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Abstract. Motivated by a strongly growing interest in graph anonymiza-
tion in the data mining and databases communities over the last five
years, we study the NP-hard problem of making a graph k-anonymous
by adding as few edges as possible. Herein, a graph is k-anonymous if
for every vertex in the graph there are at least k — 1 other vertices of
the same degree. Our algorithmic results shed light on the performance
quality of a popular heuristic due to Liu and Terzi [ACM SIGMOD 2008];
in particular, we show that the heuristic provides optimal solutions in
case that many edges need to be added. Based on this, we develop a
polynomial-time data reduction, yielding a polynomial-size problem ker-
nel for the problem parameterized by the maximum vertex degree. This
result is in a sense tight since we also show that the problem is already
NP-hard for H-index three, implying NP-hardness for smaller parameters
such as average degree and degeneracy.

1 Introduction

For many scientific disciplines, including the understanding of the spread of
diseases in a globalized world or power consumption habits with impact on
fighting global warming, the availability of (anonymized) social network data
becomes more and more important. In a landmark paper Liu and Terzi [16]
introduced the following simple graph-theoretic model for identity anonymization
on (social) networks. Herein, they transferred the k-anonymity concept known
for tabular data in databases [9] to graphs.

DEGREE ANONYMITY [16]

Input: An undirected graph G = (V, E) and two positive integers k
and s.

Question: Is there an edge set E’ over V with |E’'| < s such that G’ =
(V,EUE'") is k-anonymous, that is, for every vertex v € V there
are at least k — 1 other vertices in G’ having the same degree?

Liu and Terzi [16] assume in this model that an adversary (who wants to de-
anonymize the network) knows only the degree of the vertex of a target individual;
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this is a modest adversarial model. Clearly, there are stronger adversarial models
which (in many cases very realistically) assume that the adversary has more
knowledge, making it possible to breach privacy provided by a “k-anonymized
graph” [20]. Moreover, it has been argued that graph anonymization has funda-
mental theoretical barriers which prevent a fully effective solution [1]. DEGREE
ANONYMITY, however, provides the perhaps most basic and still practically rele-
vant model for graph anonymization; it is the subject of active research [4, 5, 18].

Graph anonymization problems are typically NP-hard. Thus, almost all
algorithms proposed in this field are heuristic in nature, this also being true
for algorithms for DEGREE ANONYMITY [16, 18]. Indeed, as the field of graph
anonymization is young and under strong development, there is very little research
on its theoretical foundations, particularly concerning computational complexity
and algorithms with provable performance guarantees [6].

Our contributions. Our central result is to show that DEGREE ANONYMITY has
a polynomial-size problem kernel when parameterized by the maximum vertex
degree A of the input graph. In other words, we prove that there is a polynomial-
time algorithm that transforms any input instance of DEGREE ANONYMITY
into an equivalent instance with at most O(A”) vertices. Indeed, we encounter
a “win-win” situation when proving this result: We show that Liu and Terzi’s
heuristic strategy [16] finds an optimal solution when the size s of a minimum
solution is larger than 2A%. As a consequence, we can bound s in O(A*) and,
hence, a polynomial kernel we provide for the combined parameter (4, s) is
also a polynomial kernel only for A. Furthermore, our kernelization has the
useful property (e.g. for approximations) that each solution derived for the
kernel instance has a one-to-one correspondence to a solution of the original
instance. While this kernelization directly implies fixed-parameter tractability for
DEGREE ANONYMITY parameterized by A, we also develop a further improved
fixed-parameter algorithm.

In addition, we prove that the polynomial kernel for A is tight in the sense that
even for constant values of the “stronger” parameter (that is, provably smaller)
H-index!, DEGREE ANONYMITY becomes NP-hard. The same proof also yields
NP-hardness in 3-colorable graphs. Further, from a parameterized perspective, we
show that DEGREE ANONYMITY is W([1]-hard when parameterized by the solution
size s (the number of added edges), even when k = 2. In other words, there is no
hope for tractability even when the level £ of anonymity is low and the graph needs
only few edge additions (meaning little perturbation) to achieve k-anonymity.

Why is the parameter “maximum vertex degree A” of specific interest? First,
note that from a parameterized complexity perspective it seems to be a “tight”
parameterization in the sense that for the only little “stronger” parameter H-
index our results already show NP-hardness for H-index three (also implying
hardness e.g. for the parameters degeneracy and average degree). Social networks
typically have few vertices with high degree and many vertices of small degree.

! The H-index of a graph G is the maximum integer h such that G has at least h
vertices with degree at least h. Thus G has at most h vertices of degree larger than h.



Leskovec and Horvitz [15] studied a huge instant-messaging network (180 million
nodes) with maximum degree bounded by 600. For the DBLP co-author graph
generated in February 2012 with more than 715,000 vertices we measured a
maximum degree of 804 and an H-index of 208, so there are not more than 208
vertices with degree larger than 208. Thus, a plausible strategy might be to only
anonymize vertices of “small” degree and to remove high-degree vertices for the
anonymization process because it might be overly expensive to anonymize these
high-degree vertices and since they might be well-known (that is, not anonymous)
anyway. Indeed, high-degree vertices can be interpreted as outliers [2], potentially
making their removal plausible.

Related work. The most important reference is Liu and Terzi’s work [16] where
the basic model was introduced, sophisticated (heuristic) algorithms (also using
algorithms to determine the realizability of degree sequences) have been developed
and validated on experimental data. Somewhat more general models have been
considered by Zhou and Pei [25] (studying the neighborhood of vertices instead
of only the degree) and by Chester et al. [5] (anonymizing a subset of the vertices
of the input). Chester et al. [4] investigate the variant of adding vertices instead
of edges. Building on Liu and Terzi’s work, Lu et al. [18] propose a “more
efficient and more effective” algorithm for DEGREE ANONYMITY. Again, this
algorithm is heuristic in nature. Today, the field of graph anonymization has
grown tremendously with numerous surveys and research directions. We only
mention some directly related work.

There are many and more complicated models for graph anonymization.
Weaknesses (mainly depending on the assumed adversary model where for many
practical situations the adversary may e.g. have an auxiliary network that helps
in de-anonymizing) of DEGREE ANONYMITY and other models have been pointed
out [1, 20, 24]. In conclusion, given the generality of background knowledge
an adversary may or may not have, graph anonymization remains a chimerical
target [18] and, thus, a universally best model is not available.

Finally, from a (parameterized) computational complexity perspective, the
closest work we are aware of is due to Mathieson and Szeider [19] who provide
a study on editing graphs to satisfy degree constraints. In their basic model,
each vertex is equipped with a degree list and the task is to edit the graph such
that each vertex achieves a degree contained in its degree list. They study the
editing operations edge addition, edge deletion, and vertex deletion and provide
numerous parameterized tractability and intractability results. Interestingly, on
the technical side they also rely on the computation of general factors in graphs
(as we do) and they also study kernelization, where they leave as most challenging
open problem to extend their kernelization results to cases that include vertex
deletion and edge addition, emphasizing that the presence of edge additions
makes their approach inapplicable.

Due to the lack of space, many technical details are deferred to a full version
of the paper.



2 Preliminaries

Parameterized complexity. The concept of parameterized complexity was pio-
neered by Downey and Fellows [7] (see also [8, 21] for more recent textbooks). A
parameterized problem is called fized-parameter tractable if there is an algorithm
that decides any instance (I, k), consisting of the “classical” instance I and a
parameter k € Ng, in f(k) - [I|°") time, for some computable function f solely
depending on k. A core tool in the development of fixed-parameter algorithms
is polynomial-time kernelization [3, 12]. Here, the goal is to transform a given
problem instance (I, k) in polynomial time into an equivalent instance (I, k), the
so-called kernel, such that k' < g(k) and |I’| < g(k) for some function g. If g is a
polynomial, then it is called a polynomial kernel. A parameterized problem that
is classified as W[1]-hard (using so-called parameterized reductions) is unlikely
to admit a fixed-parameter algorithm. There is good complexity-theoretic reason
to believe that W[1]-hard problems are not fixed-parameter tractable.

Graphs and anonymization. We use standard graph-theoretic notation. All graphs
studied in this paper are simple, i.e., there are no self-loops and no multi-edges.
For a given graph G = (V, E) with vertex set V and edge set E we set n = |V|
and m = |E|. Furthermore, by deg.(v) we denote the degree of a vertex v € V
in G and Ag denotes the maximum degree of any vertex of G. For 0 < a < Ag
let Dg(a) = {v € V| deg(v) = a} be the block of degree a, that is, the set of all
vertices with degree a in G. Thus, being k-anonymous is equivalent to each block
being of size either zero or at least k. The complement graph of G is denoted
by G = (V,E), E = {{u,v} | u,v € V,{u,v} ¢ E}. The subgraph of G induced
by a vertex subset V' C V' is denoted by G[V']. For an edge subset £’ C E, V(E’)
denotes the set of all endpoints of edges in E' and G[E'] = (V(E'), E’). For a
set of edges S with endpoints in a graph G, we denote by G + S the graph that
results by inserting all edges in S into G and we call S an edge insertion set for G.
Thus, DEGREE ANONYMITY is the question whether there is an edge insertion
set S of size at most s such that G 4 S is k-anonymous. In this case S is called
k-insertion set for G. We omit subscripts if the graph is clear from the context.

3 Hardness Results

In this section we provide two polynomial-time many-to-one reductions yielding
three (parameterized) hardness results.

Theorem 1. DEGREE ANONYMITY s NP-hard on 3-colorable graphs and on
graphs with H-index three.

Proof (Sketch). We give a reduction from the NP-hard INDEPENDENT SET
problem, where given a graph G = (V, E) and a positive integer h, the question
is whether there is a size-h independent set, that is, a vertex subset of pairwise
nonadjacent vertices. We assume without loss of generality that in the given
INDEPENDENT SET instance (G, h) it holds that |V| > 2h + 1. We construct an



equivalent instance (G’ = (V', E’), k, s) for DEGREE ANONYMITY as follows. We
start with a copy G’ of G, denoting with v’ € V' the copy of the vertex v € V.
Then, for each vertex v € V we add to G’ degree-one vertices adjacent to v’ such
that v” has degree Ag in G’. Next we add a star with Ag+h—1 leaves and denote
its central vertex c. We conclude the construction by setting k = h+1 and s = (g)

INDEPENDENT SET is NP-hard on 3-colorable graphs [23, Lemma 6] and on
graphs with maximum degree three [11, GT20]. Observe that if G is 3-colorable,
then G’ is also 3-colorable. Furthermore, if G has maximum degree three, then
only the central vertex ¢ might have degree larger than three, implying that the
H-index of G’ is three. O

DEGREE ANONYMITY is W(1]-hard with respect to the standard parameterization,
that is, by the size of edges s that are allowed to add:

Theorem 2. DEGREE ANONYMITY is W/1]-hard parameterized by the number
of inserted edges s, even if k = 2.

4 Polynomial Kernel for the Maximum Degree A

In this main section we provide a polynomial kernel with respect to the parameter
maximum degree A (Theorem 4). Our proof has two main ingredients: first we
show in Section 4.2 a polynomial kernel with respect to the combined parame-
ter (4, s); second we show in Section 4.3 that a slightly modified variant of Liu and
Terzi’s heuristic [16] exactly solves any instance having a minimum-size k-inser-
tion set of size at least (A2 +4A+3)2. Hence, either we can solve a given instance
in polynomial time or we can upper-bound s by (A?4+4A+3)?, implying that the
kernel polynomial in (4, s) is indeed polynomial only in A. We begin by presenting
the main technical tool used in our work, the so-called f-FACTOR problem.

4.1 f-Factor problem

DEGREE ANONYMITY has a close connection to the polynomial-time solvable
f-FACTOR problem [17, Chapter 10]: Given a graph G = (V, E) and a function f :
V' — Ny, does there exist an f-factor, that is, a subgraph G’ = (V, E’) of G such
that degq (v) = f(v) for all vertices? One can reformulate DEGREE ANONYMITY
using f-FACTOR as follows: Given an instance (G, k, s), the question is whether
there is a function f: V — Ng such that the complement graph G contains an
f-factor, > oy f(v) < 2s (every edge is counted twice in the sum of degrees),
and for all v € V' it holds that |[{u € V' | degq(u) + f(u) = dega(v) + f(v)}| > k
(the k-anonymity requirement). The following lemma guarantees the existence of
an f-factor in graphs fulfilling certain requirements on the maximum degree and
the number of vertices.

Lemma 1 ([14]). Let G = (V, E) be a graph with minimum vertex degree 6 and
let a < b be two positive integers. Suppose further that

a+b
a

b
> — —3).
62 —|V| and |V| > (b+a—3)



Then, for any function f:V — {a,a+1,...,b} where ), f(v) is even, G has
an f-factor.

As we are interested in an f-factor in the complement graph of our input graph G,
we use Lemma 1 with a = 1, b = A + 2, and minimum degree § > n — A — 1.
This directly leads to the following.

Corollary 1. Let G = (V, E) be a graph with n vertices, minimum degree n —
A-1,A>1,andlet f:V —={1,...,A+2} be a function such that ) . f(v)
is even. If n > A2 4+ 4A 4 3, then G has an f-factor.

4.2 Polynomial kernel for (A, s)

Our kernelization algorithm is based on the following observation. For a given
graph G, consider for some 1 < i < Ag the block Dg(i), that is, the set of
all vertices of degree i. If Dg(4) contains many vertices, then the vertices are
“interchangeable”:

Observation 1. Let G = (V, E) be a graph, let S be a k-insertion set for G, and
let v € V(S)N Dg (i) be a vertex such that |Dg(7)| > (A+2)s. Then there exists
a vertex u € Dg(4) \ V(S) such that replacing in every edge of S the vertex v
by u results in a k-insertion set for G.

Proof. Since |S| < s, the vertex v can be incident to at most s edges in S.
Denoting the set of these edges by S, obviously one can replace v by u € D¢g(7)
if u is non-adjacent to all vertices in V(S”) \ {v} (this allows to insert all edges)
and u ¢ V(S) (the size of all blocks in G+ S does not change). However, as V(.59)
contains at most 2s vertices from Dg(i) and each of the at most s vertices
in V(S?) \ {v} has at most Ag neighbors in G, it follows that such a vertex
u € Dg(i) exists if |Dg(i)] > (A 4+ 2)s. O

By Observation 1, in our kernel we only need to keep at most (A + 2)s vertices
in each block: If in an optimal k-insertion set S there is a vertex v € V(S) that
we did not keep, then by Observation 1 we can replace v by some vertex we kept.
There are two major problems that need to be fixed to obtain a kernel: First, when
removing vertices from the graph, the degrees of the remaining vertices change.
Second, k might be “large” and, thus, removing vertices (during kernelization) in
one block may breach the k-anonymity constraint. To overcome the first problem
we insert some “dummy-vertices” which are guaranteed not to be contained in
any k-insertion set. However, to solve the second problem we need to adjust the
parameter k as well as the number of vertices that we keep from each block.
We now explain the kernelization algorithm in detail (see Algorithm 1 for
the pseudocode). Let (G, s, k) be an instance of DEGREE ANONYMITY. For
brevity we set 8 = (A +4)s + 1. We compute in polynomial time an equivalent
instance (G, s, k') with at most O(A3s) vertices: First set k&’ = min{k, 3} (Line 4).
We arbitrarily select from each block D¢ (%) a certain number z of vertices and
collect all these vertices into the set A (Line 14). To cope with the above mentioned



Algorithm 1 The pseudocode or the algorithm producing a polynomial kernel
with respect to (4, s).

1: procedure PRODUCEPOLYKERNEL(G = (V, E), k, s)

2 if |V| < A(8 + 4s) then // B is defined as 8 = (A+4)s+1

3 return (G, k, s)

4: k' + min{k, B}; A<+ 0
5: for i+ 1 to A do
§
7
8

if 2s < |D¢(i)| < k — 2s then

return trivial no-instance // insufficient budget for D¢ ()

: if kK < then // determine retained vertices
9: z < min{|D¢(?)|, B + 4s}
10: else if |D¢g(i)| < 2s then
11: z + |Da(i)]
12: else
13: x < k' + min{4s, (|Da(z)| — k)} // observe that k' = 3.
14: add z vertices from D¢ (i) to A
15: G' = G[4]
16: for each v € A do // add vertices to preserve degree of retained vertices
17: add to G’ degy(v) — dege (v) many degree-one vertices adjacent to v

18: denote with P the set of vertices added in Line 17
19: by adding matched pairs of vertices, ensure that |P| > max{4A + 4s + 4,k'}
20: if A+ s+1is even then

21: GF = (P,ET) < (A + s + 1)-factor in G'[P]
22: else
23: GF = (P, ET) < (A + s + 2)-factor in G'[P]

24 G+ G +EF
25: return (G, k', s)

second problem, the “certain number” is defined in a case distinction on the value
of k (see Lines 5 to 14). Intuitively, if k is large then we distinguish between “small”
blocks of size at most 2s and “large” blocks of size at least k — 2s. Obviously, if
there is a block which is neither small nor large, then the instance is a no-instance
(see Line 7). Thus, in the problem kernel we keep for small blocks the “distance
to size zero” and for large blocks the “distance to size k”. Furthermore, in order
to separate between small and large blocks it is sufficient that k&’ > 4s. However,
to guarantee that Observation 1 is applicable, the case distinction is a little bit
more complicated, see Lines 5 to 14.

We start building G’ by first copying G[A] into it (Line 15). Next, adding
a pendant vertex to v means that we add a new vertex to G’ and make it
adjacent to v. For each v € A we add pendant vertices to v to ensure that
degqr (v) = dege(v) (Line 17). The vertices of A stay untouched in the following.
Denote the set of all pendant vertices by P. Next, we add enough pairwise
adjacent vertices to P to ensure that |P| > max{k’,4A + 4s + 4} (Line 19).
Hence, |P| < max{|A|- A, k',4A + 4s + 4} + 1. To avoid that vertices in P help
to anonymize the vertices in A we “shift” the degree of the vertices in P (see



Lines 20 to 24): We add edges between the vertices in P to ensure that the
degree of all vertices in P is A+ s+ 2 (when A+ s+ 1iseven) or A+s+3
(when A + s+ 2 is even). For the ease of notation let x denote the new degree
of the vertices in P. Observe that before adding edges all vertices in P have
degree one in G’. Thus, the minimum degree in G’[P] is | P| — 2. Furthermore, for
each v € P we denote by f(v) the number of incident edges v requires to have
the described degree. It follows that f(v) is even and hence }_ _p f(v) is even.
Hence setting a = b = x fulfills all conditions of Lemma 1. Thus, the required
f-factor exists and can be found in O(|P|\/|P|(A + s)) time [10]. This completes
the description of the kernelization algorithm.

The key point of the correctness of the kernelization is to show that without
loss of generality, no k-insertion set S for G’ of size |S| < s affects any vertex
in P. This is ensured by “shifting” the degree of all vertices in P by s + 1 (or
s + 2), implying that none of the vertices in A can “reach” the degree of any
vertex in P by adding at most s edges. Hence each block either is a subset of A
or of P. We now prove that we may assume that an edge insertion set does not
affect any vertex in P. All what we need to prove this is the fact that A contains
at least 3 + 4s vertices from at least one block in G. Observe that this is ensured
by the check in Line 2.

Lemma 2. If there is a k-insertion set S for G' with |S| < s, then there is also
a k-insertion set S’ for G’ with |S'| = |S| such that V(S')N P = (.

Based on Lemma 2 we now prove the correctness of our kernelization algorithm.
Theorem 3. DEGREE ANONYMITY admits a kernel with O(A3s)-vertices.

Proof. The polynomial kernel is computed by Algorithm 1. As f-FACTOR can
be solved in polynomial time [10], Algorithm 1 runs in polynomial time. The
correctness of the kernelization algorithm is deferred to a full version. It remains
to show the size of the kernel. To this end, observe that each block in A has size at
most B+4s (see Lines 9, 11, and 13). Thus, |A| = O(AB) = O(A2s). Furthermore,
the set P contains at most max{A|A|, k', 4s + 4A + 1} vertices (see Lines 17
to 19). Thus, |P| = O(A®s) and, hence, the reduced instance contains O(A3s)
vertices. O

4.3 A polynomial-time algorithm for “large” solution instances

Y

In this section we show that if a minimum size k-insertion set S is “large’
compared to A, then one can solve the instance in polynomial time (Lemma 5).
Towards this, we first show that a large solution influences the degree of many
vertices. Then the main idea is that if it influences the degree of “many” vertices
from the same block, say D¢ (%), then by Observation 1 the corresponding vertices
can be arbitrarily “interchanged”. Thus it is not important to know which vertex
from D¢ (7) has to be “moved” up to a certain degree by adding edges, because
Observation 1 ensures that we can greedily find one. This, however, implies that
the actual structure of the input graph (which forbids to insert certain edges



since they are already present) no longer matters. Hence, we solve DEGREE
ANONYMITY without taking the graph structure into account. Thereby, if we can
k-anonymize the degree sequence corresponding to G (the sequence of degrees
of G) such that “many” degrees have to be adjusted, then by Corollary 1 we can
conclude that G contains an f-factor where f(v) captures the difference between
the degree of v in G and the anonymized degree sequence. The f-factor can
be found in polynomial time [10] and, hence, a k-insertion set can be found in
polynomial time. We now formalize this idea.

We first show that a “large” minimum-size k-insertion set increases the
maximum degree by at most two.

Lemma 3. Let G = (V, E) be a graph and let S be a minimum-size k-insertion
set. If [V (S)| > A% +4A+ 3, then the mazimum degree in G+ S is at most A+ 2.

Proof. Let G be a graph with maximum degree A and k an integer. Let S be a
minimum-size edge set such that G+ S is k-anonymous and |V (S)| > A2 +4A+3.
Now assume towards a contradiction that the maximum degree in G + S is at
least A + 3. We show that there exists an edge set S’ such that G + S’ is
k-anonymous, |S'| < |S[, and G + S’ has maximum degree at most A + 2.

First we introduce some notation. Let f be a function f : V' — Ny defined
as f(v) = degg g(v) — degg(v) for all v € V. Furthermore, denote with X
the set of all vertices having degree more than A 4+ 2 in G + S, that is, X =
{v e V| f(v) +degs(v) > A+ 3}. Observe that G[S] is an f-factor of G
and 2|S| =Y,y f(v). We now define a new function f’: V — Ny such that G
contains an f’-factor denoted by G’ = (V,S’) where the edge set S’ has the
properties as described in the previous paragraph.

We define f’ for all v € V as follows:

7) if o ¢ X,
f'(v)=¢A—degg(v)+1 ifve X and f(v) +degg(v) — A —1is even,
A —degi(v) +2  else.

First observe that degq(v) + f'(v) < A+ 2 for all v € V. Furthermore, observe
that f'(v) = f(v) for all v € V'\ X and for all v € X it holds that f’'(v) < f(v)
and f(v) — f'(v) is even. Thus, >7 o f(v) > > oy f/'(v) and 3, oy f/(v) is
even. It remains to show that (i) G contains an f’-factor G’ = (V,S’) and (ii)
G + S’ is k-anonymous.

To prove (i) let V= {v € V | f'(v) > 0} and observe that if f(v) > 0,
then, by definition of f’, we have f’(v) > 0 and hence V= V(S). Furthermore,
let G = G[V]. Observe that G has minimum degree [V| — A — 1 and |V| =
[V (S)| > A? 4+ 4A + 3. Thus, the conditions of Corollary 1 are satisfied and
hence G contains an f’ |y-factor G = (V,S'). By definition of V it follows
that G’ = (V, ') is an f’-factor of G. Thus, it remains to show (ii).

Assume towards a contradiction that G + S’ is not k-anonymous, that is,
there exists some vertex v € V such that 1 < |Dgg(degg, o (v))| < k. Let d =
degg,g(v) and d' = degg g (v). Observe that d’ = degg (v) + f/(v). Thus, if v ¢



X, then by definition of f’ it holds that d’ = degq(v) + f(v) = d < A+ 2. Hence,
for all vertices u € Dgys(d’) it follows that u ¢ X. Thus, Dg1s(d') C Dgys(d)
and since G + S is k-anonymous we have |Dg1g/(d')| > k, a contradiction. On
the other hand, if v € X, that is, d > A+ 2, then |Dgyg(d)| > k since G+ S is
k-anonymous. Furthermore, by the definitions of Dgys(d), f, and X we have for
all u € Dgys(d) that degs(u)+ f(u) = d, v € X, and, thus, f'(u)+degq(u) = d'.
Therefore, Dg4+s(d) C Dg1g/(d') and |Dgts/(d')] > k, a contradiction. O

We now formalize the anonymization of degree sequences. A multiset of
positive integers D = dy, ..., d,, d; that corresponds to the degrees of all vertices
in a graph is called degree sequence. A degree sequence D is k-anonymous if
each number in D occurs at least £ times in D. Clearly, the degree sequence
of a k-anonymous graph G is k-anonymous. Moreover, if a graph G can be
transformed by at most s edge insertions into a k-anonymous graph, then the
degree sequence of G can be transformed into a k-anonymous degree sequence by
increasing the integers by no more than 2s in total (clearly, in the other direction
this fails in general because of the graph structure). As we are only interested in
a degree sequence corresponding to a graph of a DEGREE ANONYMITY instance
where s is large, by Lemma 3 we can require the integers in a k-anonymous
degree sequence to be at upper-bounded by A + 2.

k-DEGREE SEQUENCE ANONYMITY (k-DSA)

Input: Two positive integers k and s and a degree sequence D =
dl,...,dn with d]_ Sdg S Sdn andA:dn.
Question: Is there a k-anonymous degree sequence D' = di,...,d,, with

d; < d; and max;<;<, d; < A+ 2 such that Y., d} — d; = 2s?

By slightly modifying a dynamic programming-based heuristic introduced by
Liu and Terzi [16], we next prove that k-DEGREE SEQUENCE ANONYMITY is
polynomial-time solvable. Note that Liu and Terzi [16] use their heuristic to solve
DEGREE ANONYMITY by first solving the problem on the degree sequence of
the input graph G and then trying to “realize” (adding the corresponding edges
to G) the produced k-anonymous degree sequence.

Lemma 4. k-DEGREE SEQUENCE ANONYMITY can be solved in polynomial
time.

We now have all ingredients to solve DEGREE ANONYMITY in polynomial
time in case it has a “large” minimum-size k-insertion set. More formally, let
(G, k,s) be an instance and let D be the degree sequence of G, then first find
the largest ¢ < s such that (D, k,4) is a yes-instance for k-DEGREE SEQUENCE
ANONYMITY. If ¢ is “large”, then we prove that we can transfer the solution to G.
In all other cases, since any k-insertion set for G of size j < s directly implies
that (D, k, j) is a yes-instance for ~~-DEGREE SEQUENCE ANONYMITY, it follows
that we can bound the parameter s by a function in A.

Lemma 5. Let (G, k,s) be an instance of DEGREE ANONYMITY. Either one
can decide the instance in polynomial time or (G, k, s) is a yes-instance if and
only if (G, k, min{(A? +4A + 3)2,s}) is a yes-instance.
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By Lemma 5 it follows that in polynomial time we can either find a solution
or we have s < (A2 +4A + 3)2. By Theorem 3 this implies our main result.

Theorem 4. DEGREE ANONYMITY admits an O(A")-vertez kernel.

5 Fixed-Parameter Algorithm

We provide a direct combinatorial algorithm for the combined parameter (A4, s).
Roughly speaking, for fixed k-insertion set S the algorithm branches into all
suitable structures of G[S], that is, graphs of at most 2s vertices with vertex
labels from {1,..., A}. Then the algorithm checks whether this structure occurs
as a subgraph in G such that the labels on the vertices match the degree of the
corresponding vertex in G.

Theorem 5. DEGREE ANONYMITY can be solved in (6s2A3)%° - 52 - n®M) time.

Note that due to the upper bound s < (A% + 4A + 3)? (see Lemma 5) and the
polynomial kernel for the parameter A (see Theorem 4), Theorem 5 also provides
an algorithm running in A%A") 4+ nOM) time.

6 Conclusion

One of the grand challenges of theoretical research on computationally hard
problems is to gain a better understanding of when and why heuristic algorithms
work [13]. In this theoretical study, we contributed to a better theoretical under-
standing of a basic problem in graph anonymization, on the one side partially
explaining the quality of a successful heuristic approach [16] and on the other side
providing a first step towards a provably efficient algorithm for relevant special
cases (bounded-degree graphs). Our work just being one of the first steps in the
so far underdeveloped field of studying the computational complexity of graph
anonymization [6], there are numerous challenges for future research. For instance,
our focus was on classification results rather than engineering the upper bounds, a
natural next step to do. Second, it would be interesting to perform a data-driven
analysis of parameter values on real-world networks in order to gain parameteriza-
tions that can be exploited in a broad-band multivariate complexity analysis [22]
of DEGREE ANONYMITY. Finally, with DEGREE ANONYMITY we focused on a
very basic problem of graph anonymization; there are numerous other models
(partially mentioned in the introductory section) that ask for similar studies.

Bibliography

[1] C. C. Aggarwal, Y. Li, and P. S. Yu. On the hardness of graph anonymization. In
Proc. 11th IEEE ICDM, pages 1002-1007. IEEE, 2011.

[2] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy, D. Thomas, and
A. Zhu. Achieving anonymity via clustering. ACM Transactions on Algorithms, 6
(3):1-19, 2010.

11



8]
(4]

1]
12
[13)
[14]
[15]
[16]
17)
18]
[19]
[20]
21]

[22]

[23]

[24]

[25]

H. L. Bodlaender. Kernelization: New upper and lower bound techniques. In Proc.
4th IWPEC, volume 5917 of LNCS, pages 17-37. Springer, 2009.

S. Chester, B. M. Kapron, G. Ramesh, G. Srivastava, A. Thomo, and S. Venkatesh.
k-Anonymization of social networks by vertex addition. In Proc. 15th ADBIS (2),
volume 789 of CEUR Workshop Proceedings, pages 107-116. CEUS-WS.org, 2011.
S. Chester, J. Gaertner, U. Stege, and S. Venkatesh. Anonymizing subsets of social
networks with degree constrained subgraphs. In Proc. ASONAM, pages 418-422.
IEEE Computer Society, 2012.

S. Chester, B. Kapron, G. Srivastava, and S. Venkatesh. Complexity of social
network anonymization. Social Network Analysis and Mining, 2012. online available.
R. G. Downey and M. R. Fellows. Parameterized Complezity. Springer, 1999.

J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data publishing:
A survey of recent developments. ACM Computing Surveys, 42(4):14:1-14:53, 2010.
H. N. Gabow. An efficient reduction technique for degree-constrained subgraph
and bidirected network flow problems. In Proc. 15th STOC, pages 448-456. ACM,
1983.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization.
SIGACT News, 38(1):31-45, 2007.

R. M. Karp. Heuristic algorithms in computational molecular biology. J. Comput.
Syst. Sci., 77(1):122-128, 2011.

P. Katerinis and N. Tsikopoulos. Minimum degree and f-factors in graphs. New
Zealand J. Math, 29(1):33-40, 2000.

J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-messaging
network. In Proc. 17th WWW, pages 915-924. ACM, 2008.

K. Liu and E. Terzi. Towards identity anonymization on graphs. In Proc. ACM
SIGMOD ’08, pages 93-106. ACM, 2008.

L. Lovasz and M. D. Plummer. Matching Theory, volume 29 of Annals of Discrete
Mathematics. North-Holland, 1986.

X. Lu, Y. Song, and S. Bressan. Fast identity anonymization on graphs. In Proc.
23rd DEXA Part I, volume 7446 of LNCS, pages 281-295. Springer, 2012.

L. Mathieson and S. Szeider. Editing graphs to satisfy degree constraints: A
parameterized approach. J. Comput. Syst. Sci., 78(1):179-191, 2012.

A. Narayanan and V. Shmatikov. De-anonymizing social networks. In Proc. 80th
IEEE SP, pages 173-187. IEEE, 2009.

R. Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford University
Press, 2006.

R. Niedermeier. Reflections on multivariate algorithmics and problem param-
eterization. In Proc. 27th STACS, volume 5 of LIPIcs, pages 17-32. Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 2010.

C. Phillips and T. J. Warnow. The asymmetric median tree—a new model for
building consensus trees. Discrete Appl. Math., 71(1-3):311-335, 1996.

A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao. Sharing graphs using
differentially private graph models. In Proc. 11th ACM SIGCOMM, pages 81-98.
ACM, 2011.

B. Zhou and J. Pei. The kanonymity and [l-diversity approaches for privacy
preservation in social networks against neighborhood attacks. Knowl. Inf. Syst.,
28(1):47-77, 2011.

12



	A Refined Complexity Analysis of Degree Anonymization on Graphs

