degree 4, 3h of degree 3, x of degree 2 and many
vertices of degree 1, and so G is 3h-anonymous. The number of vertices in
G isn' > 16z + 3h + 5n.

We now show that if I is a yes-instance then opt(I') > z and if I is a
no-instance then opt(I') = 3h.

Suppose that I contains an exact cover C' C C of size h. Then removing
from G the 3h edges between ¢; € ¢’ and u; € U, we obtain a graph G’
that is z-anonymous, since all vertices from the block of degree 3 from G
are in G’ in the block of degree 2.

Suppose now that I does not contain any exact cover of size h. There
are two possibilities to try to increase the anonymity of the graph G. The
first one consists of moving some vertices from the block of degree 4 to
the block of degree 3, for this we have to remove 3h edges from the stars
K14 but then we have 3h vertices of degree 0. The other possibility is to
move all vertices from the block of degree 3 to the block of degree 2, for
this we have to remove an edge incident to each vertex wu;. Since there is



no exact cover in I, removing such a set of edges will create some new
blocks of degree 5 or/and 6. So in this case opt(I’) < 3h.

Thus we obtain a gap-reduction with the gap at least 55 > 81=¢(5x)t—¢ >
81=¢(2x + 3h)'1 =% = (162 + 24h)'~¢ > (n’)'~¢, where for the last inequali-
ties we use that & > h, h < n < 3h, and 16x + 9h + 5n < n'. O

A.4 Proof 4 (Theorem 5)

Proof. We provide a gap-reduction from EXAcT COVER BY 3-SETS to
MIN ANONYM-E-DEL. Let I = (U,C, h) be an instance of EXACT COVER
BY 3-SETS where no element occurs in more than three subsets. We
provide an instance I’ = (G, k) of MIN ANONYM-E-DEL where the graph
is constructed as in the proof of Theorem 4 and k := x.

We now show that if I is a yes-instance then opt(I') = 3h and if I is a
no-instance then opt(I') > x.

Suppose that I contains an exact cover C' C C of size h. Then removing
from G the 3h edges between ¢; € ¢’ and u; € U, we obtain a graph G’
that is z-anonymous, since all vertices from the block of degree 3 from G
are in G’ in the block of degree 2.

Suppose now that I does not contain any exact cover of size h. We
can prove, as in Theorem 4, that in order to obtain a k-anonymous graph,
we have to remove z edges from the stars K 4 (one edge by star). Thus
opt(I') > x.

Thus we obtain a gap-reduction with the gap at least 5 > (n’ y'=eo o

A.5 Proof 5 (Theorem 7)

Proof. Let I = (G = (V,E),k, s1, s2, 83, 84) be an instance of ANONYM-
EDT. In the following we give an algorithm finding a solution if existing.
Intuitively, the algorithm first guesses a “solution structure” and then
checks whether the graph modifications associated to this solution structure
can be performed in G. A solution structure is a graph .S with at most s(A+
1) vertices where

1. each vertex is colored with a color from {0,..., A} indicating the
degree of the vertex in G and
2. each edge and each vertex is marked either as “to be deleted”, “to be
inserted”, or “not to be changed” such that:
(a) all edges incident to a vertex marked as “to be inserted” are also
marked as “to be inserted”,



(b) at most s; vertices and at most s3 edges are marked as “to be
deleted”, and

(c) at most sg vertices and at most s4 edges are marked as “to be
inserted”.

The intuition about this definition is that a solution structure S contains
all graph modifications in a solution and the vertices that are affected
by the modifications, that is, the vertices whose degree is changed when
performing these modifications. Observe that any solution for I defines
such a solution structure with at most s(A + 1) vertices as each graph
modification affects at most A + 1 vertices. This bound is tight in the
sense that deleting a vertex v affects v and his up to A neighbors. Fur-
thermore, observe that once given such a solution structure, we can check
in polynomial time whether performing the marked edge/vertex inser-
tions/deletions results in a k-anonymous graph G, since the coloring of
the vertex indicates the degrees of the vertices that are affected by the
graph modifications.

Our algorithm works as follows: First it branches into all possibilities
for the solution structure S. In each branch it checks whether performing
the graph modifications indicated by the marks in S indeed result in a
k-anonymous graph. If yes, then the algorithm checks whether the graph
modifications associated to S can be performed in G: To this end, all edges
and vertices marked as “to be inserted” are removed from S and the marks
at the remaining vertices and edges are also removed and the resulting
“cleaned” graph is called S’. Finally the algorithm tries to find S’ as an
induced subgraph of G such that the vertex degrees coincide with the
vertex-coloring in S’. If the algorithm succeeds and finds S” as an induced
subgraph, then the graph modifications encoded in S can be performed
which proves that I is a yes-instance. If the algorithm fails in every branch,
then, due to the exhaustive search over all possibilities for S, it follows
that I is a no-instance. Thus, the algorithm is indeed correct.

As to the running time: There are s(A+ 1) possibilities for the number
of vertices in the solution structure. Hence, there are at most s(A +1) -

2("5) < 2(s(A+1))? graphs. Furthermore, there are at most (A+1)%(4+1)

. s(A+1)
possibilities to color the vertices and 35(A+1)+< 2) possibilities to mark

the vertices and edges. Overall, the algorithm branches into 20((s4)%)
possibilities for the solution structure S. As mentioned above, checking
whether performing the graph modifications indicated by S indeed results
in a k-anonymous graph can be done in polynomial time.



Next, the algorithm checks for each .S that may lead to a k-anonymous
graph whether the cleaned graph S’ occurs as an induced subgraph in G
such that degree constraints given by the vertex coloring are fulfilled.
Observe that since our input graph GG has maximum degree A it also has a
local tree-width of at most A [8]. Thus, for finding S” as induced subgraph,
we can use a general result of Frick and Grohe [8, Theorem 1.2] showing
that deciding whether a graph H of local tree-width at most ¢ satisfies a
property ¢ definable in first-order logic is fixed-parameter tractable with
respect to the combined parameter (|¢|,¢). The subgraph isomorphism
problem can be solved with this result on graphs with bounded local
tree-width [8]. Thus it remains to specify the part of the formula ¢ that
ensures the degree constraints. To this end, Frick and Grohe [8] gave as
example the formula

x eV A-TyIz(=(y=2)A(x,y) € EN(x,2) € FE)

to express that a vertex x € V has degree at most one. This formula can be
extended to express that z € V has degree at most £ for some 1 </ < A
and the size of the formula is bounded in a function of A. Similarly,
removing the first negation symbol yields the statement x € V has a
degree of at least two (or at least £ + 1 in the extended version). Hence,
we can express the degree constraints and the formula-size is still bounded
by a function of s and A (as there are up to s(A + 1) vertices in S’).
Hence, applying the results of Frick and Grohe [8], shows that the overall
algorithm runs in fpt-time w.r.t. to (s, A). O
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