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Abstract. Motivated by a strongly growing interest in anonymizing
social network data, we investigate the NP-hard Degree Anonymization
problem: given an undirected graph, the task is to add a minimum number
of edges such that the graph becomes k-anonymous. That is, for each
vertex there have to be at least k − 1 other vertices of exactly the same
degree. The model of degree anonymization has been introduced by
Liu and Terzi [ACM SIGMOD’08], who also proposed and evaluated
a two-phase heuristic. We present an enhancement of this heuristic,
including new algorithms for each phase which significantly improve on the
previously known theoretical and practical running times. Moreover, our
algorithms are optimized for large-scale social networks and provide upper
and lower bounds for the optimal solution. Notably, on about 26 % of
the real-world data we provide (provably) optimal solutions; whereas
in the other cases our upper bounds significantly improve on known
heuristic solutions.

1 Introduction

In recent years, the analysis of (large-scale) social networks received a steadily
growing attention and turned into a very active research field [6]. Its importance
is mainly due the easy availability of social networks and due to the potential
gains of an analysis revealing important subnetworks, statistical information,
etc. However, as the analysis of networks may reveal sensitive data about the
involved users, before publishing the networks it is necessary to preprocess them
in order to respect privacy issues [8]. In a landmark paper [11] initiating a lot of
follow-up work [4, 9, 12],1 Liu and Terzi transferred the so-called k-anonymity
concept known for tabular data in databases [8, 13, 14, 15] to social networks
modeled as undirected graphs. A graph is called k-anonymous if for each vertex
there are at least k − 1 other vertices of the same degree. Therein, the larger k
is, the better the expected level of anonymity is.

In this work we describe and evaluate a combination of heuristic algorithms
which provide (for many tested instances matching) lower and upper bounds, for
the following NP-hard graph anonymization problem:

1 According to Google Scholar (accessed Feb. 2014) it has been cited more than 300
times.



⇒ 1,2,2,3
Phase 1.⇒ 3,3,3,3

Phase 2.⇒

input graph G degree “k-anonymized” realization
with k = 4 sequence D degree sequence D′ of D′ in G

Fig. 1: A simple example for the two phases in the heuristic of Liu and Terzi [11].
Phase 1: Anonymize the degree sequence D of the input graph G by increasing the
numbers in it such that each resulting number occurs at least k times. Phase 2: Realize
the k-anonymized degree sequence D′ as a super-graph of G.

Degree Anonymization [11]
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Task: Find a minimum-size edge set E′ over V such that adding E′ to G results

in a k-anonymous graph.

As Degree Anonymization is NP-hard even for constant k ≥ 2 [9], all known
(experimentally evaluated) algorithms, are heuristics in nature [3, 11, 12, 16].
Liu and Terzi [11] proposed a heuristic which, in a nutshell, consists of the
following two phases: i) Ignore the graph structure and solve a corresponding
number problem and ii) try to transfer the solution from the number problem
back to the graph instance. More formally (see Figure 1 for an example), given
an instance (G, k), first compute the degree sequence D of G, that is, the multiset
of positive integers corresponding to the vertex degrees in G. Then, Phase 1
consists of k-anonymizing the degree sequence D (each number occurs at least k
times) by a minimum amount of increments to the numbers in D resulting in D′.
In Phase 2, try to realize the k-anonymous sequence D′ as a super-graph of G,
meaning that each vertex gets a demand, which is the difference of its degree
in D′ compared to D, and then a “realization” algorithm adds edges to G such
that for each vertex the amount of incident new edges equals its demand.

Note that, since the minimum “k-anonymization cost” of the degree se-
quence D (sum over all demands) is always a lower bound on the k-anonymization
cost of G, the above described algorithm, if successful when trying to realize D′

in G, optimally solves the given Degree Anonymization instance.

Related Work. We only discuss work on Degree Anonymization directly
related to what we present here. Our algorithm framework is based on the
two-phase algorithm due to Liu and Terzi [11] where also the model of graph
(degree-)anonymization has been introduced. Other models of graph anonymiza-
tion have been studied as well, see Zhou and Pei [18] (studying the neighborhood
of vertices) and Chester et al. [4] (anonymizing vertex subsets). We refer to Zhou
et al. [19] for a survey on anonymization techniques for social networks. Degree
Anonymization is NP-hard for constant k ≥ 2 and it is W[1]-hard (presumably
not fixed-parameter tractable) with respect to the parameter size of a solution
size [9]. On the positive side, there is polynomial-size kernel (efficient and effective
preprocessing) with respect to the maximum degree of the input graph [9]. Lu
et al. [12] and Casas-Roma et al. [3] designed and evaluated heuristic algorithms
that are our reference points for comparing our results.
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Our Contributions. Based on the two-phase approach of Liu and Terzi [11] we
significantly improve the lower bound provided in Phase 1 and provide a simple
heuristic for new upper bounds in Phase 2. Our algorithms are designed to deal
with large-scale real world social networks (up to half a million vertices) and
exploit some common features of social networks such as the power-law degree
distribution [1]. For Phase 1, we provide a new dynamic programming algorithm of
k-anonymizing a degree sequence D “improving” the previous running time O(nk)
to O(∆k2s), where s denotes the solution size. Note that maximum degree ∆ is
in our considered instances about 500 times smaller than the number of vertices n.
We also implemented a data reduction rule which leads to significant speedups of
the dynamic program. We study two different cases to obtain upper bounds. If
one of the degree sequences computed in Phase 1 is realizable, then this gives an
optimal upper bound and otherwise we heuristically look for “near” realizable
degree sequences. For Phase 2 we evaluate the already known “local exchange”
heuristic [11] and provide some theoretical justification of its quality.

We implemented our algorithms and compare our upper bounds with a heuris-
tic of Lu et al. [12], called clustering-heuristic in the following. Our empirical evalu-
ation demonstrates that in about 26% of the real-world instances the lower bound
matches the upper bound and in the remaining instances our heuristic upper
bound is on average 40% smaller than the one provided by the clustering-heuristic.
However, this comes at a cost of increased running time: the clustering-heuristic
could solve all instances within 15 seconds whereas there are a few instances
where our algorithms could not compute an upper bound within one hour.

Due to the space constraints, all proofs and some details are deferred to a
full version. Most details and proofs are also given in an arxiv-version [10].

2 Preliminaries

We use standard graph-theoretic notation. All graphs studied in this paper are
undirected and simple without self-loops and multi-edges. For a given graph G =
(V,E) with vertex set V and edge set E we set n := |V | andm := |E|. Furthermore,
by degG(v) we denote the degree of a vertex v ∈ V in G and ∆G denotes the
maximum degree in G. For 0 ≤ d ≤ ∆G let BGd := {v ∈ V | degG(v) = d} be the
block of degree d, that is, the set of all vertices with degree d in G. Thus, being
k-anonymous is equivalent to each block being of size either zero or at least k.
For a set S of edges with endpoints in a graph G, we denote by G+ S the graph
that results from inserting all edges from S into G. We call S an edge insertion
set for G and if G+ S is k-anonymous, then it is an k-insertion set.

A degree sequence D is a multiset of positive integers and ∆D denotes its max-
imum value. The degree sequence of a graph G with vertex set V = {v1, . . . , vn}
is DG := {degG(v1), . . . ,degG(vn)}. For a degree sequence D, we denote by bd
how often value d occurs in D and we set B = {b0, . . . , b∆D} to be the block
sequence of D, that is, B is just the list of the block sizes of G. Clearly, the block
sequence of a graph G is the block sequence of G’s degree sequence. The block
sequence can be viewed as a compact representation of a degree sequence (just
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storing the amount of vertices for each degree) and we use these two representa-
tions of vertex degrees interchangeably. Equivalently to graphs, a block sequence
is k-anonymous if each value is either zero or at least k and a degree sequence is
k-anonymous if its corresponding block sequence is k-anonymous.

Let D = {d1, . . . , dn} and D′ = {d′1, . . . , d′n} be two degree sequences with
corresponding block sequences B and B′. We define ‖B‖ = |D| =

∑n
i=1 di. We

write D′ ≥ D and B′ = B if for both degree sequences sorted in ascending order
it holds that d′i ≥ di for all i. Intuitively, this captures the interpretation “D′

can be obtained from D by increasing some values”. If D′ ≥ D, then (for sorted
degree sequences) we define the degree sequence D′−D = {d′1− d1, . . . , d′n− dn}
and set B′ � B to be its block sequence. We omit sub- and superscripts if the
graph is clear from the context.

3 Description of the Algorithm Framework

In this section we present the details of our algorithm framework to solve Degree
Anonymization. We first provide a general description how the problem is split
into several subproblems (basically corresponding to the two-phase approach of
Liu and Terzi [11]) and then describe the corresponding algorithms in detail.

3.1 General Framework Description

We first provide a more formal description of the two-phase approach due to
Liu and Terzi [11] and then describe how we refine it: Let (G = (V,E), k) be an
input instance of Degree Anonymization.

Phase 1: For the degree sequence D of G, compute a k-anonymous degree
sequence D′ such that D′ ≥ D and |D − D′| is minimized.

Phase 2: Try to realize D′ in G, that is, try to find an edge insertion set S such
that the degree sequence of G+ S is D′.

The minimum k-anonymization cost of D, formally |D′ −D|/2, is a lower bound
on the number of edges in a k-insertion set for G. Hence, if succeeding in Phase 2
to realize D′, then a minimum-size k-insertion set S for G has been found.

Liu and Terzi [11] gave a dynamic programming algorithm which exactly
solves Phase 1 and they provided the so-called local exchange heuristic algorithm
for Phase 2. If Phase 2 fails, then the heuristic of Liu and Terzi [11] relaxes the
constraints and tries to find a k-insertion set yielding a graph “close” to D′.

We started with a straightforward implementation of the dynamic program-
ming algorithm and the local exchange heuristic. We encountered the problem
that, even when iterating through all minimum k-anonymous degree sequences D′,
one often fails to realize D′ in Phase 2. More importantly, we observed the diffi-
culty that iterating through all minimum sequences is often to time consuming
because the same sequence is recomputed multiple times. This is because the
dynamic program iterates through all possibilities to choose “sections” of con-
secutive degrees in the (sorted) degree sequence D that end up in the same
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B = {0, 3, 1, 4, 0, 1, 1} B′ = {0, 3, 0, 5, 0, 0, 2}

Fig. 2: A graph (left side) with block sequence B that can be 2-anonymized by adding
one edge (right side) resulting in B′. Another 2-anonymous block sequence (also of
cost two) that will be found by the dynamic programming is B′′ = {0, 2, 2, 4, 0, 0, 2}.
The realization of B′′ in G would require to add an edge between a degree-five vertex
(there is only one) and a degree-one vertex, which is impossible.

block in D′. These sections have to be of length at least k (the final block has to
be full) but at most 2k − 1 (longer sections can be split into two). However, if
there is a huge block B (of size � 2k) in D, then the algorithm goes through
all possibilities to split B into sections, although it is not hard to show that at
most k − 1 degrees from each block are increased. Thus, different ways to cut
these degrees into sections result in the same degree sequence.

We thus redesigned the dynamic program for Phase 1. The main idea is to
consider the block sequence of the input graph and exploiting the observation
that at most k− 1 degrees from a block are increased in a minimum-size solution.
Therefore, we avoid to partition one block into multiple sections and the running
time dependence on the number of vertices n can be replaced by the maximum
degree ∆, yielding a significant performance increase.

We also improved the lower bound provided by D′−D on the k-anonymization
cost of G. To this end, the basic observation was that while trying to realize
one of the minimum k-anonymous sequences D′ in Phase 2 (failing in almost
all cases), we encountered that by a simple criterion on the sequence D′ − D
one can even prove that D′ is not realizable in G. That is, a k-insertion set S
for G corresponding to D′ would induce a graph with degree sequence D′ −D.
Hence, the requirement that there is a graph with degree sequence D′ −D is a
necessary condition to realize D′ in G in Phase 2. Thus, for increasing cost c, by
iterating through all k-anonymous sequences D′ with |D′ −D| = c and excluding
the possibility that D′ is realizable in G by the criterion on D′ − D, one can
step-wisely improve the lower bound on the k-anonymization cost of G. We
apply this strategy and thus our dynamic programming table allows to iterate
through all k-anonymous sequences D′ with |D′ −D| = c. Unfortunately, even
this criterion might not be sufficient because the already present edges in G
might prevent the insertion of a k-insertion set which corresponds to D′ − D
(see Figure 2 for an example). We thus designed a test which not only checks
whether D′−D is realizable but also takes already present edges in G into account
while preserving that |D′−D| is a lower bound on the k-anonymization cost of G.
With this further requirement on the resulting sequences D′ of Phase 1, in our
experiments we observe that Phase 2 of realizing D′ in G is in 26 % of the real-
world instances successful. Hence, 26 % of the instances can be solved optimally.
See Subsection 3.2 for a detailed description of our algorithm for Phase 1.
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For Phase 2 the task is to decide whether a given k-anonymization D′ can be
realized in G. As we will show that this problem is NP-hard, we split the problem
into two parts and try to solve each part separately by a heuristic. First, we find
a degree-vertex mapping, that is, we assign each degree d′i ∈ D′ to a vertex v
in G such that d′i ≥ degG(v). Then, the demand of vertex v is set to d′i−degG(v).
Second, given a degree-vertex mapping with the corresponding demands we try
the find an edge insertion set such that the number of incident new edges for
each vertex is equal to its demand. While the second part could in principle
be done optimally in polynomial-time by solving an f -factor problem [9], we
show that already a heuristic refinement of the “local exchange” heuristic due
to Liu and Terzi [11] is able to succeed in most cases. Thus, theoretically and
also in our experiments, the “hard part” is to find a good degree-vertex mapping.
Roughly speaking, the difficulties are that, according to D′, there is more than
one possibility of how many vertices from degree i are increased to degree j > i.
Even having settled this it is not clear which vertices to choose from block i. See
Subsection 3.3 for a detailed description of our algorithm for Phase 2.

3.2 Phase 1: Exact k-Anonymization of Degree Sequences

We start with providing a formal problem description of k-anonymizing a degree
sequence D and describe our dynamic programming algorithm to find such
sequences D′. We then describe the criteria that we implemented to improve the
lower bound |D′ −D|.
Basic Number Problem. The decision version of the degree sequence anonymiza-
tion problem reads as follows.

k-Degree Sequence Anonymity (k-DSA)
Input: A block sequence B and integers k, s ∈ N.
Question: Is there a k-anonymous block sequence B′=B such that ‖B′ � B‖ = s?

The requirements on B′ in the above definition ensure that B′ can be obtained by
performing exactly s many increases to the degrees in B. Liu and Terzi [11] gave a
dynamic programming algorithm that solves k-DSA optimally in O(nk) time and
space. Here, besides using block instead of degree sequences, we added another
dimension to the dynamic programming table storing the cost of a solution.

Lemma 1. k-Degree Sequence Anonymity can be solved in O(∆ · k2 · s)
time and O(∆ · k · s) space.

There might be multiple minimum solutions for a given k-DSA instance while
only one of them is realizable, see Figure 2 for an example. Hence, instead of just
computing one minimum-size solution, we iterate through these minimum-size
solutions until one solution is realizable or all solutions are tested. Observe that
there might be exponentially many minimum-size solutions: In the block sequence
B = {0, 3, 1, 3, 1, . . . , 3, 1, 3}, for k = 2, each subsequence 3, 1, 3 can be either
changed to 2, 2, 3 or to 3, 0, 4. We use a data reduction rule to reduce the amount
of considered solutions in such instances.
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Criteria on the Realizability of k-DSA Solutions. A difficulty in the solu-
tions provided by Phase 1, encountered in our preliminary experiments and as
already observed by Lu et al. [12] on a real-world network, is the following: If a
solution increases the degree of one vertex v by some amount, say 100, and the
overall number of vertices with increased degree is at most 100, then there are
not enough neighbors for v to realize the solution. We overcome this difficulty as
follows: For a k-DSA-instance (B, k) and a corresponding solution B′, let S be
a k-insertion set for G such that the block sequence of G + S is B′. By defini-
tion, the block sequence of the graph induced by the edges S is B′ � B. Hence,
it is a necessary condition (for success in Phase 2) that B′ � B is a realizable
block sequence, that is, there is a graph with block sequence B′ � B. Tripathi
and Vijay [17] have shown that it is enough to check to following Erdős-Gallai
characterization of realizable degree sequence just once for each block.

Lemma 2 ([7]). Let D = {d1, . . . , dn} be a degree sequence sorted in descending
order. Then D is realizable if and only if

∑n
i=1 di is even and for each 1 ≤ r ≤ n−1

it holds that

r∑
i=1

di ≤ r(r − 1) +

n∑
i=r+1

min(r, di). (1)

We call the characterization provided by Lemma 2 the Erdős-Gallai test. Unfor-
tunately, there are k-anonymous sequences D′, passing the Erdős-Gallai test, but
still or not realizable in the input graph G (see Figure 2 for an example).

We thus designed an advanced version of the Erdős-Gallai test that takes the
structure of the input graph into account. To explain the basic idea behind, we
first discuss how Inequality (1) in Lemma 2 can be interpreted: Let V r be the
set of vertices corresponding to the first r degrees. The left-hand side sums over
the degrees of all vertices in V r. This amount has to be at most as large as the
number of edges (counting each twice) that can be “obtained” by making V r a
clique (r(r − 1)) and the maximum number of edges to the vertices in V \ V r (a
degree-di vertex has at most min{di, r} neighbors in V r). The reason why the
Erdős-Gallai test might not be sufficient to determine whether a sequence can be
realized in G is that it ignores the fact that some vertices in V r might be already
adjacent in G and it also ignores the edges between vertices in V r and V \ V r.
Hence, the basic idea of our advanced Erdős-Gallai test is, whenever some of the
vertices corresponding to the degrees can be uniquely determined, to subtract
the corresponding number of edges as they cannot contribute to the right-hand
side of Inequality (1).

While the difference between using just the Erdős-Gallai test and the advanced
Erdős-Gallai test resulted in rather small differences for the lower bound (at
most 10 edges), this small difference was important for some of our instances to
succeed in Phase 2 and to optimally solve the instance. We believe that further
improving the advanced Erdős-Gallai test is the best way to improve the rate of
success in Phase 2.

7



Complete Strategy for Phase 1. With the above described restriction for
realizable k-anonymous degree sequences, we finally arrive at the following
problem for Phase 1, stated in the optimization form we solve:

Realizable k-Degree Sequence Anonymity (k-RDSA)
Input: A degree sequence B and an integer k ∈ N.
Task: Compute all k-anonymous degree sequences B′ such that B′=B, ‖B′�B‖

is minimum, and B′ � B is realizable.

Our strategy to solve k-RDSA is to iterate (for increasing solution size) through
the solutions of k-DSA and run for each of them the advanced Erdős-Gallai test.
Thus, we step-wisely increase the respective lower bound B′ − B until we arrive
at some B′ passing the test. Then, for each solution of this size we test in Phase 2
whether it is realizable (if so, then we found an optimal solution). If the realization
in Phase 2 fails, then, for each such block sequence B′, we compute how many
degrees have to be “wasted” in order to get a realizable sequence. Wasting means
to greedily increase some degrees in B′ (while preserving k-anonymity) until
the resulting degree sequence is realizable in the input graph. The cost B′ − B
plus the amount of degrees needed to waste in order to realize B′ is stored as
an upper-bound. A minimum upper-bound computed in this way is the result
of our heuristic.

Due to the power law degree distribution in social networks, the degree of
most of the vertices is close to the average degree, thus one typically finds in such
instances two large blocks Bi and Bi+1 containing many thousands of vertices.
Hence, “wasting” edges is easy to achieve by increasing degrees from Bi by one
to Bi+1 (this is optimal with respect to the Erdős-Gallai characterization). For
the case that two such blocks cannot be found, as a fallback we also implemented
a straightforward dynamic programming to find all possibilities to waste edges
to obtain a realizable sequence.

Remark. We do not know whether the decision version of k-RDSA (find only one
such solution B′) is polynomial-time solvable and resolving this question remains
as challenge for future research.

3.3 Phase 2: Realizing a k-Anonymous Degree Sequence

Let (G, k) be an instance of Degree Anonymization and let B be the block
sequence of G. In Phase 1 a k-anonymization B′ of B is computed such that
B′ =B. In Phase 2, given G and B′, the task is to decide whether there is a set S
of edge insertions for G such that the block sequence of G+ S is equal to B′. We
call this the Degree Realization problem and first prove that it is NP-hard.

Theorem 1. Degree Realization is NP-hard even on cubic planar graphs.

We next present our heuristics for solving Degree Realization. First, we
find a degree-vertex mapping, that is, for D′ = d′1, . . . , d

′
n being the degree

sequence corresponding to B′, we assign each value d′i to a vertex v in G such
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that d′i ≥ degG(v) and set D(v), the demand of v, to d′i − degG(v). Second, we
try to find, mainly by the local exchange heuristic, an edge insertion set S such
that in G+ S the amount of incident new edges for each vertex v is equal to its
demand D(v). The details in the proof of Theorem 1 indeed show that already
finding a realizable degree-vertex mapping is NP-hard. This coincides with our
experiments, as there the “hard part” is to find a good degree-vertex mapping
and the local exchange heuristic is quite successful in realizing it (if possible).
Indeed, we prove that “large” solutions can be always realized by it. As a first
step for this, we prove that any demand function can be assumed to require to
increase the vertex degrees at most up to 2∆2.

Lemma 3. Any minimum-size k-insertion set for an instance of Degree
Anonymization yields a graph with maximum degree at most 2∆2.

Theorem 2. A demand function D is always realizable by the local exchange
heuristic in a maximum degree-∆ graph G = (V,E) if

∑
v∈V D(v) ≥ 20∆4 + 4∆2.

4 Experimental Results

Implementation Setup. All our experiments are performed on an Intel Xeon
E5-1620 3.6GHz machine with 64GB memory under the Debian GNU/Linux
6.0 operating system. The program is implemented in Java and runs under
the OpenJDK runtime environment in version 1.7.0 25. The time limit for one
instance is set to one hour per k-value and we tested for k = 2, 3, 4, 5, 7, 10, 15,
20, 30, 50, 100, 150, 200. After reaching the time limit, the program is aborted
and the upper and lower bounds computed so far by the dynamic program for
Phase 1 are returned. The source code is freely available.2

Real-World Instances. We considered the five social networks from the co-
author citation category in the 10th DIMACS challenge [5].

We compared the results of our upper bounds against an implementation of
the clustering-heuristic provided by Lu et al. [12] and against the lower bounds
given by the dynamic program. Our algorithm could solve 26% of the instances
to optimality within one hour. Interestingly, our exact approach worked best with
the coPapersCiteseer graph from the 10th DIMACS challenge although this graph
was the largest one considered (in terms of n + m). For all tested values of k
except k = 2, we could optimally k-anonymize this graph and for k = 2 our upper
bound heuristic is just two edges away from our lower bound. The coAuthorsDBLP
graph is a good representative for the results on the DIMACS-graphs, see Table 1:
A few instances could be solved optimally and for the remaining ones our heuristic
provides a fairly good upper bound. One can also see that the running times of
our algorithms increase (in general) exponentially in k. This behavior captures
the fact that our dynamic program for Phase 1 iterates over all minimal solutions
and for increasing k the number of these solutions increases dramatically. Our
heuristic also suffers from the following effect: Whereas the maximum running

2 http://fpt.akt.tu-berlin.de/kAnon/
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Table 1: Experimental results on real-world instances. We use the following abbreviations:
CH for clustering-heuristic of Lu et al. [12], OH for our upper bound heuristic, OPT for
optimal value for the Degree Anonymization problem, and DP for dynamic program
for the k-RDSA problem. If the time entry for DP is empty, then we could not solve
the k-RDSA instance within one-hour and the DP bounds display the lower and upper
bounds computed so far. If OPT is empty, then either the k-RDSA solutions could not
be realized or the k-RDSA instance could not be solved within one hour.

solution size DP bounds time (in seconds)
graph k CH OH OPT lower upper CH OH DP

coAuthorsDBLP
(n ≈ 2.9 · 105,
m ≈ 9.7 · 105,
∆ = 336)

2 97 62 61 61 1.47 0.08 0.043
5 531 321 317 317 317 1.41 0.29 26.774

10 1,372 893 869 869 1.03 0.48 1.58
100 21,267 15,050 10,577 11,981 1.13 885.79

coPapersCiteseer
(n ≈ 4.3 · 105,
m ≈ 1.6 · 107,
∆ = 1188)

2 203 80 78 78 9.9 0.1 0.394
5 998 327 327 327 327 10.32 0.19 0.166

10 2,533 960 960 960 960 8.83 0.74 0.718
100 51,456 22,030 22,007 22,007 22,007 5.97 263.95 264.553

coPapersDBLP
(n ≈ 5.4 · 105,
m ≈ 1.5 · 107,
∆ = 3299)

2 1,890 1,747 950 1,733 11.28 2.13
5 9,085 8,219 4,414 8,121 10.66 28.83

10 19,631 17,571 9,557 17,328 9.95 149.56
100 258,230 128,143 233,508 22.16

time of the clustering-heuristic heuristic was one minute, our heuristic could solve
74% of the instances within one minute and did not finish within the one-hour
time limit for 12% of the tested instances. However, the solutions produced by
our upper bound heuristic are always smaller than the solutions provided by the
clustering-heuristic, on average the clustering-heuristic results are 72% larger
than the results of our heuristic.

Random Instances. We generated random graphs according to the model by
Barabási–Albert [1] using the implementation provided by the AGAPE project [2]
with the JUNG library3. Starting with m0 = 3 and m0 = 5 vertices these networks
evolve in t ∈ {400, 800, 1200, . . . , 34000} steps. In each step a vertex is added and
made adjacent to m0 existing vertices where vertices with higher degree have a
higher probability of being selected as neighbor of the new vertex. In total, we
created 170 random instances.

Our experiments reveal that the synthetic instances are particular hard. For
example, even for k = 2 and k = 3 we could only solve 14% of the instances
optimal although our dynamic program produces solutions for Phase 1 in 96%
of the instances. For higher values of k the results are even worse (for example
zero exactly solved instances for k = 10). This indicates that the current lower
bound provided by Phase 1 needs further improvements. However, the upper
bound provided by our heuristic are not far away: On average the upper bound is
3.6% larger than the lower bound and the maximum is 15%. Further enhancing
the advanced Erdős-Gallai test seem to be the most promising step towards
closing this gap between lower and upper bound. Comparing our heuristic with

3 http://jung.sourceforge.net/
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Fig. 3: Comparison of our heuristic (always the light blue line without marks) with the
clustering-heuristic (always the light red line with little star as marks) on random data
with different parameters: Top row is for k = 2, bottom row for k = 3; the left column
is for m0 = 3, and the right column for m0 = 5. The linear, solid dark red line and
dash-dotted blue line are linear regressions of the corresponding data plot. One can see
that our heuristic produces always smaller solutions.

the clustering-heuristic reveal similar results as for real-world instances. Our
heuristic always beats the clustering-heuristic in terms of solution size, see Figure 3
for k = 2 and k = 3. We remark that for larger values of k the running time of
the heuristic increases dramatically: For k = 30 our algorithm provides upper
bounds for 96% of the instances, whereas for k = 150 this value drops to 18%.

5 Conclusion

We have demonstrated that our algorithm framework is suitable to solve Degree
Anonymization on real-world social networks. The key ingredients for this is an
improved dynamic programming for the task to k-anonymize degree sequences
together with certain lower bound techniques, namely the advanced Erdős-Gallai
test. We have also demonstrated that the local exchange heuristic due to Liu
and Terzi [11] is a powerful algorithm for realizing k-anonymous sequences and
provided some theoretical justification for this effect.

The most promising approach to speedup our algorithm and to overcome
its limitations on the considered random data, is to improve the lower bounds
provided by the advanced Erdős-Gallai test. Towards this, and also to improve
the respective running times, one should try to answer the question whether one

11



can find in polynomial-time a minimum k-anonymization D′ of a given degree
sequence D such that D′ −D is realizable.
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