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Abstract. We define and analyze an anonymization problem in undi-
rected graphs, which is motivated by certain privacy issues in social
networks. The goal is to remove a small number of vertices from the
graph such that in the resulting subgraph every occurring vertex degree
occurs many times.
We prove that the problem is NP-hard for trees, and also for a number
of other highly structured graph classes. Furthermore we provide poly-
nomial time algorithms for other graph classes (like threshold graphs),
and thereby establish a sharp borderline between hard and easy cases
of the problem. Finally we perform a parametrized analysis, and we
concisely characterize combinations of natural parameters that allow FPT
algorithms.

1 Introduction

With the tremendous usage of social networks, the protection of privacy when
releasing underlying data sets has become an important and active field of
research [15]. If a graph contains only few vertices with some distinguished
feature, then this might allow the identification (and violation of privacy) of the
underlying real world entities with that particular feature. Hence in order to
ensure pretty good privacy and anonymity behavior, every vertex should share
its features with many other vertices. In a landmark paper3, Liu and Terzi [11]
considered in their setting the vertex degrees as feature; see Wu et al. [15] for
other features considered in the literature. Correspondingly, a graph is called
k-anonymous if for each vertex there are at least k − 1 other vertices of same
degree. Therein, different values of k reflect different privacy demands and the
natural computational task arises to perform few changes to a graph in order to
make it k-anonymous.

Liu and Terzi [11] proposed an heuristic algorithm for the task of making
a graph k-anonymous by adding edges. The same variant has been studied by
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Hartung et al. [10] from a parameterized complexity perspective. In this paper,
we complement these previous studies by investigating the vertex deletion variant
which is defined as follows:

Degree Anonymity by Vertex Deletion (Anonym-V-Del)
Instance: An undirected graph G = (V,E); positive integers k and s.
Question: Is there subset S ⊆ V of size at most s such that deleting S in G

results in a k-anonymous graph?

Considering vertex deletions instead of edge additions seems to be a promising
approach on practical instances, especially on social networks. Therein, the
degree distribution of the underlying graphs often follow a so-called power law
distribution [1] implying that there are only few high degree vertices and most
vertices are of moderate degree; this suggests that only few vertices have to
be removed in order to get a k-anonymous graph. For instance, consider the
DBLP co-author graph (generated in Feb. 2012) with ≈ 715 thousand vertices
corresponding to authors and ≈ 2.5 million edges indicating whenever two authors
have a common scientific paper: This graph has maximum degree 804 but only 208
vertices are of degree larger than 208, whereas the average degree is 7. Interestingly,
a heuristic that simply removes vertices violating the k-anonymous property
proves that one has to remove no more than 338 vertices to make it 5-anonymous
and even to make it 10-anonymous requires at most 635 vertex deletions.

While there are many different privacy models, there is a lack of algorithms
with provably good performance (as explicitly observed by [3]). In this work,
we will show that already the simple and highly specialized privacy model of
Anonym-V-Del is computationally hard from the parameterized as well as from
the approximation point of view. A variety of hardness results holds even in very
restricted graph classes, as for instance trees, cographs, and split graphs.

One reason for this hardness is shown in the following two examples illustrating
that the number s of allowed removals and the degree k of anonymity are
independent of each other, and that a small change in one of these parameters
might lead to a large jump of the other parameter.

Example 1. Let G be a graph on n ≥ 5 vertices that consists of two components:
a clique of size n− 2 and a clique of size two. This 2-anonymous graph cannot
be transformed into a 3-anonymous graph by deleting only one vertex, however,
deleting two vertices makes it (n−2)-anonymous. Hence, by slightly increasing s
from 1 to 2 the reachable anonymity-degree jumps from k = 2 to k = n− 2.

Example 2. Let G = (V,E) be a graph with vertices X = {x1, . . . , x`} and
Y = {y1, . . . , y`} with an edge between xi and yj if i+ j > `. Clearly, xi and yi
are of degree i implying that G is 2-anonymous. Since N(xi) ⊆ N(xi+1) for
all i, deleting any subset of Y preserves the invariant deg(x1) ≤ deg(x2) ≤
. . . ≤ deg(x`). As the previous argument is symmetric, one can observe that
to make G 3-anonymous one has to remove 2/3 of the “jumps” in the initial
sequences deg(x1) < deg(x2) < . . . deg(x`) and deg(y1) < . . . < deg(y`). Since
removing one vertex in X (Y ) removes only one jump in the sequence of X
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(Y ) and only one in Y (X), it follows that at least 2(`− 1) · 23 ·
1
2 ≈

2
3` = 1

3 |V |
vertices have to be deleted in order to get a 3-anonymous graph. Summarizing,
by requiring anonymity k = 3 instead of anonymity k = 2, the number of vertices
needed to be removed jumps from zero to a constant fraction of vertices.

Related Work. Hartung et al. [10] studied the Anonym-E-Add problem as
proposed by Liu and Terzi [11]. Given a graph and two positive integers k
and s, Anonym-E-Add asks whether there exists a set of at most s edges whose
addition makes the graph k-anonymous. The main result of Hartung et al. [10] is
a polynomial problem kernel with respect to the parameter maximum degree ∆ of
the input graph. Furthermore, they showed that an heuristic algorithm proposed
by Liu and Terzi [11] is optimal for Anonym-E-Add solutions larger than ∆4.
Chester et al. [4] investigated the computational complexity of Anonym-E-Add
and variants with edge labels. They showed NP-hardness for the considered
variants and a polynomial time algorithm for bipartite graphs.

Mathieson and Szeider [12] performed a parameterized complexity study for
the problem of finding a minimum amount of graph editions in order to fulfill
specified degree constraints. The graph editions considered are vertex deletion,
edge insertion, edge deletions, and combinations thereof.
Our Results. Whereas every graph is trivially 1-anonymous, we will show
that the combinatorial structure of 2-anonymous graphs is already rich and
complicated: Anonym-V-Del for k = 2 is NP-hard, even for strongly restricted
graph classes like trees, interval graphs, split graphs, trivially perfect graphs, and
bipartite permutation graphs. All these hardness results are established by means
of a general framework in Section 2. As a side-result, our framework implies
the W[2]-hardness of various (natural) parameterized problem variants and the
in-approximability of various (natural) optimization versions. Furthermore, we
show that Anonym-V-Del is NP-hard even on graphs with maximum degree
three; this result is in stark contrast with the fixed-parameter tractability of
Anonym-E-Add with respect to the maximum degree ∆ [10].

On the positive side, Section 3 presents (polynomial time) dynamic pro-
gramming approaches for Anonym-V-Del on three graph classes: graphs of
maximum degree two, P3-free graphs, and threshold graphs. We frankly admit
that these three graph classes carry an extremely constraining combinatorial
structure: Anonym-V-Del is such a vicious problem that without these heav-
ily constraining structures there remains no hope for polynomial time results.
Figure 1 summarizes the considered graph classes and their containment relations.

Finally, we analyze the parametrized complexity of Anonym-V-Del in
Section 4. Once again, Anonym-V-Del shows a difficult and challenging behavior:
It is intractable with respect to each of the three (single) parameters s, k and ∆.
Even worse, it is intractable with respect to the combined parameter (s, k). The
only positive parametrized results come with the combined parameters (∆, s)
and (∆, k). The latter result is based on bounding the number s of deleted
vertices in terms of ∆ and k.
Preliminaries. All graphs in this paper are undirected, loopless, and simple (that
is, without multiple edges). Throughout we use n to denote the number of vertices
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Fig. 1. The complexity landscape of Anonym-V-Del for various graph classes. The
results for classes with thick frames are made in this work and they imply the results
for classes with thin frames.

in the considered graph. The maximum vertex degree of a graph G = (V,E)
is denoted ∆G. A vertex subset S ⊆ V is called k-deletion set if G[V \ S] is
k-anonymous. For each vertex v ∈ V we denote by NG(v) the set of neighbors
of v and by NG[v] = NG(v) ∪ {v} the closed neighborhood. Correspondingly, for
a vertex subset V ′ we set NG[V ′] =

⋃
v∈V ′ NG[v] and NG(V ′) = NG[V ′] \ V ′.

For 0 ≤ a ≤ ∆, the block of degree a is the set DG(a) ⊆ V of all vertices with
degree a in G. Clearly, a graph is k-anonymous iff (if and only if) each block is
either of size zero or at least k. We omit subscripts if the corresponding graph is
clear from the context.

For the relevant notation of parameterized complexity and algorithmics we
refer to the monographs of Downey and Fellows [7], Niedermeier [13]. Due to the
space constraints some proofs are omitted.

2 Computational Hardness

In this section we provide NP-hardness results for Anonym-V-Del on several
restricted graph classes such as trees, split graphs, and trivially perfect graphs.
As a warm up, we first prove that Anonym-V-Del is NP-hard on graphs with
maximum degree three. This contrasts the known fixed-parameter tractability of
Anonym-E-Add with respect to the parameter maximum degree [10].

Theorem 1. Anonym-V-Del is NP-hard on graphs with degree at most three.

Proof. We give a reduction from the Vertex Cover problem which is known
to be NP-complete even in three-regular graphs [8, GT1]. Therein, given a three-
regular graph together with an integer h ∈ N the task is to decide whether there
is vertex set of size at most h such that each edge has at least one endpoint in it.
Given a Vertex Cover instance (G = (V,E), h), start by copying G to a new
graph G′. Finally, add h+ 1 degree-zero vertices to G′, set s = h, and k = |V |+ 1.
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If G contains a vertex cover S of size h, then deleting S in G′ clearly results
in an edgeless graph with |V | + 1 = k vertices, implying that (G′, s, k) is a
yes-instance of Anonym-V-Del. In the other direction, for any k-deletion set S,
since 2k > n + h + 1 and G′ contains s + 1 degree-zero vertices, all vertices
in G′ \ S have degree zero. Thus, S ∩ V is a vertex cover in G. ut

NP-hardness on trees. Next we show that Anonym-V-Del is NP-hard even
on trees. Extracting the basic ideas of this result, subsequently we provide a
generic reduction to show NP-hardness on trivially perfect graphs, bipartite
permutation graphs, and split graphs. Both reductions will reduce from the
NP-hard Set Cover problem, which is defined as follows [8, SP5]: Given a
universe A = {a1, . . . , aα}, a collection B = {B1, . . . , Bβ} of sets over A, and
h ∈ N the task is to decide whether there is an index set I ⊆ {1, . . . , β} with
|I| ≤ h, such that

⋃
i∈I Bi = A?

Let (A,B, h) be an instance of Set Cover. We assume without loss of
generality that for each element a ∈ A there exists a set B ∈ B with a ∈ B.
Furthermore, we assume without loss of generality that each set B ∈ B occurs
at least h+ 2 times in B. To reduce the amount of indices in the construction
given below we introduce the function f : A→ N that maps an element ai ∈ A
to f(ai) = α+ (h+ 1)i.

The reduction for trees is as follows. Set k = 2 and s = h such that (G, k, s)
is an equivalent Anonym-V-Del-instance. Graph G = (V,E) is constructed
as follows: For each element ai ∈ A add an element gadget consisting of a
star K1,f(ai) with the center vertex v(ai). Denote with VA = {v(a1), . . . , v(aα)}
the set of all these center vertices.

For each set Bj ∈ B add a set gadget which is a tree rooted in a vertex v(Bj).
The root has |Bj | child vertices where each element ai ∈ Bj corresponds to exactly
one of these children, denoted by v(ai, Bj). Additionally, we add to v(ai, Bj)
exactly f(ai) degree-one neighbors. Hence, the set gadget is a tree of depth three
rooted in v(Bj). We denote with VB = {v(B1), . . . , v(Bβ)} the set of all root ver-
tices. Observe that, as each set Bj ∈ B occurs at least h+2 times, the set gadgets
are h+2-anonymous. Finally, to end up with one tree instead of a forest, repeatedly
add edges between any degree-one-vertices of different connected components.

Observe that for each element ai ∈ A the only vertex of degree f(ai) is v(ai)
and there are no other vertices violating the 2-anonymous property. The key
point in the construction is that, in order to get a 2-anonymous graph, one has
to delete vertices of VB: Let ai ∈ A be an element and v(Bj) a root vertex such
that ai ∈ Bj . By construction the child vertex v(ai, Bj) of v(Bj) corresponds
to ai and therefore has f(ai) child vertices. Thus, deleting v(Bj) lowers the
degree of v(ai, Bj) to f(ai) and, hence, v(ai) no longer violates the 2-anonymous
property. Furthermore, as each set Bj ∈ B occurs at least h+2 times, the vertices
VB are 2-anonymous. Hence, given a set cover one can construct a corresponding
k-deletion set of the same size and, thus, if (A,B, h) is a yes-instance, then (G, k, s)
is a yes-instance. The proof of the converse direction which implies the following
theorem will be given later, after introducing the generic reduction.

Theorem 2. Anonym-V-Del is NP-hard on trees even if k = 2.
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Generic Reduction. We now generalize the reduction given in the previous
paragraph. More specifically, we will define properties such that a graph G
fulfilling them together with s = h and k = 2 forms a yes-instance of Anonym-
V-Del iff the given Set Cover instance (A,B, h) is a yes-instance. Based on
that, we then describe the construction of a several graphs contained in different
graph classes and fulfilling the properties. Formally, we require the constructed
graph G = (V,E) to fulfill the following:

1. For each element ai ∈ A there is a corresponding vertex, denoted by v(ai),
in G and the vertex set VA = {v(a1), . . . , v(aα)} is exactly the set of vertices
not being 2-anonymous in G.

2. For each set Bj ∈ B there is a corresponding vertex v(Bj) in G and for
each element ai ∈ Bj the vertex v(Bj) has a neighbor v(ai, Bj) with
deg(v(ai, Bj)) = deg(v(ai)) + 1.
Set VB = {v(B1), . . . , v(Bβ)} and ABj = {v(ai, Bj) | ai ∈ Bj}.

3. The vertex subsets VA, VB, and AB1
, . . . , ABβ are pairwise disjoint. We set

AB =
⋃
Bj∈B ABj .

4. For each D ⊆ VB, |D| ≤ h, the set of vertices violating the 2-anonymous
property in G[V \D] is a subset of VA.

5. It holds: (a) |N [v]∩VA| ≤ 1 for each vertex v ∈ V , (b) N(ABj )∩VB = {v(Bj)}
for all Bj ∈ B, and (c) N(VA) ∩ (VB ∪AB) = ∅.

6. For each vertex v ∈ V there is a vertex u ∈ VB such that N(v) ∩AB ⊆ N(u).
7. Any two vertices u ∈ VA and v /∈ AB satisfy |deg(v)− deg(u)| > s.

It is not hard to verify that the graph constructed in the reduction in the previous
paragraph has the above properties. Before proving the correctness of the generic
reduction we show the following observation.

Observation 1. For each D ⊆ VB, |D| ≤ h, the set VA \ {v(ai) | ∃v(Bj) ∈
D : ai ∈ Bj} is exactly the set of vertices not being 2-anonymous in G[V \D].

Lemma 1. Let G be a graph satisfying Properties 1 to 7 for a given instance
(A,B, h) of Set Cover. Then (G, 2, h) is a yes-instance of Anonym-V-Del if
and only if (A,B, h) is a yes-instance of Set Cover.

Proof. If there is an index set I, |I| ≤ h, such that
⋃
j∈I Bj = A, then by

Observation 1 the set S = {v(Bj) | j ∈ I} ⊆ VB, |S| = |I|, is a k-deletion set
for G. It remains to prove the reverse direction.

Let S be a k-deletion set of size at most s = h for G = (V,E). We form a
k-deletion set S′ for G such that S′ ⊆ VB and |S′| ≤ |S|. Consider each vertex
v ∈ S: If v ∈ VB, then add v to S′ (Case 1). If v ∈ N [VA], then by Property 5
there is only one ai such that v ∈ N [v(ai)] and we add a vertex v(Bj) ∈ VB
with ai ∈ Bj to S′ (Case 2). Finally, if v ∈ N [AB], then by Property 6 there is a
vertex u ∈ VB with N(v) ∩AB ⊆ N(u) and we add u to S′ (Case 3).

We next prove that S′ is a k-deletion set for G and thus by Observation 1
the index set corresponding to the vertices in S′ is a solution of size |S′| to the
Set Cover instance.
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Assume towards a contradiction that G[V \ S′] is not 2-anonymous. Denoting
by X ⊆ V \ S′ the set of vertices not being 2-anonymous, it follows from
Observation 1 that X ⊆ VA. Moreover, by the construction of S′ (see Case 2) and
Observation 1 it follows that N [X]∩ S = ∅ and thus degG[V \S](u) = degG(u) for
all u ∈ X. Hence, for each u ∈ X there is a vertex w ∈ V such that degG(u) =
degG[V \S](w) and thus by Property 7 it follows that w ∈ N [AB]. This implies a
contradiction to the construction of S′ because from w ∈ N [AB] it follows that S′

contains w’s neighbor in VB (see Case 3) and thus u /∈ X by Observation 1. ut

Using this generic reduction we now show NP-hardness on several graph classes
which are defined as follows (see Brandstädt et al. [2]): Trivially perfect graphs
are the (P4, C4)-free graphs, that is, they do not contain an induced path or cycle
on four vertices. A graph G is a bipartite permutation graph if G is bipartite and
does not contain an asteroidal triple (is AT-free). Three vertices of a graph form
an asteroidal triple if every two of them are connected by a path avoiding the
neighborhood of the third. A graph is a split graph if it can be partitioned into a
clique and an independent set.

Theorem 3. Anonym-V-Del is NP-hard on trivially perfect graphs, bipartite
permutation graphs, and split graphs.

Since Set Cover is W[2]-complete with respect to h [7] we have the following.

Corollary 1. Anonym-V-Del is W[2]-hard with respect to parameter s, even
if k = 2 and if the input graph is a tree, a bipartite permutation graph, a split
graph, or a trivially perfect graph.

Dom et al. [6] showed that Set Cover does not admit a polynomial kernel with
respect to the combined parameter (α, h). Observe that in all above constructions
except the one for split graphs we can bound s and ∆ in a polynomial in α and h.

Corollary 2. Anonym-V-Del on trees, bipartite permutation graphs or trivially
perfect graphs does not admit a polynomial kernel with respect to the combined
parameter (k, s,∆).

There are two natural optimization versions associated with Anonym-V-Del:
in one version (called Max Anonym-V-Del) the goal is to maximize the
anonymity k subject to the constraint that the number s of deleted vertices does
not exceed a given bound; in the other version (called Min Anonym-V-Del)
the goal is to minimize the number s of deleted vertices subject to the constraint
that the anonymity does not go below a certain given bound. As Set Cover is
NP-hard to approximate within a ratio o(log n) [14], the above reduction yields
the following inapproximability result.

Corollary 3. The optimization problem Min Anonym-V-Del on n-vertex
graphs cannot be approximated within a factor of o(log n), unless P = NP .

Since the above reduction gives NP-hardness for k = 2, we immediately get
inapproximability within a factor of two for Max Anonym-V-Del.
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Corollary 4. The optimization problem Max Anonym-V-Del cannot be ap-
proximated

– within a factor of 2− ε, unless P = NP .
– within a factor of 2 − ε in f(s)nO(1) time for any computable f , unless

FPT=W[2].

3 Polynomially Solvable Cases

We complement our intractability results for Anonym-V-Del from Theorem 2
by showing that Anonym-V-Del is polynomial time solvable on graphs with
maximum degree two, on graphs that are disjoint unions of cliques, and on
threshold graphs.

3.1 Graphs with maximum degree two

In contrast to graphs of maximum degree three (see Theorem 1), we observe that
Anonym-V-Del is polynomial time solvable on graphs of maximum degree two.
Note that a graph of maximum degree two is just a collection of paths and cycles.
Given five integers d0, d1, d2, x, y, it is easy to decide whether it is possible to
remove x vertices from a path of length y (respectively, from a cycle of length y)
such that there survive precisely d0 vertices of degree zero, d1 vertices of degree
one, and d2 vertices of degree two. A straight-forward dynamic programming
approach based on this observation leads to the following.

Theorem 4. On graphs of maximum degree two, Anonym-V-Del is polynomial
time solvable.

3.2 Disjoint union of cliques

Note that Anonym-V-Del is trivial on cliques: either the clique size is at least k,
or otherwise one has to delete all the vertices. The following theorem shows that
polynomial time solvability also carries over to the case where the graph is the
disjoint union of several cliques. (Recall that a graph is the disjoint union of cliques
if and only if it does not contain the 3-vertex path P3 as an induced subgraph.)

Theorem 5. On a P3-free graph G with n vertices and maximum degree ∆,
Anonym-V-Del can be solved in O(n2∆) time.

3.3 A polynomial time result for threshold graphs

We recall that a graph G(V,E) is a threshold graph if there are positive real vertex
weights w(v) for v ∈ V , such that {v1, v2} ∈ E if and only if w(v1) + w(v2) ≥ 1;
see Chvátal and Hammer [5] and Golumbic [9] for more information. Without
loss of generality we will assume throughout that the vertex weights satisfy the
following conditions:
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– The vertex weights are pairwise distinct, and satisfy 0 < w(v) < 1
– Any v1, v2 ∈ V satisfy w(v1) + w(v2) 6= 1; in particular w(v1) 6= 1

2

Note that the closed neighborhoods in a threshold graph are totally ordered
by inclusion: whenever w(v1) < w(v2), then NG[v1] ⊆ NG[v2] and consequently
deg(v1) ≤ deg(v2).

Lemma 2. Let U ⊆ V be a subset of vertices with |U | ≥ 2, let wmin =
minu∈U w(u) and wmax = maxu∈U w(u), and let u0, u1 ∈ U be the vertices
with w(u0) = wmin and w(u1) = wmax. All vertices in U have identical degree, if
and only if there is no vertex v ∈ V \ {u0, u1} with 1−wmax < w(v) < 1−wmin.

Proof. Note that all vertices in U have identical degree, if and only if NG[u0] =
NG[u1]. The latter condition in turn holds if and only if there is no vertex v in
the graph (with v 6= u0 and v 6= u1) that is adjacent to u1 but not to u0, and
this is equivalent to the stated condition 1− wmax < w(v) < 1− wmin. ut

Now consider some block U of constant degree in an optimal subgraph for
Anonym-V-Del, and let u0, u1 ∈ U and wmin and wmax be defined as in the
lemma. The territory of this block is defined as the union of the two closed
intervals [wmin, wmax] and [1−wmax, 1−wmin]; note that these two intervals will
overlap if wmin <

1
2 < wmax. The canonical superset U∗ ⊆ V consists of u0 and

u1, together with all vertices v ∈ V that satisfy wmin ≤ w(v) ≤ wmax but not
1− wmax < w(v) < 1− wmin. One message of Lemma 2 is that distinct blocks
in an optimal subgraph must have disjoint territories. Another message of the
lemma is that we may as well replace every block U by its canonical superset
U∗: By adding these vertices, the degree in every block either remains the same
or is uniformly increased by |U∗| − |U |. And if the territories of distinct blocks
were disjoint before the replacement, then they will also be disjoint after the
replacement. In other words, such a replacement does not violate k-anonymity
but simplifies the combinatorial structure of the considered subgraph.

This suggests the following dynamic programming approach. For every real
number r with 0 ≤ r ≤ 1

2 , we consider the threshold graph Gr that is induced by
the vertices v ∈ V with r ≤ w(v) ≤ 1− r; note that the only crucial values for
r are the O(n) values w(v) and 1− w(v) that fall between the bounds 0 and 1

2 .
The goal is to compute for every graph Gr a largest k-anonymous subgraph. We
start our computations with r = 1

2 and work downwards towards r = 0.
The initialization step of the dynamic program handles subgraphs that consist

of a single block whose territory contains the number 1
2 . Such a block will either

be empty, or it is a canonical superset specified by two values wmin and wmax.
All in all, this only yields a polynomial number of cases to handle. In the main
computation phase of the dynamic program, we consider a general graph Gr and
check all possibilities for the outermost block, which is the block whose territory
is farthest away from the center point 1

2 . Since this territory is the union of
two intervals [r, q] and [1 − q, 1 − r], we may simply check all possibilities for
the interval boundary q, and then combine the corresponding block with the
(previously computed) largest k-anonymous subgraph for graph Gq. Since there
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is only a linear number O(n) of candidate values for q, the largest k-anonymous
subgraph of Gr can be found in linear time.

Theorem 6. On threshold graphs with n vertices, Anonym-V-Del can be solved
in O(n2) time. ut

4 Parametrized results

Theorem 1, Theorem 2, and Corollary 1 show that there is no hope for fixed-
parameter tractability neither for any of the individual parameters s, k or∆ nor for
the combined parameter (s, k). In this subsection, we show that Anonym-V-Del
becomes fixed-parameter tractable when considering the combined parameters
(s,∆) as well as (k,∆). We start with a fixed-parameter algorithm for (s,∆)
and show that the minimum size of a solution is bounded by a function only
depending on k and ∆.

Theorem 7. Anonym-V-Del can be solved in (s∆)O(s∆2)n2 log n time.

Lemma 3. For every yes-instance (G = (V,E), k, s) of Anonym-V-Del with ∆
denoting the maximum degree of G there is a subset S ⊆ V with |S| < 2∆∆32k
such that G[V \ S] is k-anonymous.

By combining Theorem 7 and Lemma 3 we obtain fixed-parameter tractability
with respect to the parameter (k,∆): For an instance (G, k, s) of Anonym-V-Del
apply the algorithm from Theorem 7 on (G, k,min{s, 2∆∆32k}). The running

time is bounded by (2∆∆42k)O(2∆∆52k)n2 log n.

Corollary 5. Anonym-V-Del is fixed-parameter tractable with respect to the
combined parameter (k,∆).

5 Conclusion

In this paper, we have complemented the investigations of Hartung et al. [10] on
the edge addition version of the degree anonymity problem to the vertex deletion
version. To our surprise, there is a strong contrast in the complexity of the two
problem versions: Whereas Anonym-E-Add admits a polynomial kernel with
respect to the maximum degree [10], we proved NP-hardness of Anonym-V-Del
on graphs with maximum degree three. Furthermore, bounding one of the input
parameters s and k does not yield fpt-algorithms for Anonym-V-Del; however
bounding the degree and bounding one of the input parameters s and k brings
the problem into FPT.

Our results also provide a good view on the colorful complexity landscape of
the vertex deletion version. We have shown that the problem is hard for most of
the standard graph classes, and that one has to move on to highly structured
classes like threshold graphs in order to get some polynomial time results. A

10



number of questions remained open: What is the complexity of Anonym-V-
Del on claw-free graphs? What is the complexity of Anonym-V-Del on unit
interval graphs? Corollary 4 does not exclude the existence of a constant-factor
approximation for Max Anonym-V-Del. Are there stronger inapproximability
results? Can the bounds stated in Theorem 7 and Lemma 3 be improved?
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