
Finding Highly Connected Subgraphs

Falk Hüffner, Christian Komusiewicz, and Manuel Sorge

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin,
{falk.hueffner,christian.komusiewicz,manuel.sorge}@tu-berlin.de

Abstract. A popular way of formalizing clusters in networks are highly
connected subgraphs, that is, subgraphs of k vertices that have edge con-
nectivity larger than k/2 (equivalently, minimum degree larger than k/2).
We examine the computational complexity of finding highly connected
subgraphs. We show that the problem is NP-hard. Thus, we explore pos-
sible parameterizations, such as the solution size, number of vertices in
the input, the size of a vertex cover in the input, and the number of edges
outgoing from the solution (edge isolation). For some parameters, we find
strong intractability results; among the parameters yielding tractability,
the edge isolation seems to provide the best trade-off between running
time bounds and a small value of the parameter in relevant instances.

1 Introduction

A popular method of analyzing complex networks is to identify clusters or com-
munities, that is, subgraphs that have many interactions within themselves and
fewer with the rest of the graph (e. g. [19, 20]). Hartuv and Shamir [11] proposed
a prominent clustering algorithm producing highly connected clusters, formalized
as follows: the edge connectivity λ(G) of a graph G is the minimum number of
edges whose deletion results in a disconnected graph; and a graph G with n
vertices is called highly connected if λ(G) > n/2. An equivalent characterization
is that a graph is highly connected if each vertex has degree at least bn/2c+1 [4].
Moreover, highly connected graphs have diameter at most two [11].

We study the following problem:

Highly Connected Subgraph
Input: An undirected graph G = (V,E) and a nonnegative integer k.
Question: Is there a vertex set S such that |S| = k and G[S] is highly
connected?

In addition to the natural application in analyzing complex networks [20],
Highly Connected Subgraph also occurs (with vertex weights) as subprob-
lem in a column generation algorithm for partitioning into highly connected
clusters [13].

Since Highly Connected Subgraph is NP-hard (Theorem 1), we explore
the “parameter ecology” [9] of the problem. We are looking for fixed-parameter
algorithms, that is, we try to find problem parameters p that allow for a running
time of f(p) · |G|O(1). The hope is that the function f grows not too fast (although

2

it has to be superpolynomial unless P = NP), and that the parameter value p
can be expected to be relatively small in interesting instances. Clearly, there is a
trade-off between these goals.

Results. We list the results going from the hardest parameters to the easiest,
corresponding roughly to going from small expected parameter values to large
ones. Let n be the number of vertices in G. For the parameter ` := n− k (the
number of vertices to delete to obtain a highly connected subgraph), we obtain a
strong hardness result: there is a trivial nO(`) time algorithm, but it is unlikely
that no(`) time can be achieved (Theorem 1). For the size of the solution k, a fixed-
parameter algorithm is unlikely, even if we additionally consider the degeneracy
of G as a parameter (Theorem 2). If we take the minimum size of a vertex cover τ
for G as parameter, we obtain the first fixed-parameter algorithm: the problem
can be solved in O((2τ)τ · nO(1)) time (Corollary 1). Considering the number of
vertices n, we can clearly solve the problem in 2n·nO(1) time; however, it is unlikely
that this can be improved to 2o(n) ·nO(1), that is, there is no subexponential-time
algorithm (Corollary 2). If the parameter is the number γ of edges between G[S]
and the remaining vertices, then we can also find a fixed-parameter algorithm
with running time O(4γn2) (Theorem 4). Finally, if we consider the number α of
edges to delete to obtain a highly connected subgraph (plus singleton vertices),
we even obtain a subexponential running time (Theorem 7).

Related work. The algorithm by Hartuv and Shamir [11] partitions a graph
heuristically into highly connected components; another algorithm tries to explic-
itly minimize the number of edges that need to be deleted for this [13]. Highly
connected graphs can be seen as clique relaxation [19], that is, a graph class
that has many properties similar to cliques, without being as restrictive. Highly
connected graphs are very similar to 0.5-quasi-complete graphs [18], that is,
graphs where every vertex has degree at least (n− 1)/2. Recently, also the task
of finding subgraphs with high vertex connectivity has been examined [21].

Preliminaries. We consider only undirected graphs G = (V,E) with n := |V |
and m := |E|. We use G − S as shorthand for G[V \ S]. A cut (A,B) in a
graph G = (V,E) is a vertex bipartition, that is, A∩B = ∅ and A∪B = V . The
cut edges are the edges with one endpoint in A and one in B, and the size of a cut
is the number of its cut edges. For the definitions of FPT, W[1], parameterized
reduction, and problem kernelization refer to [8].

2 Vertex Deletion Parameter

For finding large cliques in a graph, one successful approach is to use fixed-
parameter algorithms for the parameter “number of vertices in the graph that are
not in the clique” [15, 16]. We show that for Highly Connected Subgraph
this parameter does not lead to fixed-parameter tractability.

3

Theorem 1. Highly Connected Subgraph is NP-hard and W[2]-hard pa-
rameterized by ` := n − k and it cannot be solved within no(`) time unless
FPT=W[1].

Proof. We present a reduction from Hitting Set:

Input: A set family S = {S1, . . . , Sm} over a ground set U = {1, . . . , n}
and an integer k.
Question: Is there a set H ⊆ U of size k such that Si ∩ H 6= ∅ for
each Si ∈ S?

Given an instance (S, k) of Hitting Set, construct an instance (G = (V,E), k′)
of Highly Connected Subgraph as follows (we assume w.l.o.g. that k < n−1).
Initially, set V := U ∪VS where VS := {si | 1 ≤ i ≤ m}, that is, create one vertex
for each element and each set of the Hitting Set instance. Next, make each
vertex si adjacent to all vertices u ∈ U \Si, that is, to the vertices corresponding
to elements not in Si. This will encode the Hitting Set instance. Now, add
three cliques VX , VY , and VZ to G, where VX has size k + 1, VY has size n,
and VZ has size m. These three cliques will enforce that at least k vertices are
deleted, and that some of the deleted vertices are contained in U . The purpose of
the edges between U and VS is to make sure that for each si at least one deleted
vertex from U is not a neighbor of si (and thus it is contained in Si). To achieve
these properties, add the following edges.

First, add all edges between the vertices in U , VY , and VZ , that is, make U ∪
VY ∪ VZ a clique. Furthermore, add all possible edges between VX and VS and
make each vertex in VX adjacent to exactly n−k+1 vertices of VY . When adding
these edges, ensure that every vertex in VY has at least one neighbor in VX .
Furthermore, add all edges between VS and VZ and make each vertex si ∈ VS
adjacent to |Si| − 1 vertices in VY .

To complete the construction, set k′ := |V | − k. Note that this implies ` = k.
Before we show the soundness of the reduction, observe the following about the
degrees of the vertices in G:

– Each vertex in U ∪ VY ∪ VZ has degree at least m+ 2n− 1.
– Each vertex in VX has degree exactly m+ n+ 1 in G.
– Each vertex in VS has degree exactly m+ n+ k in G.

It remains to show that

(S, k) is a yes-instance of Hitting Set ⇔ (G, k′) is a yes-instance
of Highly Connected Subgraph.

“⇒”: Let H ⊆ U be a size-k hitting set. We show that G − H is highly
connected. Note that |V | − k = 2(m+n) + 1 and thus G−H is highly connected
if all its vertices have degree at least m + n + 1. Since k < n, all vertices
in U ∪ VY ∪ VZ have degree at least m+ n+ 1. Furthermore, each vertex in VX
has degree at least m + n + 1 in G − H since there are no edges between U
and VX . Finally, every vertex si ∈ VS has degree at least m+ n+ 1: Since H is a

4

hitting set, there is one vertex in H that is not adjacent to si. Thus, the degree
of si is at least m+ n+ k − (k − 1) = m+ n+ 1.

“⇐”: Let H be a vertex set of size at most k such that G − H is highly
connected. First, note that |VX | = k + 1 which implies that there is at least
one vertex v ∈ VX that is not deleted. Since G − H is highly connected this
implies that v has more than b(|V | − |H|)/2c neighbors in G−H. Since v has
exactly m + n + 1 neighbors in G this implies that |V | − |H| ≤ 2(m + n) + 1
and thus |H| = k. Note that this also implies that N(v) ∩ H = ∅ which also
implies VX ∩ H = ∅. Now, this means that all vertices in H are nonadjacent
to all vertices in VX , and thus H ⊆ U ∪ VZ . We show that H ∩ U is a hitting
set for S. Assume that this is not the case; then there is one vertex in si ∈ VS
such that all deleted vertices are adjacent to si since si is adjacent to all vertices
in (U ∪ VZ) \ Si. This vertex has degree m+ n in G−H. This contradicts the
fact that G−H is highly connected.

Since the above reduction is a parameterized polynomial-time reduction, this
shows that Highly Connected Subgraph is NP-hard and W[2]-hard with
respect to `. Moreover, the reduction is a linear parameterized reduction, that
is, the new parameter is bounded in a linear function of the old parameter.
Hence, an no(`) algorithm for Highly Connected Subgraph implies an no(k)
algorithm for Hitting Set which implies FPT = W[1] [5]. ut

3 Solution Size and Degeneracy

A graph has degeneracy d if every subgraph contains at least one vertex that has
degree at most d. In many graphs from real-world applications, the degeneracy of a
graph is very small compared to the network size. For yes-instances, the degeneracy
of the input graph has to be at least bk/2c+ 1. Therefore, Highly Connected
Subgraph is polynomial-time solvable if the input graph has constant degeneracy.
A straightforward algorithm decides the problem in n2d · poly(n) time. This can
be improved to the following running time.

Proposition 1. Highly Connected Subgraph can be solved in 2d · nd+O(1)

time where d is the degeneracy of G.

Proof. The algorithm is as follows. Pick a vertex v of degree at most d. Such a
vertex exists since G has degeneracy d. Now check whether there is a k ≤ 2d-vertex
highly connected graph G[S]. Branch into all possible cases for N(v)∩S. Since v
has degree at most d, there are O(2d) many of these possibilities. Now find the at
most d vertices of S \N(v) by brute-force. This means to consider O(nd) many
possibilities. For each of these possibilities, check in polynomial time whether G[S]
is highly connected. If this is the case, then accept. If this is not the case for
all O(2d · nd) possibilities, then remove v from G and restart the algorithm. ut

Unfortunately, if we regard the degeneracy as a parameter instead of a constant,
we obtain hardness, even if additionally the solution size k is a parameter.

5

Theorem 2. Highly Connected Subgraph parameterized by the combined
parameter (d, k), where d is the degeneracy of G, is W[1]-hard.

Proof. We reduce from the classic W[1]-hard Clique problem [7].

Clique:
Input: An undirected graph G = (V = {v1, . . . , vn}, E), a nonnegative
integer k.
Question: Does G contain a clique with at least k vertices?

Given an instance (G, k) of Clique, produce an instance (G′, k′) of Highly
Connected Subgraph as follows. First, subdivide every edge e = {u,w}
in G, that is, remove e, insert a new edge vertex ve and make ve adjacent to
both u and w. Call the set of edge vertices VE . Next, add a clique with vertex
set X = {x1, . . . , x`} where ` =

(
k
2

)
+ 3k. Then, choose

(
k
2

)
+ 2k − 1 arbitrary

vertices in X, denote this set by X1 and make each ve adjacent to each vertex
in X1. Furthermore, let X2 := X \X1 and make each vi ∈ V adjacent to the k+1
vertices in X2 and to

(
k
2

)
+ 1 further arbitrary vertices of X1, finishing the

construction of G′. Note that each vi ∈ V is adjacent to
(
k
2

)
+ k+2 vertices in X.

The construction of the instance is completed by setting the size of the desired
highly connected subgraph to k′ := 2 ·

(
k
2

)
+ 4k.

Note that the graph G′ is
(
k
2

)
+ 3k-degenerate, which can be seen by the

following order of vertex removals: First, remove the vertices from VE ; these have
degree

(
k
2

)
+ 2k + 1 in the graph. Then, remove the vertices from V , these have

degree
(
k
2

)
+ k + 2 in G′ − VE . Finally, the remaining set X has size

(
k
2

)
+ 3k,

thus each vertex in G− (VE ∪V) has degree
(
k
2

)
+3k− 1. The overall degeneracy

of G′ follows.
We now show the equivalence of the constructed instances, that is,

(G, k) is a yes-instance of Clique ⇔ (G′, k′) is a yes-instance of Highly
Connected Subgraph.

“⇒”: Let K ⊆ V be a clique of order k in G. Then, the set K ′ := K ∪ {ve |
e ⊆ K} ∪X induces a highly connected subgraph of order k′ in G′, which can be
seen as follows. First, K ′ has size k +

(
k
2

)
+
(
k
2

)
+ 3k = k′. Second, each vertex

in G′[K ′] has degree at least k′/2 + 1 =
(
k
2

)
+ 2k + 1: The vertices in X have at

least |X| − 1 =
(
k
2

)
+ 3k − 1 > k′/2 + 1 neighbors in G′[K ′] since X is a clique.

The vertices in K have exactly
(
k
2

)
+ k + 2 neighbors in X plus k − 1 neighbors

in K ′ \ (K ∪X) since they are adjacent to the k− 1 vertices corresponding to the
edges incident with them in G[K]. Finally, each remaining vertex corresponds to
an edge in G[K] and thus it has two neighbors in K. Since it has

(
k
2

)
+ 2k − 1

neighbors in X it has exactly k′/2 + 1 neighbors in G′[K ′].
“⇐”: Let K ′ be a vertex set of size k′ such that G′[K ′] is highly connected

and let y1 = |V ∩K ′| and y2 = |VE ∩K ′|. Note that by the size of X, K ′ contains
at least

(
k
2

)
+ k vertices from V ′ \ X = V ∪ VE , that is, y1 + y2 ≥

(
k
2

)
+ k.

Furthermore, note that if it contains a vertex ve from VE , then it must contain all
neighbors of ve in G′, since ve has degree exactly k′/2+1 in G′. Note that by the

6

above K∗ = K ′ ∩ (VE ∪ V) directly corresponds to a subgraph of G: each vertex
in VE corresponds to an edge in G and both endpoints of this edge are in K ′.
Furthermore, since each vertex in K ′ ∩ V has at least k − 1 neighbors in K ′ \X,
the corresponding graph has degree at least k − 1. Finally, since K∗ corresponds
to a graph, we have y2 ≤

(
y1
2

)
. Since y1 + y2 ≥

(
k
2

)
+ k this implies y1 ≥ k. In the

remainder of the proof we show y1 = k which directly implies that K ′ ∩ V is a
clique in G since then K∗ corresponds to a graph with k vertices and minimum
degree k − 1.

Assume towards a contradiction y1 ≥ k+1. We prove that we may also assume
that X ⊆ K ′. If this is not the case, then any vertex from X \K ′ belongs to X2:
we have that K ′∩VE 6= ∅, because otherwise each vi would have at most

(
k
2

)
+3k

neighbors in K ′, and all vertices of X1 are in K ′ because all neighbors of K ′ ∩VE
are in K ′. Hence, there is a vertex x ∈ X2 \K ′. By construction, this vertex is a
neighbor of all vertices in K ′ ∩X and of all vertices in K ′ ∩ V . We can thus pick
an arbitrary vertex ve ∈ K ′ ∩ VE , remove ve from K ′ and add x to K ′. In the
graph that is induced by the modified K ′, the degree of every vertex except x
has increased or remains the same: the removed vertex ve has only neighbors
in X and in V and x is in G′ adjacent to all vertices in X and to all vertices
in V . Furthermore, x has also degree at least k′/2 + 1 since it is adjacent to
the

(
k
2

)
+ 2k − 1 vertices in X1 and to the at least y1 ≥ k + 1 vertices in V ∩K ′.

Note that this replacement can be performed without decreasing the minimum
degree in G′[K ′] below k′/2 + 1 until X ⊆ K ′. Hence, if y1 ≥ k + 1, then we
can also assume that X ⊆ K ′. But then y2 <

(
k
2

)
. This implies that there is at

least one vi ∈ K ′ ∩ V that has less than k− 1 neighbors in K ′ ∩ VE . Since vi has
only

(
k
2

)
+ k + 2 neighbors in X, it has less than k′/2 + 1 neighbors in G′[K ′].

This contradicts the assumption that G′[K ′] is highly connected.
Hence, if G′[K ′] is highly connected, then y1 = k. By the discussion above,

K∗ corresponds to a subgraph of G with k vertices and
(
k
2

)
edges, that is, a

clique of order k. ut

4 Parameterization by Vertex Cover

We next consider the parameter “minimum size τ of a vertex cover” of G. This
parameter is interesting because it can be smaller than the number of vertices of G.
We show that Highly Connected Subgraph is solvable in O∗((2τ)τ) time.
The algorithm first computes a vertex cover, then determines, via branching,
its intersection with some fixed solution, and then adds suitable vertices of
the independent set formed by the complement of the vertex cover. Note that
the vertices of the independent set can be classified into 2τ equivalence classes
according to their neighbors in the vertex cover. Inspection shows that in each
of these classes, only τ vertices can be in a highly connected graph. Hence, the
instance can be reduced to 2ττ + τ vertices. This already shows that Highly
Connected Subgraph is fixed-parameter tractable with respect to τ . To
obtain an efficient algorithm, we reduce each subproblem to an instance of Set
Multicover.

7

Set Multicover
Input: A universe of elements U with covering demands d : U → N, a
family F of subsets of the universe with multiplicity values m : F → N,
and a nonnegative integer p.
Question: Is there a multiset of subsets of size at most p such that
each u ∈ U occurs in at least d(u) of them and no subset F ∈ F occurs
more than m(F) times?

Lemma 1. A given instance of Highly Connected Subgraph with a vertex
cover of size τ can be solved using the answers to at most 2τ instances of Set
Multicover with |U | ≤ τ and 2maxu∈U d(v) ≤ τ . Furthermore, all these
instances can be computed in O(2τ (n+ τn)) time.

Proof. Fix some highly connected subgraph G[S] of order k if it exists. First
compute a minimum vertex cover C for G in O(1.274τ + τn) time [6]. Enumerate
all 2τ possibilities for C ′ := C ∩ S. Clearly, one branch contains the correct C ′.
In each branch, delete the vertices from C \ C ′. Then remove vertices from
the independent set V \ C ′ that have k/2 or less neighbors in C ′, since they
cannot be part of S. Let V ′ be the thus reduced vertex set. It remains to find
k′ := k − |C ′| vertices in V ′ \ C ′ such that each vertex v in C ′ has more than
d(v) := k/2− |N(v) ∩ C ′| neighbors among these k′ vertices.

This is an instance of Set Multicover. In our case, the universe is C ′, the
covering demands are d as defined above, the family is F = {N(v) ∩ C ′ | v ∈
V ′ \ C ′}, the multiplicity values count how many vertices in V ′ \ C ′ have this
neighborhood in C ′, and p = k′. If the solution to Set Multicover has less
than k′ sets, then we can add arbitrary further vertices from V ′ \C ′ to make the
vertex subset large enough (if |V ′ \C ′| < k′, then we can reject this branch). ut

Set Multicover with multiplicity constraints can be solved in O((b+ 1)|U ||F|)
time [12], where b := maxu∈U d(u). Note that |C ′| > k/2, since the vertices
outside of C ′ form an independent set and we cannot choose k/2 or more of them.
Thus, b < |C ′| ≤ τ . The size of F is at most n. Together with the enumeration
of the instances, we obtain the following corollary.

Corollary 1. Highly Connected Subgraph can be solved in O((2τ)τ ·τn) time.

5 Number of Vertices

A trivial algorithm for Highly Connected Subgraph is to enumerate all vertex
subsets S of size k and to check for each subset whether it is highly connected.
This algorithm has running time O(2n ·m). We now show by a reduction from
Clique that a running time improvement to 2o(n) · nO(1) is unlikely. The idea of
the reduction is to add to a Clique instance some new graph that is so large,
that at least some vertex of it must be in a highly connected graph of order k.
Moreover, the construction ensures that this means that all of this graph must
be in this highly connected graph. The remaining vertices must form a clique in
order to have sufficiently high degree. The following combinatorial observations
are used in our construction.

8

Lemma 2. For any ` ∈ N, the edges of the complete graph K2` can be partitioned
into 2`−1 perfect matchings. Moreover, there is such a partition that includes two
perfect matchings that together contain a spanning tree of K2` , and the partition
can be computed in polynomial time in 2`.

Proof. The proof is by induction on `. Clearly, the edge of K21 can be partitioned
into a perfect matching in polynomial time. Now assume that the statement
holds for all `′ < `. Partition the edges of K2` into three sets in the following
manner. Two sets A,B of the partition are induced by two vertex-disjoint sub-
graphs KA,KB of K2` each isomorphic to K2`−1 . The third set C contains the
edges with exactly one vertex from both of the subgraphs. By induction, we
can compute edge-partitions into perfect matchings of KA,KB; call the parti-
tions PA,PB. Now join PA,PB into a partition PA∪B of A ∪ B by iteratively
taking the union of an arbitrary part from PA and an arbitrary part from PB and
deleting the parts from PA and PB respectively. Note that the obtained parti-
tion PA∪B contains 2`−1− 1 parts. Next, compute a partition PC of C as follows.
Denote V (KA) =: {v0, . . . , v2`−1−1}, V (KB) =: {u0, . . . , u2`−1−1}. Then Ej :=
{{vi, ui+j} | i ∈ {0, . . . , 2`−1−1}}, and PC := {Ej | j ∈ {0, . . . , 2`−1−1}} where
indices are taken modulo 2`−1. Clearly, PC can be computed in polynomial time.
Note that PC is a partition of C into perfect matchings, and |PC | = 2`−1. Finally,
take the union PA∪B ∪ PC . Note that this is a partition of E(K2`) into perfect
matchings and |PA∪B ∪ PC | = 2` − 1.

Overall, let 2c·(`−1) be an upper bound on the time needed to compute the edge
partitions PA and PB, and let 2c

′·(`−1) be an upper bound on the time needed
to compute PC ∪ PA∪B from PA and PB where c, c′ ≥ 2 are universal constants.
Then an overall time bound for the above procedure is 2c·(`−1)+1 + 2c

′·(`−1) =
2c·`−c+1 + 2c

′·`−c′ ≤ 2max{c,c′}·`+2−min{c,c′} ≤ 2max{c,c′}·`, which is polynomial
in 2`.

Let us now slightly modify the step of computing Ej in order to obtain two
matchings that span K2` . Fix an arbitrary matching M ∈ PA∪B. Rename the
vertices in PA and PB in such a way that

M = {{v0, v1}, {v2, v3}, . . . , {v22`−1−2, v22`−1−1},
{u1, u2}, {u3, v4}, . . . , {u22`−1−1, u0}}.

Then M ∪ E0 induces a connected graph containing all vertices of K2` . The
renaming of the vertices can be performed in linear time, thus the running time
increases only by a constant factor. ut

Lemma 3. For any integer ` ∈ N, ` ≥ 3, there are two edge-disjoint Hamiltonian
cycles in K2`, computable in polynomial time.

Proof. We describe a polynomial-time algorithm that computes the two cycles.
First, fix an arbitrary permutation of the vertex set which directly defines a
Hamiltonian cycle. Remove this cycle from the graph. The resulting degree of
each vertex is 2`− 1− 2. We now use the following known result: If the closure
of a graph is a complete graph, then this graph has a Hamiltonian cycle which

9

can be computed in polynomial time [3]. Here, the closure of a graph of order n
is obtained by adding all edges {u, v} if deg(u) + deg(v) ≥ n and iterating as
long as possible. Since the sum of two vertex degrees in our graph is at least
2(2`−3) ≥ 2`, the closure of the resulting graph is K2` again. Thus, in polynomial
time we can compute another Hamiltonian cycle in the remaining graph which is
edge-disjoint from the first cycle. ut

With these lemma at hand, we can show that we can build a graph whose
construction will actually be the main part of our reduction.

Lemma 4. For any two integers a, b ∈ N such that a is even, b − 3 ≥ 8 is a
power of two, and a− 2 ≥ 2b, there is a graph G = (X ∪W,E) on the disjoint
vertex sets X and V , such that
i) G[X] is connected,
ii) |X| = a− 2, |W | = a− b+ 1,
iii) NG(X) \X =W , and
iv) each vertex in X has degree a, each vertex in W has degree a− b.
Moreover, G can be constructed in time polynomial in a.

Proof. Begin with G = (X ∪W,E) where X ∪W is an independent set and
where X and W have the prescribed sizes. Next, let X1, X2 ⊆ X be arbitrary
such that |X1| = |X2| = a − b + 1 and |X1 ∩X2| is of minimum size. That is,
|X1 ∩X2| = a− 2b+ 4, and |X1 \X2| = |X2 \X1| = b− 3 (note that a− 2 ≥ 2b,
hence, |X1 ∩ X2| ≥ 6). We add a set of matchings to G that saturate W in
order to bring up the degree of the vertices in W to a − b. We first add a
perfect matching to G[W] (note that a − b + 1 is even, because a is even and
b − 3 is a power of two). Then we add a − b − 1 matchings that saturate W
to G[W ∪X]; these matchings are divided evenly into matchings saturating X1

and matchings saturating X2. More formally, denote W =: {w0, . . . , wa−b}, and
X =: {x0, . . . , xa−3} such that X1 = {x0, . . . , xa−b}, and X2 = {xb−3, . . . , xa−3}.
Let i ∈ {0, . . . , a− b− 2}. We define

Mi :=

{
{{wj , x(j+i) mod (a−b)} | j ∈ {0, . . . , a− b}}, if i is even, and
{{wj , xb−3+((j+i+1) mod (a−b))} | j ∈ {0, . . . , a− b}}, otherwise.

That is, if i is even, then Mi is a perfect matching in G[W ∪X1] and, otherwise
Mi is a perfect matching in G[W ∪X2]. Note that there is an even number of
matchings Mi. Furthermore, Mi,Mi′ , i 6= i′, are disjoint: this is clear if both i
and i′ are even, or both are odd. If i is odd and i′ is even, then wj is matched to
some vk with k ≡ j mod 2 in Mi whereas Mi′ matches wj to some vk with k 6≡ j
mod 2, because both b− 3 and i+ 1 are even, and a− b is odd. Hence, we may
add all Mi, i ∈ {0, . . . , a− b− 2}, to G. Now each vertex in W has degree a− b,
as required, and it remains to mend the degrees of vertices in X. Note that each
vertex in X1 ∩X2 has degree a − b − 1, and each vertex in X \ (X1 ∩X2) has
degree (a−b−1)/2. We divide X1∩X2 into two equal-sized parts A,B; note that
this is possible, because |X1 ∩X2| = a− 2b+ 4 is even and a− 2b+ 4 ≥ 6, since
a− 2 ≥ 2b. We make each vertex from A adjacent to each vertex in X1 \X2, and

10

each vertex in B adjacent to each vertex in X2 \X1. Now each vertex in X1 ∩X2

has degree a−b−1+b−3 = a−4. Using Lemma 3 we add four perfect matchings
to G[X1 ∩X2] (recall that |X1 ∩X2| ≥ 6).

It remains to lift the degree of the vertices in X \ (X1 ∩X2) which currently
have degree (a− b+ 1)/2 + (a− 2b+ 4)/2 = a− 3b/2 + 5/2. Note that 2(b− 3)
is a power of two. Now we use Lemma 2 to add 3b/2 − 5/2 ≤ 2(b − 3) − 1
perfect matchings to G[X \ (X1 ∩ X2)], including two perfect matchings that
make G[X \ (X1 ∩X2)] connected. Note that, indeed, 3b/2− 5/2 ≤ 2(b− 3)− 1,
because b− 3 ≥ 8. Hence, the degree of each vertex in X \ (X1 ∩X2) is now a.
Note also that G[X] is connected. ut

We call the graph G described in the above lemma an (a, b)-equalizer and the
vertices in W are its ports.

Theorem 3. There is a polynomial-time many-one reduction from Clique to
Highly Connected Subgraph that is parameter-linear with respect to the
number of vertices.

Proof. Let (G, p) represent an instance of Clique. Without loss of generality,
assume that p − 3 ≥ 8 and p − 3 is a power of two. Otherwise, simply add a
universal vertex and increase p by one, until p− 3 ≥ 8 and it is a power of two.
Note that this at most doubles p.

Denote |V (G)| = n. We construct the instance (G′, k) of Highly Connected
Subgraph where k = 4n−1. Note that the minimum degree in a highly connected
graph with k vertices is 2n. Graph G′ is constructed as follows. First, copy G
into G′. Then add a disjoint (2n, p)-equalizer. By Lemma 4, a (2n, p)-equalizer
exists and is computable in polynomial time, because 2n is even, p− 3 ≥ 8 is a
power of two, and 2n− 2 ≥ 2p (the last property holds without loss of generality).
Denote the ports of the equalizer by W and its remaining vertices by X. Add an
edge between each port and each vertex in V (G); this finishes the construction.
The graph G′ has less than 5n vertices, since the (2n, p)-equalizer has less than 4n
vertices. It remains to show equivalence of the instances, that is,

(G, p) is a yes-instance ⇔ (G′, k = 4n− 1) is a yes-instance.

“⇒”: Let G[S] be a clique of order p in G. Then, G′[S ∪ X ∪W] is highly
connected: Each vertex in S has is adjacent to p−1 vertices in S and to 2n−p+1
vertices inW . Hence, each vertex in S has 2n neighbors in S∪X∪W , as required.
Each port has 2n − p neighbors in X ∪W and p neighbors in S. Finally, each
vertex in X has 2n neighbors in X ∪W .

“⇐:” Let G′[S] be a highly connected graph of order k in G′. There are at
most n vertices in V (G)∩S, thus there is at least one vertex in S∩X. Since G′[X]
is connected and each vertex in X has degree exactly 2n (the minimum degree
in G′[S]), we have X ⊆ S. Furthermore, since {v | X ∩ N(v) 6= ∅} \ X = W ,
also W ⊆ S, leaving 4n − 1 − |X| − |W | = p vertices in S ∩ V (G). Since
NG′(V (G)) \ V (G) =W and |W | = 2n− p+ 1, each vertex in S ∩ V (G) has at
least p− 1 neighbors in S ∩ V (G). Thus G[S ∩ V (G)] is a clique. ut

11

Using Theorem 3, we can connect the parameterized running time for param-
eter n with the Exponential Time Hypothesis (ETH) [17].

Corollary 2. If the Exponential Time Hypothesis (ETH) is true, then Highly
Connected Subgraph does not admit a 2o(n) · nO(1)-time algorithm.

6 Edge Isolation Parameter

We now present a single-exponential FPT algorithm for the number γ of edges
between the desired highly connected subgraph G[S] and the remaining graph. In
this case, S is called “γ-isolated”. More formally, if G = (V,E) is a graph, we call a
set S ⊆ V γ-isolated if (S, V \S) is a cut of size at most γ. To our knowledge, Ito
et al. [15] where the first to consider a formal notion of isolation in the context
of dense subgraph identification. There is the following slight difference between
the isolation definitions: we count the total size of the cut (S, V \ S), whereas
previous definitions count the size of (S, V \ S) divided by the size of S [14, 15]
or the minimum of the number of outgoing edges per vertex [16]. Our isolation
definition leads to the following problem.

Isolated Highly Connected Subgraph
Input: An undirected graph G = (V,E), nonnegative integers k and γ.
Question: Is there a k-vertex γ-isolated highly connected subgraph con-
tained in G?

The notion of isolation is not only motivated from the algorithmic point of view
but also from the application. Ideally, communities in a network have fewer
connections to the rest of the network [19]. Thus, putting an additional constraint
on the number of outgoing edges may yield better communities than merely
demanding high edge connectivity.

In the following, it will be useful to consider an augmented version of Isolated
Highly Connected Subgraph: we place integer labels on the vertices which
imply that these vertices are harder to isolate. We thus additionally equip each
instance of Isolated Highly Connected Subgraph with a labeling f : V → N
and we call V ′ ⊆ V γ-isolated under f if there are at most γ −

∑
v∈V ′ f(v) edges

between V ′ and V \ V ′ in G. Without loss of generality, assume k ≥ 2 in the
following.

The algorithm first performs three reduction rules. The first simple rule
removes connected components that are too small.

Rule 1. If G contains a connected component C with less than k vertices, then
remove C.

The next rule identifies connected components which are either trivial solutions
or cannot contain any other solution since induced proper subgraphs violate the
isolation condition.

12

Rule 2. If there is a connected component C = (V ′, E′) of G that has minimum
cut size at least γ + 1, then accept if C is highly connected, |V ′| = k, and V ′ is
γ-isolated under f . Otherwise remove C from G.

Proof (Correctness of Rule 2). The rule is clearly correct if it accepts. If the rule
removes C, then C has a minimum cut of size at least γ + 1. Thus, for every
induced subgraph C[S] of C that does not contain all of its vertices we have
that S is not γ-isolated. Hence, no subgraph of C is a solution and we can safely
remove C from G. ut

Rule 3. If G has a connected component C with a minimum cut (A,B) of size at
most k/2, then do the following. For each v ∈ A redefine f(v) := f(v)+|N(v)∩B|
and for each v ∈ B redefine f(v) := f(v) + |N(v) ∩ A|. Then, delete all edges
between A and B.

Proof (Correctness of Rule 3). Any k-vertex subgraph of C with nonempty
intersection with both sides of (A,B) is not highly connected as it has a minimum
cut of size at most k/2. Hence, any highly connected induced subgraph C[S] of C
is either contained in C[A] or in C[B]. If S is γ-isolated under f in G, then it is
also γ-isolated under the modified f in the modified graph (and vice-versa) by
the way we have redefined f . ut

Exhaustive application of these rules yields instances in which γ and k/2 are
related.

Lemma 5. If Rules 1 to 3 are not applicable, then γ > k/2.

Proof. Assume the contrary. Each connected component has a minimum cut
cutting at least one edge because Rule 1 is not applicable and k ≥ 2. Further,
each connected component has a cut of size at most γ because Rule 2 is not
applicable. By assumption γ ≤ k/2 and, hence, each connected component has a
cut of size at most k/2 which contradicts the inapplicability of Rule 3. ut

As shown by the following lemma, the reduction rules can be applied efficiently.

Lemma 6. Rules 1 to 3 can be exhaustively applied in O((kn+ γ)nm) time.

Proof. We first apply Rule 3 exhaustively. To this end, we determine for each
connected component of G whether it contains a minimum cut of size at most k/2
by fixing an arbitrary vertex v and for each vertex u running k/2+1 rounds of the
Ford-Fulkerson algorithm to find a flow from v to u. If at some round the flow does
not increase, we find a corresponding cut by considering the strongly connected
components in the residual graph and apply Rule 3. We repeat the procedure if it
was applicable. Finding the connected components in the residual graph, and the
rounds of Ford-Fulkerson can each be implemented to run in O(n+m) time. Hence
if C1, . . . , C` are the connected components of G then one iteration of Rule 3
takes

∑`
i=1O(k|Ci|(|Ci|+ |E(G[Ci])|)) = O(knm)-time. The overall number of

rounds for applying Rule 3 is n since the number of connected components

13

increases by one in each round, thus the overall running time for exhaustively
applying Rule 3 is O(kn2m).

Then we apply Rule 2 by computing for each connected component C whether
its minimum cuts have size at least γ. If this is true, then we check whether C is
highly connected and compute the sum of the f -values of each vertex to decide
whether the vertex set of C is γ-isolated. By the same arguments as above, the
computation of the minimum cut size can be performed in O(γnm) time overall.
The summation of the f -values can be performed in O(n+m) time overall and
for all connected components we can decide in O(n+m) time whether they are
highly connected. Hence, Rule 2 can be exhaustively applied in O(γnm) time.

Finally, we check whether Rule 1 is applicable which can be easily performed
in O(n+m) time. Altogether, we arrive at the claimed running time bound. ut

Using the above, we can now present the branching algorithm.

Theorem 4. Isolated Highly Connected Subgraph can be solved in O(4γn2+
(kn+ γ)nm) time.

Proof. We first reduce the instance with respect to Rules 1 to 3. By Lemma 6
this can be done in O((kn+ γ)nm) time. Next, we guess one vertex v that is in
the solution S (by branching into n cases according to the n vertices). We start
with S′ := {v} and try to extend S′ to a solution. More precisely, we choose a
vertex v′ from the neighborhood of S′ (that is, from

⋃
u∈S′ N(u)\S′), and branch

into two cases: add v′ to S′, or exclude v′, that is, delete v′ and increase f(u) by
one for all u ∈ N(v′). In the first case, we increase |S′| by one. In the second case,
we increase

∑
u∈S′ f(u) by at least one. Branching is performed until |S′| = k or∑

u∈S′ f(u) exceeds γ or the neighborhood of S′ is empty. When |S′| reaches k,
we check whether S′ is highly connected and γ-isolated under f , and if this is
the case, we have found a solution. Otherwise, when

∑
u∈S′ f(u) exceeds γ or

no branching is possible because the neighborhood of S′ is empty, we abort the
branch; in this case, clearly no superset of S′ can be a solution. The height of
the search tree is bounded by k + γ, and each branch can be executed in O(n)
time, yielding an overall running time bound of O(n · 2k+γ · n).

We now distinguish two cases: k ≤ γ and k > γ. In the first case, the claimed
bound already holds; if k > γ, there is at least one vertex in S that has no
neighbors outside of S. Thus, we can start with S′ := {v} ∪N(v); since v has
more than k/2 neighbors in S, we have |S′| > k/2+ 1, and thus need to take less
than k/2 branches of adding a vertex. Together with Lemma 5, we obtain the
claimed bound. ut

We now present a further way of analyzing the presented data reduction rules by
showing that they can be used to obtain a Turing kernelization [1] for Isolated
Highly Connected Subgraph parameterized by γ. Informally, in Turing
kernelization one may create many problem kernels instead of just one problem
kernel. Then, the solution to the parameterized problem can be computed by
solving the problem separately on each of these problem kernels.

To motivate the Turing kernelization result we first observe that Isolated
Highly Connected Subgraph does not admit a regular problem kernel: The

14

disjoint union of a set of graphs has an isolated highly connected subgraph if and
only if at least one of the graphs has one. Hence, Isolated Highly Connected
Subgraph has a trivial OR-composition which implies the following [2].

Proposition 1. Isolated Highly Connected Subgraph does not admit a
polynomial-size problem kernel with respect to γ unless NP ⊆ coNP/poly.

Before describing the Turing kernelization, we give a formal definition of this
kernelization concept.

Definition 1. Let L be a parameterized problem and let g : N → N be a com-
putable function. A Turing kernelization for L is an algorithm that, for each
instance (x, k), decides whether (x, k) ∈ L in polynomial time using an oracle
for {(x′, k′) | |x′| + k′ ≤ g(k) ∧ (x′, k′) ∈ L}. The sequence of queries posed to
the oracle is called Turing kernel. We call g(k) the size of the Turing kernel.

We now describe the algorithm in detail. The first step is to reduce to the
augmented version of Isolated Highly Connected Subgraph in which
we introduce the vertex labeling f . Then, apply Rules 2 and 3 exhaustively.
Afterwards, apply the following reduction rule which removes high-degree vertices.

Rule 4. Let (G, k, γ) be an instance of Isolated Highly Connected Sub-
graph that is reduced with respect to Rules 2 and 3. If G contains a vertex v
of degree at least 3γ − f(v), then remove v from G, and for each u ∈ N(v)
increase f(u) by one.

Proof (Correctness of Rule 4). Since G is reduced respect to Rules 2 and 3, we
have γ > k/2 (due to Lemma 5). Thus, v has less than 2γ neighbors in any
solution G[S]. This implies that v has more than γ − f(u) neighbors in V \ S.
Consequently, if v ∈ S, then S is not γ-isolated under f . Hence, v is not contained
in any solution. ut

Now we construct n instances of Isolated Highly Connected Subgraph
that have O(γ3) vertices each. The original instance is a yes-instance if and only
if one of these instances is a yes-instance. The idea is to exploit the fact that
highly connected graphs have diameter two [11]. Thus, to find highly connected
graphs, it is sufficient to explore the two-neighborhood of each vertex. More
precisely, the instances are constructed as follows.

For each vertex v ∈ V , construct the graph Gv := G[N2[v]] where N2[v] is
the set of all vertices that have distance at most two from v (including v). When
solving the Isolated Highly Connected Subgraph instances we need to
determine whether a subgraph is γ-isolated. Thus, the graph Gv has to contain
information on the original vertex degrees. Note that for each u ∈ V , f(u)
denotes the number of edge deletions performed during the data reduction that
are incident with u. Moreover, for each vertex u in Gv, let g(u) denote the
number of neighbors of u in G in V \N2[v]. To obtain instances of Isolated
Highly Connected Subgraph one may not use vertex labelings. Thus, for
each u of Gv add g(u) + f(u) new vertices and make them adjacent to u. This

15

completes the construction of Gv. In this way we obtain n instances (Gv, k, γ).
The following lemma shows that it is sufficient to solve these instances in order
to determine whether the original Isolated Highly Connected Subgraph
instance (G = (V,E), k, γ) is a yes-instance. We use G′ to denote the labeled
graph of the augmented instance that is obtained from reducing (G, k, γ) to the
augmented problem and applying Rules 2 to 4 exhaustively.

Lemma 7. Let (G = (V,E), k, γ) be an instance of Isolated Highly Con-
nected Subgraph and, for each v ∈ V , let (Gv, k, γ) denote the instance as
constructed above. Then, (G, k, γ) is a yes-instance if and only if there is a v ∈ V
such that (Gv, k, γ) is a yes-instance.

Proof. If (G, k, γ) is a yes-instance, then there is a γ-isolated vertex set S of
size k such that G[S] is highly connected. Consider some v ∈ S. Then, S ⊆ N2[v]
since G[S] has diameter two. Thus, the subgraph Gv[S] is highly connected.
Moreover, S is γ-isolated in Gv. Let deg(u) denote the degree of a vertex u
in G. In G′ every vertex has degree deg(u)− v and before adding the degree-one
vertices in the construction of Gv, every vertex has degree deg(u)− f(u)− g(u).
Thus, every vertex has degree deg(u)− f(u)− g(u) + f(u) + g(u) = deg(u) in
the constructed Gv. Consequently, S is γ-isolated in Gv since for each u ∈ S the
vertex degrees in Gv and in G are the same.

For the converse, assume that there is a vertex v ∈ V such that (Gv, k, γ)
is a yes-instance. Then, let S be a γ-isolated vertex set of size k such that the
subgraph of Gv[S] is highly connected. First, observe that S ⊆ V : All vertices
in Gv that are not from V have degree one. Since we assume that k ≥ 2 these
vertices cannot be in a highly connected subgraph with k vertices. Thus, G[S] is a
highly connected subgraph of G (since Gv is a subgraph of G). By the discussion
above, the vertices of S have the same degree in G and Gv. Thus, S is γ-isolated
in G and (G, k, γ) is a yes-instance. ut

We now show that the instances have bounded size.

Lemma 8. Let (Gv, k, γ) be an instance of Isolated Highly Connected
Subgraph constructed from G as described above. Then Gv has less than (3γ)3

vertices and less than 3γ4 edges.

Proof. The graph G′ from which we construct (Gv, k, γ) is reduced with respect
to Rule 4. Thus, the maximum degree in G′ is at most 3γ − 1 − f(u) which
implies |N2[v]| < 1 + 3γ − 1 + (3γ − 1)2. For each vertex in N2[v] we then
add further degree-one neighbors, but the difference between the degree of u
in G′ and G is exactly f(u). Thus, each vertex in Gv has degree at most 3γ − 1.
Consequently, Gv has at most (1 + 3γ − 1 + (3γ − 1)2) · (3γ − 1) < (3γ)3 vertices.
Moreover, as each vertex in Gv has degree at most 3γ − 1, Gv has also less than
(3γ)4 edges. ut

Combining Lemmas 7 and 8 leads to the following.

Theorem 5. Isolated Highly Connected Subgraph admits a Turing kernel
of size O(γ4) which has less than (3γ)3 vertices.

16

7 Edge Deletion Parameter

We now show that there is a subexponential fixed-parameter algorithm for Highly
Connected Subgraph with respect to the number of edges α we are allowed to
delete in order to obtain a highly connected graph of order k. The algorithm is a
search tree algorithm which branches on whether or not a given vertex is part of
the highly connected graph. Repeated application of two reduction rules (similar
to Rules 2 and 3 above) ensures that the branches are effective in reducing the
remaining search space. To give a precise presentation of the branching step and
the reduction rules, we define the problem with an additional seed S, a set of
vertices which have to be in the highly connected graph.

Seeded Highly Connected Edge Deletion
Input: An undirected graph G = (V,E), a vertex set S ⊆ V , and nonneg-
ative integers k and α.
Question: Is there a set E′ ⊆ E of at most α edges such that G−E′ con-
sists only of degree-zero vertices and a (k + |S|)-vertex highly connected
subgraph containing S?

If we set S = ∅, we obtain the plain edge deletion problem. The reduction rules
are as follows.

Rule 5. If there is a connected component C = (V ′, E′) of G that has minimum
cut size at least α+ 1, then accept if C is highly connected, S ⊆ V ′, |V ′ \ S| = k,
and the remaining connected components of G contain at most α edges. Otherwise
reject.

Proof (Correctness of Rule 5). The rule is clearly correct if it accepts. If it
rejects, then the instance is a no-instance: If there is a highly connected graph
in G[V \ V ′], then the α + 1 or more edges of C are not in this graph. Thus,
any solution is contained in C. Hence, if the number of edges in the remaining
components is more than α or if S \ V ′ 6= ∅, then the instance is a no-instance.
Otherwise, either C is not highly connected or |V ′ \ S| 6= k. In both cases a
highly connected graph of order |S|+ k that is contained in C has less than |V ′|
vertices and thus it needs to be cut from the rest of C. This needs at least α+ 1
edges. Consequently, there is no solution and the instance is a no-instance. ut

Rule 6. If there is a connected component of G that has a minimum cut of size
at most (k + |S|)/2, then delete all cut edges and reduce α by their number.

Proof (Correctness of Rule 6). Every graph G′ with non-empty intersection with
both “sides” of the minimum cut has a cut of size (k + |S|)/2. Thus, if G′ has
order (k + |S|), then it is not highly connected. Hence, for each deleted edge at
least one of its endpoints is not in any solution. ut

Similarly to the edge isolation parameter, after using the reduction rules k, |S|,
and α are related.

17

Lemma 9. If Rules 5 and 6 are not applicable, then α > (k + |S|)/2.

Proof. Assume Rules 5 and 6 are not applicable but α ≤ (k+ |S|)/2. Without loss
of generality we may assume that there are no connected components consisting
of singleton vertices. Otherwise, simply remove them. Hence, each connected
component has a minimum cut cutting at least one edge. Further, there is a
connected component with minimum cut of size at most α because Rule 5 is
not applicable. By assumption α ≤ (k + |S|)/2 and hence, there is a connected
component with a minimum cut of size at most (k + |S|)/2 which contradicts
the inapplicability of Rule 6. ut

The running time of the rules can be bounded in a similar way as it was done in
Section 6.

Lemma 10. Rules 5 and 6 are exhaustively applicable in O(α2nm) time.

Proof. We first decide for each connected component of G whether it contains a
minimum cut of size at most α+ 1 by fixing an arbitrary vertex v and for each
vertex u running α + 2 rounds of the Ford-Fulkerson algorithm to find a flow
from v to u. If at some round the flow does not increase, we find a corresponding
cut by considering the strongly connected components in the residual graph and
apply the rules. We iterate the procedure if Rule 6 was applicable.

Both rules, finding the connected components in the residual graph, and
the rounds of Ford-Fulkerson can each be implemented to run in O(n + m)
time. Hence if C1, . . . , C` are the connected components of G then one iteration
takes

∑`
i=1O(α|Ci|(|Ci|+ |E(G[Ci])|)) = O(αnm)-time. Since if Rule 5 applies

we are finished and if Rule 6 applies both the number of connected components
increases and α decreases, the whole procedure takes O(min{n, α}αnm) time. ut

Exhaustively applying the reduction rules lets us bound the number of the
remaining vertices linearly in α. This will be useful in the branching algorithm
below.

Theorem 6. Seeded Highly Connected Edge Deletion admits a prob-
lem kernel with at most 2α + 4α/k vertices and

(
2α
2

)
+ α edges computable in

O(α2nm) time.

Proof. The kernelization algorithm first exhaustively applies Rules 5 and 6.
By Lemma 10 this needs O(α2nm) time. Let (G = (V,E), k, α) be a yes-instance
output by this procedure and let E′ ⊆ E be of minimum size such that G−E′
consists of degree-zero vertices and a highly connected subgraph G[S′] such
that S ⊆ S′ and |S′| = |S|+ k. We first bound |V \ S′|. Because the instance is
reduced with respect to Rule 6, the graph G has minimum vertex degree k/2.
Hence, the number of edges incident with at least one vertex in V \ S′ is at
least |V \ S′| · k/4. This number is at most α and thus |V \ S′| · k/4 ≤ α which
implies |V \ S′| ≤ 4α/k. Thus G contains at most k + |S| + 4α/k vertices. By
Lemma 9, α > (k + |S|)/2. This implies |S′| < 2α and thus also that the number
of edges within a solution G[S′] is less than

(
2α
2

)
. Hence, every instance with at

least 2α+ 4α/k vertices or
(
2α
2

)
+ α edges is a no-instance and can be rejected

immediately. ut

18

In the subexponential branching algorithm, we use the following simple
branching rule. It simply takes a vertex and branches on whether or not it should
be added to the seed S for the desired highly connected graph.

Branching Rule 1. If α+k ≥ 0, then choose an arbitrary vertex v ∈ V \S and
branch into the cases of adding v to S or removing v from G. That is, create the
instances I1 = (G,S ∪ {v}, k − 1, α) and I2 = (G− v, S, k, α− degG(v)). Accept
if I1 or I2 is accepted.

It is clear that Branching Rule 1 is correct. We now describe the complete
algorithm and bound its running time.

Theorem 7. There is an O(2 4·α0.75

+ α2nm)-time algorithm for Highly Con-
nected Edge Deletion.

Proof. We first apply the kernelization from Theorem 6, which entails applying
Rules 5 and 6 exhaustively. Then, if k ≤ 2

√
α we check whether S ∪ V ′ induces

a highly connected subgraph, for every vertex subset V ′ ⊆ V \ S of size k. We
accept or reject accordingly. If k > 2

√
α, then we apply Branching Rule 1 and

recurse on the two created instances.
From the correctness of the rules it is clear that this algorithm finds a solution

if there is one. Let us analyze its running time. Note that in each recursive call,
except the first one, the input instance has O(α) vertices according to Theorem 6.
Thus applying Rules 5 and 6 in a recursive call amounts to O(α5) time except in
the first one where it is O(α2nm) time. Next, in each recursive call we may have
to check whether S ∪ V ′ is highly connected for all k-vertex subsets V ′. This is
done only after Rules 5 and 6 have been exhaustively applied and only if k ≤ 2

√
α.

Thus, the graph G is of order at most 2α+ 4α/k ≤ 4α (note that k ≥ 2 without
loss of generality). Hence, testing the subgraphs amounts to O((4α)2

√
α+2) time.

In total, the time spent per search tree node is O((4α)max{5,2
√
α+2).

Now let us bound the number of leaves C of the search tree. Note that
the total number of search tree nodes is within a constant factor of C. For
an instance I = (G,S, k, α) of Highly Connected Subgraph, consider the
value µ(I) = k + α in the root of the search tree, after applying Rules 5 and 6.
Then, µ(I) ≤ 3α by Lemma 9. Let C(µ(I)) denote the number of leaves that a
search tree with a root with value µ(I) can have. Whenever we apply Branching
Rule 1, µ is reduced by a certain amount. More precisely, C(µ(I)) fullfills C(0) = 1,
and C(µ(I)) ≤ C(µ(I1)) + C(µ(I2)). Hence, C(µ(I)) is monotone. Further, since
Rule 6 is not applicable, degG(v) ≥ (|S|+ k)/2 ≥ k/2 ≥

√
α in the application

of Branching Rule 1. This implies C(µ(I)) ≤ C(µ(I) − 1) + C(µ(I) −
√
α).

Hence C(µ(I)) is at most the number of lattice paths from the origin to some
point (x, y) that take only steps (1, 0) or (0,

√
α), where x+ y = µ(I). Scaling

the y-axis by a factor of 1/
√
α, computing C(µ(I)) reduces to the problem of

counting the lattice paths from the origin to some (x, y′) taking only steps (1, 0)
or (0, 1) such that x+

√
αy′ = µ(I). We now bound the number of these paths.

The number of (0, 1) steps is at most 3
√
α. If the path contains i (0, 1)-

steps, then the total number of steps in the path is i + 3α −
√
αi. Hence,

19

there are
(
i+3α−

√
αi

i

)
paths with exactly i steps (0, 1). This implies C(µ(I)) ≤∑3

√
α

i=0

(
i+3α−

√
αi

i

)
. To bound this number we use the fact that

(
a+b
a

)
≤ 22

√
ab [10,

Lemma 9]. Hence C(µ(I)) ≤
∑3
√
α

i=0 22
√
i·(3α−

√
αi). Consider the derivative f(i)

of 2
√
i · (3α−

√
αi) with respect to i. We have

f(i) =

√
α(3
√
α− 2i)√√

αi(3
√
α− i)

.

Inspecting f(i) shows that
√
i · (3α−

√
αi) is maximized over 0 ≤ i ≤ 3

√
α

if i = 3
√
α/2. This gives C(µ(I)) ≤ 3

√
α · 23

√
α
√
α. Finally,

3
√
α · 23

√
α
√
α · (4α)max{5,2

√
α+2} ∈ O(24α

0.75

),

giving the overall running time bound of O(24α
0.75

+ α2nm). ut

Although the presented algorithm is a subexponential-time algorithm with rel-
atively small constants in the exponential functions, it is unclear whether it
can be useful in practice. This is because the parameter α is likely to be large
in real-world instances. With further substantial running time improvements,
however, one might obtain practical algorithms. For instance, an algorithm with
running time 2α

0.5 · nO(1) should perform well on many real-word instances.

References

[1] D. Binkele-Raible, H. Fernau, F. V. Fomin, D. Lokshtanov, S. Saurabh, and
Y. Villanger. Kernel(s) for problems with no kernel: On out-trees with many
leaves. ACM Transactions on Algorithms, 8(4):38, 2012.

[2] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434,
2009.

[3] J. Bondy and V. Chvátal. A method in graph theory. Discrete Mathematics,
15(2):111–135, 1976.

[4] G. Chartrand. A graph-theoretic approach to a communications problem.
SIAM J. Appl. Math., 14(4):778–781, 1966.

[5] J. Chen, B. Chor, M. Fellows, X. Huang, D. W. Juedes, I. A. Kanj, and
G. Xia. Tight lower bounds for certain parameterized NP-hard problems.
Information and Computation, 201(2):216–231, 2005.

[6] J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover.
Theoretical Computer Science, 411(40–42), 2010.

[7] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

[8] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

[9] M. R. Fellows, B. M. P. Jansen, and F. A. Rosamond. Towards fully
multivariate algorithmics: Parameter ecology and the deconstruction of
computational complexity. Eur. J. Combinatorics, 34(3):541–566, 2013.

20

[10] F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger. Tight
bounds for parameterized complexity of cluster editing with a small number
of clusters. J. Comput. Syst. Sci., 80(7):1430–1447, 2014.

[11] E. Hartuv and R. Shamir. A clustering algorithm based on graph connectivity.
Inf. Process. Lett., 76(4–6):175–181, 2000.

[12] Q.-S. Hua, Y. Wang, D. Yu, and F. C. M. Lau. Dynamic programming
based algorithms for set multicover and multiset multicover problems. Theor.
Comput. Sci., 411(26-28):2467–2474, 2010.

[13] F. Hüffner, C. Komusiewicz, A. Liebtrau, and R. Niedermeier. Partitioning
biological networks into highly connected clusters with maximum edge
coverage. IEEE/ACM Trans. Comput. Biol. Bioinf., 11(3):455–467, 2014.

[14] H. Ito and K. Iwama. Enumeration of isolated cliques and pseudo-cliques.
ACM Trans. Algorithms, 5(4):Article 40, 2009.

[15] H. Ito, K. Iwama, and T. Osumi. Linear-time enumeration of isolated cliques.
In Proc. 13th ESA, volume 3669 of LNCS, pages 119–130. Springer, 2005.

[16] C. Komusiewicz, F. Hüffner, H. Moser, and R. Niedermeier. Isolation
concepts for efficiently enumerating dense subgraphs. Theor. Comput. Sci.,
410(38-40):3640–3654, 2009.

[17] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the
Exponential Time Hypothesis. Bulletin of the EATCS, 105:41–71, 2011.

[18] H. Matsuda, T. Ishihara, and A. Hashimoto. Classifying molecular sequences
using a linkage graph with their pairwise similarities. Theor. Comput. Sci.,
210(2):305–325, 1999.

[19] J. Pattillo, N. Youssef, and S. Butenko. On clique relaxation models in
network analysis. Eur. J. Operational Research, 226(1):9–18, 2013.

[20] R. Sharan, I. Ulitsky, and R. Shamir. Network-based prediction of protein
function. Molecular Systems Biology, 3:88, 2007.

[21] A. Veremyev, O. A. Prokopyev, V. Boginski, and E. L. Pasiliao. Find-
ing maximum subgraphs with relatively large vertex connectivity. Eur. J.
Operational Research, 239(2):349–362, 2014.

	Finding Highly Connected Subgraphs

