
On the Complexity of the

Highly Connected Deletion Problem

Falk Hüffner 1, Christian Komusiewicz 1, Adrian Liebtrau 2,
and Rolf Niedermeier 1

1Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, Germany

2Institut für Informatik,
Friedrich-Schiller-Universität Jena, Germany

January 7, 2013

Abstract

Removing as few edges as possible from a graph such that the resulting
graph consists of highly connected components is a natural problem in
graph-based data clustering. Building on work by Hartuv and Shamir
[Inf. Proc. Lett. 2000], we introduce the corresponding combinatorial
optimization problem Highly Connected Deletion. We show that
Highly Connected Deletion is NP-hard even on 4-regular graphs and
provide fixed-parameter tractability results for the problem.

1 Introduction

A key idea of graph-based data clustering is to identify highly connected sub-
graphs (clusters) that have many interactions within themselves and few with
the rest of the graph [1, 22, 28, 29]. Hartuv and Shamir [9] proposed a clus-
tering algorithm producing highly connected clusters. Their method has been
successfully used to cluster cDNA fingerprints [10], to find complexes in protein–
protein interaction (PPI) data [25], to group protein sequences hierarchically
into superfamily and family clusters [18], and to find families of regulatory RNA
structures [24]. Hartuv and Shamir [9] formalized the connectivity demand for
a cluster as follows: the edge connectivity λ(G) of a graph G is the minimum
number of edges whose deletion results in a disconnected graph, and a graph G
with n vertices is called highly connected if λ(G) > n/2. An equivalent charac-
terization is that a graph is highly connected if each vertex is connected to a
majority of the other vertices [3]. This demonstrates that the concept of a highly
connected graph is very similar to that of a 0.5-quasi-complete graph [14, 21],
that is, a graph where every vertex has degree at least (n − 1)/2. Further, it

1

can be shown that being highly connected also ensures that the diameter of a
cluster is at most two [9].

The algorithm by Hartuv and Shamir [9] partitions the vertex set of the
given graph such that each partition set is highly connected, thus guaranteeing
good intra-cluster density (including maximum cluster diameter two and the
presence of more than half of all possible edges). Moreover, the algorithm needs
no prespecified parameters (such as the number of clusters) and it naturally
extends to hierarchical clustering. Essentially, Hartuv and Shamir’s algorithm
iteratively deletes the edges of a minimum cut in a connected component that is
not yet highly connected.1 While Hartuv and Shamir’s algorithm guarantees
to output a partitioning into highly connected subgraphs, it does not guarantee
to achieve this by minimizing inter-cluster connectivity. In other words, it is
not ensured that the partitioning comes along with a minimum number of edge
deletions making the resulting graphs consist of highly connected components.
This is why here, “on top” of Hartuv and Shamir’s work, we propose a formally
defined combinatorial optimization problem that additionally specifies the goal
to minimize the number of edge deletions.

Highly Connected Deletion
Instance: An undirected graph G = (V,E).
Task: Find a minimum subset of edges E′ ⊆ E such that in G′ =
(V,E \ E′) all connected components are highly connected.

The formulation above resembles the Cluster Deletion problem [27],
which asks for a minimum number of edge deletions to make each connected
component a clique; thus, Cluster Deletion has a much stronger demand on
intra-cluster connectivity. Also related is the 2-Club Deletion problem [19],
which asks for a minimum number of edge deletions to make each connected
component have a diameter of at most two. Since highly connected clusters
have diameter at most two [9], 2-Club Deletion poses a looser demand on
intra-cluster connectivity. Note that by definition, isolated edges are not highly
connected. Hence, the smallest clusters are triangles; we consider all singletons
as unclustered.

Since the algorithm by Hartuv and Shamir [9] repeatedly deletes the edges
of a minimum cut from a component that is not yet highly connected, it could
be expected that it yields a good approximation for the optimization goal of
Highly Connected Deletion. However, we can observe that in the worst
case, its result can have size Ω(k2), where k := |E′| is the size of an optimal
solution. For this, consider two cliques with vertex sets u1, . . . , un and v1, . . . , vn,
respectively, and the additional edges {ui, vi} for 2 ≤ i ≤ n. Then these
additional edges form a solution set of size n− 1; however, Hartuv and Shamir’s
algorithm will (with unlucky choice of minimum cuts) transform one of the two
cliques into an independent set by repeatedly cutting off one vertex, thereby

1The CLICK algorithm [6] and the SIDES algorithm [17] follow the same scheme, but use
edge weights and different stopping criteria, based on probabilistic models. Hu et al. [11]
present a variant that can also produce overlapping clusters.

2

deleting n(n+ 1)/2− 1 edges. This also illustrates the tendency of the algorithm
to cut off size-1 clusters, which Hartuv and Shamir tried to counteract with
postprocessing [9]. This tendency might introduce systematic bias [11, 17].
Hence, exact methods for solving Highly Connected Deletion make sense.

Our contributions. We analyze the (parameterized) computational complex-
ity of Highly Connected Deletion.

In particular, we show that Highly Connected Deletion is NP-hard even
on 4-regular graphs and, provided the Exponential Time Hypothesis (ETH) [13]
does not fail, cannot be solved in subexponential time. In addition, we provide
strong polynomial-time executable data reduction rules (on the theoretical
side also yielding a so-called problem kernel of polynomial size) and a fixed-
parameter algorithm based on dynamic programming; both these results exploit
the parameter “number of edge deletions”.

Preliminaries. We consider only undirected and simple graphs G = (V,E).
We use n to denote the number of vertices in the input graph and m to denote
the number of edges in the input graph, and k for the minimum size of an
edge set whose deletion makes all components highly connected. The order of
a graph G is the number of vertices in G. We use G[S] to denote the subgraph
induced by S ⊆ V . Let N(v) := {u | {u, v} ∈ E} denote the (open) neighborhood
of v and N [v] := N(v) ∪ {v}. A minimum cut of a graph G is a smallest edge
set E′ such that deleting E′ increases the number of connected components of G.

We view Highly Connected Deletion also as a parameterized problem [4,
5, 23], where the parameter is the number k of edge deletions. A parameterized
problem with input size s is called fixed-parameter tractable (FPT) with respect
to a parameter k if it can be solved in f(k) · sO(1) time, where f is a computable
function only depending on k. A problem kernel for a parameterized problem
is a many-one polynomial-time self-reduction such that the produced instances
have size upper-bounded by some function of the parameter. Usually, a problem
kernel is achieved by applying polynomial-time executable data reduction rules.
Referring to decision problems, we call a data reduction rule R correct if the new
problem instance I ′ that results from applying R to the original instance I is a
yes-instance if and only if I is a yes-instance. The Exponential Time Hypothesis
(ETH) [13] states that 3-Sat cannot be solved in subexponential time. Several
results on (relative) lower bounds for exponential-time algorithms have been
shown by exploiting the ETH, see Lokshtanov et al. [20] for a recent survey.

2 Computational Complexity

In this subsection, we present a proof that Highly Connected Deletion
is NP-hard even on 4-regular graphs and that it cannot be solved in 2o(k) ·
nO(1), 2o(n) · nO(1), or 2o(m) · nO(1) time unless the exponential-time hypothesis
(ETH) [13] is false.

3

v

Type I

v

u

Type II

Figure 1: The two different neighborhoods in a 4-regular neighborhood restricted
graph. None of these graphs contains a clique of order four.

The Partition Into Triangles problem is to partition the vertex set of
a graph into n/3 sets such that each set induces a triangle. Partition Into
Triangles is NP-hard and cannot be solved in 2o(n) · nO(1) time unless the
ETH is false, even for so-called 4-regular neighborhood-restricted graphs [26]. A
reduction from Partition Into Triangles to Highly Connected Deletion
would be easy if we could make sure the only highly connected subgraphs are
triangles. We can show that 4-regular neighborhood-restricted graphs already
cannot contain a highly connected subgraph of size four, five, or at least eight.
The possibly remaining highly connected subgraphs of size six or seven can be
eliminated with a data reduction rule, which completes the reduction.

As recently shown by van Rooij et al. [26], the Partition Into Triangles
problem is NP-hard even when the input graph G = (V,E) is 4-regular. Moreover,
NP-hardness persists even when for each vertex v ∈ V the graph G[N [v]] is
isomorphic to one of the two graphs shown in Fig. 1 [26]; we refer to such graphs
as 4-regular neighborhood-restricted graphs. The variant of Partition Into
Triangles which we will use in the reduction thus is:

Restricted Partition Into Triangles (RPIT)
Instance: An undirected 4-regular neighborhood restricted graphG =
(V,E).
Question: Can V be partitioned into |V |/3 sets such that each set
of the partition induces a triangle, that is, a complete graph on three
vertices, in G?

Our reduction is similar to a simple reduction that was used to show NP-hardness
of Cluster Deletion on graphs of maximum degree four [16]. In this reduction,
the graph remains basically the same, and one just has to find the appropriate k.
The main difference is that for Highly Connected Deletion we have to show
that there can be no clusters larger than triangles in G (in the case of Cluster
Deletion this is easier since the cluster size is at most five in 4-regular graphs).
In the following, we present two observations and a data reduction rule for RPIT
and then use them to obtain a reduction from RPIT to Highly Connected
Deletion. The overall aim is to show that we can assume for our reduction
that all clusters are triangles.

Lemma 1. Let G = (V,E) be a 4-regular neighborhood-restricted graph. Then G

4

does not contain any highly connected subgraph of order four, five, or at least
eight.

Proof. Obviously, G does not contain highly connected subgraphs of order at
least eight, since G is 4-regular and any highly connected graph of order at least
eight has minimum degree five. Furthermore, the only highly connected graphs
of order four are cliques on four vertices. Since G has only the neighborhoods
shown in Fig. 1, it does not contain cliques of order four.

It remains to show that G does not contain highly connected subgraphs of
order five. The main observation we use is that, in such a graph, every vertex
has degree at least three. Let v be a vertex in G. Since G[N [v]] contains at
least two vertices of degree two (see Fig. 1), G[N [v]] is not highly connected.
Hence, if v is contained in a highly connected subgraph G′ of order five, then G′

contains at least one vertex from V \N [v] and exactly one vertex from N [v] is
not in G′. If G[N [v]] is of Type I (see Fig. 1, then v is not contained in a highly
connected subgraph of order five: deleting one vertex from G[N [v]] produces
one vertex with degree one and this vertex cannot obtain degree at least three
by adding one vertex. Hence, assume that G[N [v]] is of Type II. Clearly, every
highly connected subgraph of order five containing v also has to contain u, since
otherwise one creates again a degree-one vertex. Note that u and v have the
same neighborhood. Since G is 4-regular, there is no vertex in V \N [v] that is
adjacent to u or v. Consequently, every vertex of V \N [v] has degree at most
two in a subgraph of G that has order five and contains u and v. Hence, there is
no highly connected subgraph of order five that contains v.

We now present one data reduction rule that removes small connected com-
ponents from the RPIT instance.

Rule 1. Let G = (V,E) be an instance of RPIT. If G contains a connected
component C of order at most seven, then check whether C can be partitioned
into triangles. If this is the case; then remove C from G, otherwise, answer

“no”.

The correctness of the reduction rule is obvious. Furthermore, it results in
an instance with the following property.

Lemma 2. Let G = (V,E) be an instance of RPIT that is reduced with respect
to Rule 1. Then, G does not contain any highly connected subgraphs of order six
or seven.

Proof. Assume that G contains a highly connected subgraph G′ = (V ′, E′) on six
vertices. Then, each vertex in G′ has at least four neighbors in G′. Consequently,
no vertex of G′ has in G any neighbors in V \ V ′. Hence, G′ is a connected
component of G. This contradicts the fact that G is reduced with respect
to Rule 1. A similar argument applies for highly connected subgraphs of order
seven.

5

Theorem 1. Highly Connected Deletion on 4-regular graphs is NP-hard
and cannot be solved in 2o(k) · nO(1), 2o(n) · nO(1), or 2o(m) · nO(1) time unless
the exponential-time hypothesis (ETH) is false.

Proof. We reduce from RPIT which is NP-hard and cannot be solved in 2o(n) ·
nO(1) time unless the ETH is false [26]. Given an instance of RPIT, first
apply Rule 1. Let G = (V,E) be the resulting instance. We obtain an instance
of Highly Connected Deletion by setting k := |V |.

The equivalence of the instances can be seen as follows. If G has a partition
into triangles, then each of these triangles is a highly connected subgraph. The
number of triangles is |V |/3 and the overall number of edges contained in these
triangles is |V |. Since G is 4-regular, |E| = 2|V |. Hence, G can be transformed
by at most k edge deletions into a highly connected cluster graph.

Conversely, if G can be transformed into a highly connected cluster graph G′

by at most |V | edge deletions, then G′ has at least |V | edges. By Lemmas 1
and 2, no cluster in G′ has order at least four. Hence, all clusters are triangles
or singletons. Since G′ has |V | edges, all clusters are triangles. Therefore, G can
be partitioned into triangles.

Clearly, the reduction implies NP-hardness of Highly Connected Dele-
tion on 4-regular graphs. The ETH-based lower bounds follow from the fact
that |V | = k = |E|/2.

2.1 Algorithms

In this section, we provide polynomial-time data reduction rules which reduce
an instance of Highly Connected Deletion to an equivalent one with at
most 10k1.5 vertices. Thus, after reduction, the instance size depends solely
on k, implying a problem kernel [8] with respect to the parameter k. Further, we
present a fixed-parameter algorithm for Highly Connected Deletion with
running time O(34k · k2 + n2mk · log n). These results imply the fixed-parameter
tractability of Highly Connected Deletion with respect to k and give hope
for finding optimal solutions for instances where k is not too large.

2.2 Data Reduction and Problem Kernel.

The first data reduction rule is obvious.

Rule 2. Remove all connected components from G that are highly connected.

The following lemma can be proved by a simple counting argument.

Lemma 3. Let G be a highly connected graph and u, v two vertices in G. If
u and v are connected by an edge, they have at least one common neighbor;
otherwise, they have at least three common neighbors.

Proof. Let nuv be the number of common neighbors of u and v and nu and nv
the number of neighbors specific to u and v, respectively (excluding u and v).
Let c be 1 if {u, v} ∈ E and 0 otherwise. We have nuv + nu + c ≥ (n + 1)/2

6

and nuv + nv + c ≥ (n + 1)/2, thus 2nuv + nu + nv + 2c ≥ n + 1. Since
n ≥ nuv + nu + nv + 2, we get nuv + 2c− 2 ≥ 1, thus nuv ≥ 3− 2c.

A simple data reduction rule follows directly from Lemma 3.

Rule 3. If there are two vertices u and v with {u, v} ∈ E that have no common
neighbors, then delete {u, v} and decrease k by one.

Interestingly, these two rules can be used to obtain a linear-time algorithm
for Highly Connected Deletion on graphs of maximum degree three:

Theorem 2. Highly Connected Deletion can be solved in linear time when
the input graph has degree at most three.

Proof. We first apply Rule 3. This reduction rule can be applied in one pass
since an edge that is in a triangle is never deleted by this rule. Consequently, the
application of this rule does not produce new vertices u and v to which this rule
applies. Hence, Rule 3 can be exhaustively applied in O(n+m) time: for each
edge in G we examine the neighborhoods of its endpoints; since G has maximum
degree three this neighborhood has constant size. Next, we apply Rule 2, which
can also be performed in linear time. After the application of this rule, G is
reduced with respect to both rules.

Consider a connected component in G. We show that G contains only four
vertices. Let {u, v} be some edge in this connected component. Since G is
reduced with respect to Rule 3, there is a vertex w that is a common neighbor
of u and v. Since G is reduced with respect to Rule 2, one of these three vertices,
say v has a further neighbor x. Now, x has a common neighbor with v, say u.
The connected component does not contain any further vertices: First, u and v
can have no further neighbors since G has maximum degree three. Second, w
and x cannot be adjacent since then the connected component is a clique of
order four which contradicts that G is reduced with respect to Rule 2. Finally,
neither x nor w have a further neighbor since this neighbor has to be adjacent to
either u or v, which already have degree three. Hence, each remaining connected
component can be solved in constant time.

As computational experiments demonstrate [12], Rule 3 tremendously sim-
plifies many real-world input instances. The next two data reduction rules are
concerned with finding vertex sets that have a small edge cut. For S ⊆ V , we
use D(S) := {{u, v} ∈ E | u ∈ S ∧ v ∈ V \S} to denote the set of edges outgoing
from S, that is, the edge cut of S.

The idea behind the next reduction rule is to find vertex sets that cannot be
separated by at most k edge deletions. We call two vertices u and v inseparable
if the minimum edge cut between u and v is larger than k. Analogously, a vertex
set S is inseparable if all vertices in S are pairwise inseparable.

Rule 4. If G contains a maximal inseparable vertex set S of size at least 2k, then
do the following. If G[S] is not highly connected, then return “no”. Otherwise,
remove S from G and set k := k − |D(S)|.

7

Lemma 4. Rule 4 is correct and can be exhaustively applied in O(n2 ·mk log n)
time.

Proof. We show that the rule produces equivalent instances. First, assume
that (G, k) is a yes-instance. Clearly, an inseparable vertex set S has to be
subset of a cluster C in the solution graph. Now, since |S| ≥ 2k there can be no
vertex in C \ S: Assume that C contains such a vertex. Then by the maximality
of S, the graph G[C] has an edge cut of size at most k. Since |C| > 2k, this
means that G[C] is not highly connected. Hence, S is a cluster in the solution
and thus G[S] is highly connected. The rule performs precisely the edge deletions
needed to cut S from V \ S and reduces the parameter accordingly. Hence, it
produces a yes-instance.

Now, if the instance is a no-instance, then either the rule returns “no” or
performs some edge deletions and reduces the parameter accordingly. This
cannot transform a no-instance into a yes-instance.

We now describe how to achieve an exhaustive application of the rule in the
described running time. First, build a so-called Gomory-Hu tree in O(n2 ·m log n)
time [7, 15]. This tree has n vertices and the set of weighted edges represents all
pairwise min-cuts. A maximal inseparable vertex sets can be found by deleting
all edges that have weight at most k. Once this set has been identified, the
application of the reduction rule can be performed in O(m) time. Since the
reduction rule can be performed at most k times (it answers either “no” or
reduces k), the overall running time follows.

Note that a highly connected graph of size at least 2k is an inseparable vertex
set. Hence, after exhaustive application of Rule 4, every cluster has bounded
size. While Rule 4 identifies clusters that are large with respect to k, Rule 5
identifies clusters that are large compared to their neighborhood.

Rule 5. If G contains a vertex set S such that

• |S| ≥ 4,

• G[S] is highly connected, and

• |D(S)| ≤ 0.3 ·
√
|S|,

then remove S from G and set k := k − |D(S)|.

Lemma 5. Rule 5 is correct and can be exhaustively applied in O(n2 ·mk log n)
time.

Proof. We show that there is an optimal solution in which S is a cluster. To
this end, suppose that there is an optimal solution which produces some clus-
ters C1, . . . , Cq that contain vertices from S and vertices from V \ S. We show
how to transform this solution into one that has S as a cluster and needs at
most as many edge deletions.

First, we bound the overall size of the Ci’s. Note that deleting all edges
between S and {Ci \ S | 1 ≤ i ≤ q} cuts each Ci. By the condition of the rule,

8

such a cut has at most 0.3
√
|S| edges. Since each G[Ci] is highly connected, this

implies that
∑

1≤i≤q |Ci| < 0.6
√
|S|.

Now, transform the solution at hand into another solution as follows. Make S
a cluster, that is, undo all edge deletions within S and delete all edges in D(S),
and for each Ci, delete all edges in G[Ci \ S]. This is indeed a valid solution
since G[S] is highly connected, and all other vertices that are in “new” clusters
are now in singleton clusters.

We now compare the number of edge modifications for both edge deletion
sets and show that the new solution needs less edge modifications. To this end,
we consider each vertex u ∈ S that is contained in some Ci. On the one hand,
since G[S] is highly connected, and since there is at least some v ∈ S that is not
contained in any Ci we undo at at least |S|/2 edge deletions between vertices

of S. On the other hand, an additional number of up to 0.3
√
|S|+

(b0.6√|S|c
2

)
edge deletions may be necessary to cut all the Ci’s from S and to delete all edges
in each G[Ci \ S]. By the preconditions of the rule we have

√
|S| ≤ |S|/2 and

thus the overall number of saved edge modifications for u is at least

|S|/2− 0.3
√
|S| −

(
b0.6

√
|S|c

2

)
> |S|/2− 0.6|S|/2− 0.36|S|/2 > 0. (1)

Hence, the number of undone edge modifications is larger than the number of
new edge modifications. Consequently, S is a cluster in every optimal solution.

The running time can be bounded analogously to the running time of Rule 4.
The only difference is that after constructing the Gomory-Hu tree, one can find
a vertex set that fulfills the conditions of the rule by trying all m possibilities for
“guessing” |S|/2. Assuming the correct guess, deleting all edges with weight at
most |S|/2 in the tree produces one connected component that is exactly S.

Theorem 3. Highly Connected Deletion admits a problem kernel with at
most 10 · k1.5 vertices which can be computed in O(n2 ·mk log n) time.

Proof. Let I = (G, k) be an instance that is reduced with respect to Rules 2, 4
and 5. We show that every yes-instance has at most 10 · k1.5 vertices. Hence, we
can answer no for all larger instances.

Assume that I is a yes-instance and let C1, . . . , Cq denote the clusters of
a solution. Since I is reduced with respect to Rule 4, we have |Ci| ≤ 2k for
each Ci. Furthermore, for every Ci we have D(Ci) ≥ 0.3

√
|Ci| since I is reduced

with respect to Rules 2 and 5. In other words, every cluster Ci “needs” at least
0.3
√
|Ci| edge deletions. This implies that the overall size of the instance is

upper-bounded by

max
(c1,...,cq)∈Nq

q∑
i=1

ci s.t. ∀i ∈ {1, . . . , q} : ci ≤ 2k,
∑

1≤i≤q

0.3 ·
√
ci ≤ 2k.

A simple calculation shows that there is an assignment to the ci’s maximizing
the sum such that there is at most one ci that is smaller than 2k. Hence, the

9

sum is maximized when a maximum number of ci’s have value 2k. Each of the
corresponding clusters is incident with at least 0.3

√
2k edge deletions. Hence,

there can be at most 2k/0.3
√

2k = 10
√

2k/3 of these clusters. The overall
instance size follows.

3 Fixed-Parameter Algorithm

We present a fixed-parameter algorithm solving Highly Connected Deletion
in 34k · nO(1) time. Fixed-parameter algorithms have also been given for related
clustering problems; the best known fixed-parameter algorithm for Cluster
Deletion (after a long line of improvements) runs in 1.415k · nO(1) time [2],
and the best known fixed-parameter algorithm for 2-Club Deletion runs in
2.74k · nO(1) time [19].

The main idea of our algorithm is to branch until each connected component
has diameter two and solve these instances by a dynamic programming algorithm.
The details are as follows.

Since each highly connected graph has diameter at most two [9], we can
perform the following branching rule.

Branching Rule 1. If a connected component in G has diameter three or
more, then find two vertices u and v with distance three and pick an arbitrary
shortest path P = uxyv between u and v. Branch into the three possibilities to
destroy P by deleting either {u, x}, {x, y}, or {y, v}. In each recursive branch,
set k := k − 1.

The rule is obviously correct in the sense that at least one of the three
edges has to be destroyed. Now assume that the branching rule does not apply
anymore, that is, each connected component has diameter two. If the graph
is also highly connected, then we are done. Otherwise, we can apply Rule 4
to obtain an instance that is small compared to k, as shown by the following
lemma.

Lemma 6. Let I = (G, k) be an instance of Highly Connected Deletion
such that G has diameter two and I is reduced with respect to Rule 4. Then, G
has at most 4k vertices.

Proof. Consider a solution for I. Since G has diameter two, there is at most
one cluster in this solution that has vertices that are not incident with an edge
that is deleted by the solution (call these vertices unaffected): if there are two
clusters Ci and Cj with unaffected vertices u and v, then these vertices are
withing distance at least three (u is not adjacent to a neighbor of v). Let C1

be the, possibly empty, cluster that has unaffected vertices. Then, since I is
reduced with respect to Rule 4, C1 has at most 2k vertices. Since all other
vertices are affected, there can be at most 2k further vertices. The overall size
of the instance follows.

In the following lemma, we describe an algorithm that solves Highly Con-
nected Deletion for arbitrary (not necessarily diameter-2) instances. The

10

main trick in the fixed-parameter algorithm is that with the above lemma this
running becomes a single-exponential running time for the parameter k.

Lemma 7. Highly Connected Deletion can be solved in O(3n ·m) time.

Proof. We describe a dynamic programming algorithm. The idea of the algorithm
is that if V can be two-partitioned into V1 and V2 such that all clusters are
subsets of either V1 or V2, then we can obtain the overall solution by combining
best solutions for the induced subgraphs G[V1] and G[V2]. The details are as
follows.

We build a dynamic programming table T with entries of the type T [V ′], V ′ ⊆
V which store an optimal solution for Highly Connected Deletion for G[V ′].
The table is initialized by setting T [V ′] = 0 for each V ′ ⊆ V such that G[V ′] is
highly connected. The remaining entries can be computed by the recurrence

T [V ′] = min
V1,V2,V1∪̇V2=V ′

T [V1] + T [V2] + |{{u, v} ∈ E | u ∈ V1 ∧ v ∈ V2}|. (2)

The third summand is exactly the number of edges needed to cut V1 from V2 in G.
After all entries have been computed, T [V] stores the number of edge deletions
needed for obtaining a highly connected cluster graph; an actual clustering can
be obtained by a traceback. The correctness of the recurrence follows from the
discussion above.

The running time can be bounded as follows. For each table entry, the
initialization can be performed in O(m) time, leading to an overall time of O(2n ·
m) for this part of the algorithm. In the second part of the algorithm, an overall
number of O(3n) recurrences have to be evaluated: each partition of V ′ into V1
and V2 uniquely defines a three-partition of V into V \ V ′, V1 and V2. Since the
number of edges needed for the third summand can be counted in O(m) time,
the overall running time follows.

Combining the above two lemmas with the branching rule, we obtain our
main result of this section.

Theorem 4. Highly Connected Deletion can be solved in O(34k · k2 +
n2mk · log n) time.

Proof. The algorithm performs Rules 2 and 4 and the branching rule as long as
possible. By Lemma 6, the remaining instances have at most 4k′ vertices for
some k′ ≤ k. Using Lemma 7, these instances can be solved in O(34k

′ · k2) time.
The overall running time follows from a simple worst-case analysis, we omit the
details.

The running time given by Theorem 4 is impractical. Even worse, the
presented algorithm behind relies partially on dynamic programming which
has the disadvantage that, compared to branching algorithms, its average-case
running time often comes close to its worst-case running time. We conjecture
that a running time improvement using only branching algorithms is possible.

11

Acknowledgment

We are indebted to Nadja Betzler and Johannes Uhlmann for their early contri-
butions in this research.

References

[1] R. Albert. Scale-free networks in cell biology. Journal of Cell Science, 118
(21):4947–4957, 2007. 1

[2] S. Böcker and P. Damaschke. Even faster parameterized cluster deletion
and cluster editing. Information Processing Letters, 111(14):717–721, 2011.
10

[3] G. Chartrand. A graph-theoretic approach to a communications problem.
SIAM Journal on Applied Mathematics, 14(4):778–781, 1966. 1

[4] R. G. Downey and M. R. Fellows. Parameterized Complexity. 1999. 3

[5] J. Flum and M. Grohe. Parameterized Complexity Theory. 2006. 3

[6] I. Gat-Viks, R. Sharan, and R. Shamir. Scoring clustering solutions by their
biological relevance. Bioinformatics, 19(18):2381–2389, 2003. 2

[7] R. E. Gomory and T. C. Hu. Multi-Terminal Network Flows. Journal of
the Society for Industrial and Applied Mathematics, 9(4):551–570, 1961. 8

[8] J. Guo and R. Niedermeier. Invitation to data reduction and problem
kernelization. ACM SIGACT News, 38(1):31–45, 2007. 6

[9] E. Hartuv and R. Shamir. A clustering algorithm based on graph con-
nectivity. Information Processing Letters, 76(4–6):175–181, 2000. 1, 2, 3,
10

[10] E. Hartuv, A. O. Schmitt, J. Lange, S. Meier-Ewert, H. Lehrach, and
R. Shamir. An algorithm for clustering cDNA fingerprints. Genomics, 66
(3):249–256, 2000. 1

[11] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou. Mining coherent dense
subgraphs across massive biological networks for functional discovery. In
Proc. 13th International Conference on Intelligent Systems for Molecular
Biology (ISMB ’05), volume 21 of Bioinformatics, pages 213–221, 2005. 2, 3

[12] F. Hüffner, C. Komusiewicz, and R. Niedermeier. Partitioning biological
networks into highly connected clusters with maximum edge coverage, 2013.
Manuscript. 7

[13] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):
512–530, 2001. 3

12

[14] D. Jiang and J. Pei. Mining frequent cross-graph quasi-cliques. ACM
Transactions on Knowledge Discovery from Data, 2(4):16:1–16:42, 2009. 1

[15] V. King, S. Rao, and R. E. Tarjan. A faster deterministic maximum flow
algorithm. J. Algorithms, 17(3):447–474, 1994. 8

[16] C. Komusiewicz and J. Uhlmann. Cluster editing with locally bounded
modifications. Discrete Applied Mathematics, 160(15):2259–2270, 2012. 4

[17] M. Koyutürk, W. Szpankowski, and A. Grama. Assessing significance of
connectivity and conservation in protein interaction networks. Journal of
Computational Biology, 14(6):747–764, 2007. 2, 3

[18] A. Krause, J. Stoye, and M. Vingron. Large scale hierarchical clustering of
protein sequences. BMC Bioinformatics, 6:15, 2005. 1

[19] H. Liu, P. Zhang, and D. Zhu. On editing graphs into 2-club clusters.
In Proc. Joint International Conference on Frontiers in Algorithmics and
Algorithmic Aspects in Information and Management (FAW-AAIM ’12),
volume 7285 of LNCS. Springer, 2012. 2, 10

[20] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the
Exponential Time Hypothesis. Bulletin of the EATCS, 84:41–71, 2011. 3

[21] H. Matsuda, T. Ishihara, and A. Hashimoto. Classifying molecular sequences
using a linkage graph with their pairwise similarities. Theoretical Computer
Science, 210(2):305–325, 1999. 1

[22] M. E. J. Newman. Networks: An Introduction. Oxford University Press,
2010. 1

[23] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006. 3

[24] B. J. Parker, I. Moltke, A. Roth, S. Washietl, J. Wen, M. Kellis, R. Breaker,
and J. S. Pedersen. New families of human regulatory RNA structures
identified by comparative analysis of vertebrate genomes. Genome Research,
21(11):1929–1943, 2011. 1

[25] N. Pržulj, D. A. Wigle, and I. Jurisica. Functional topology in a network of
protein interactions. Bioinformatics, 20(3):340–348, 2004. 1

[26] J. M. M. van Rooij, M. E. van Kooten Niekerk, and H. L. Bodlaender.
Partition into triangles on bounded degree graphs. In Proceedings of the
37th Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM ’11), volume 6543 of LNCS, pages 558–569. Springer,
2011. 4, 6

[27] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems.
Discrete Applied Mathematics, 144(1–2):173–182, 2004. 2

13

[28] R. Sharan, I. Ulitsky, and R. Shamir. Network-based prediction of protein
function. Molecular Systems Biology, 3:88, 2007. 1

[29] V. Spirin and L. A. Mirny. Protein complexes and functional modules in
molecular networks. PNAS, 100(21):12123–12128, 2003. 1

14

	Introduction
	Computational Complexity
	Algorithms
	Data Reduction and Problem Kernel.

	Fixed-Parameter Algorithm

