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Abstract

We present empirical results on computing optimal dominating sets in networks by means of data reduction through
preprocessing rules. Thus, we demonstrate the usefulness of so far only theoretically considered reduction techniques
for practically solving one of the most important network problems in combinatorial optimization.
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1 Introduction

Domination in networks is one of the the most important problems in combinatorial optimization. The underlying
NP-complete decision problem Dominating Set is defined as follows:
Input: A graph (network) G = (V, E) and a positive integer k.
Question: Does G have a dominating set of size at most k, i.e., a subset V ′ ⊆ V of vertices such that every vertex
in V − V ′ is adjacent to some vertex in V ′?
The corresponding optimization problem is to determine a dominating set of minimum size. A two-volume book has
been published on domination in graphs [6, 7]. The interest in domination ranges from more fundamental research
to more applied work (e.g., [5, 11, 13]). In many of the applications, variants of the given problem are studied. The
basic application scenario for domination problems comes from facility location tasks. Intuitively, one might think of
the vertices of a minimum dominating set as the most central or most important points of a given network. Besides
communication and related networks, other applications arise from voting situations and biological and social network
analysis [10, 12].

In this piece of work, we empirically investigate the power of data reduction towards optimally1 solving the
domination problem on various types of networks. To this end, we take a closer look at and extend a recently introduced
theoretical framework of reduction rules [2]. We implemented and further enriched these rules and we applied them
to several network topologies and experimental data from the literature and from various web sites [3, 8, 9]. Our data
reduction framework in many cases leads efficiently to optimal solutions for realistic networks with up to ten thousands
of vertices and edges. Moreover, we show how our data reduction rules can be transformed in order to work for directed
networks. Altogether, the two main contributions of this work are to experimentally validate the usefulness of existing
data reduction rules in a novel combination [1, 2] and to show that the given theoretical framework also generalizes
to networks with directed edges.

2 Algorithmic Approach: Reduction Rules

In what follows, we describe various polynomial-time reduction rules for the Dominating Set problem. The idea is
to apply the reduction rules over and over (alternatingly) again until no further rule will apply. These reduction rules
have in common that they explore the local structure of a given network. Depending on this structure, we decide
whether a rule is applicable, and if so, the application of a reduction rule may have the following two effects: They
determine vertices that can be chosen for an optimal dominating set and reduce the network by removing edges or

∗Supported by the Deutsche Forschungsgemeinschaft (DFG), project PEAL (parameterized complexity and exact algorithms), NI 369/1
and junior research group PIAF (fixed-parameter algorithms), NI 369/4.

1We mention in passing that Dominating Set is hard to approximate. The best known approximation factor achievable by a polynomial-
time algorithm is Θ(log n) [4]. Moreover, observe that in fact our reduction rules to be presented are suitable for solving the optimization
problem, not only the decision version as stated above.
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Figure 1: The left-hand side shows the partitioning of the neighborhood of a single vertex v into the sets

Nexit(v), Nguard(v), Nprison(v). Note that the “coloring” in this figure does not refer to the colors black and white of the

given network. The right-hand side shows the partitioning of the common neighborhood of a pair of vertices v, w into the sets

Nexit(v, w), Nguard(v, w), Nprison(v, w).

vertices. It is important to note that by these rules we can only guarantee at least one optimal dominating set but
give up to find all of them. In this way, we are left with an instance in which some vertices are already dominated
(but still are possible candidates for domination). This brings us to the following generalized problem Annotated
Dominating Set.
Input: A black-and-white network G = (B ⊎ W, E) with black vertices B and white vertices W , and a positive
integer k.
Question: Is there a V ′ ⊆ B ⊎ W with |V ′| ≤ k such that all black vertices are dominated?

We can use this more general model to express an instance in which some vertices (more precisely: the white
vertices) are assumed to be already dominated. Initially, the input instance of Dominating Set delivers all vertices set
black.

Basic Reduction Rules. We revisit two basic reduction rules that were first used in [2] where it was shown that
Dominating Set restricted to planar networks admits a so-called linear problem kernel. The presentation in [2],
however, purely focuses on the theoretical aspect of problem kernel reduction. Here, in contrast, we will slightly
modify the reduction rules in order to make them applicable for practical purposes. In particular, we will reformulate
the rules such that we can deal with the more general Annotated Dominating Set problem. The correctness of
the following reduction rules is not hard to prove (see [2]).

Neighborhood of a single vertex. Consider a vertex v ∈ B ⊎ W of the given black and white network G =
(B ⊎ W, E). We partition the vertices of the open neighborhood N(v) := {u ∈ B ⊎ W | {u, v} ∈ E } of v into three
different sets, where N [v] := N(v) ∪ {v}:

Nexit(v) := {u ∈ N(v) | N(u) \ N [v] 6= ∅ },

Nguard(v) := {u ∈ N(v) \ Nexit(v) | N(u) ∩ Nexit(v) 6= ∅ },

Nprison(v) := N(v) \ (Nexit(v) ∪ Nguard(v)).

An example demonstrating the partitioning of the neighborhood of a single vertex is given in Fig. 1.
It is clear, that a black vertex in Nprison(v) can only be dominated by vertices from {v} ∪ Nguard(v) ∪ Nprison(v).

Since v will dominate at least as many vertices as any other vertex from Nguard(v) ∪ Nprison(v), it is safe to place v

into the optimal dominating set we seek for.

Main Rule 1 If Nprison(v) ∩ B 6= ∅ for v ∈ B ⊎ W then it is optimal to choose v to belong to the dominating set:
remove v from G and color all neighbors of v white, and remove Nguard(v) and Nprison(v) from G.

Neighborhood of a pair of vertices. Similar to Rule 1, we explore the union of the neighborhoods N(v, w) :=
N(v)∪N(w) of two vertices v, w ∈ B ⊎W . Analogously, we now partition N(v, w) into three disjoint subsets. Setting
N [v, w] := N [v] ∪ N [w], we define

Nexit(v, w) := {u ∈ N(v, w) | N(u) \ N [v, w] 6= ∅ },

Nguard(v, w) := {u ∈ N(v, w) \ Nexit(v, w) | N(u) ∩ Nexit(v, w) 6= ∅ },

Nprison(v, w) := N(v, w) \ (Nexit(v, w) ∪ Nguard(v, w)).
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Following the second reduction rule below also consider the example of a partitioning of the joint neighborhood of
two vertices as given in Fig. 1.

The idea is to detect an optimal domination of the black prisoner vertices Nprison(v, w) ∩ B in our local struc-
ture N(v, w). It is clear, that a black vertex in Nprison(v, w) can only be dominated by vertices from {v, w} ∪
Nguard(v, w)∪Nprison(v, w). The following rule determines cases in which it is safe to choose one of the vertices v or w

(or both) to belong to the optimal dominating set we seek for.

Main Rule 2 Consider v, w ∈ V (v 6= w) and suppose that Nprison(v, w) ∩ B 6= ∅. Suppose that Nprison(v, w) ∩ B

cannot be dominated by a single vertex from Nguard(v, w) ∪ Nprison(v, w).

Case 1 If Nprison(v, w) ∩ B can be dominated by a single vertex from {v, w}:

(1.1) If Nprison(v, w) ∩ B ⊆ N(v) as well as Nprison(v, w) ∩ B ⊆ N(w), then it is optimal to choose v or w (or
both), but the decision for one of these choices cannot yet be made, hence:

• as a gadget we add two new white vertices z, z′ and edges {v, z}, {w, z}, {v, z′}, {w, z′} to G and

• remove Nprison(v, w) and Nguard(v, w) ∩ N(v) ∩ N(w) from G.

(1.2) If Nprison(v, w) ∩ B ⊆ N(v), but not Nprison(v, w) ∩ B ⊆ N(w), then it is optimal to choose v:

• remove v from G and color all neighbors of v white and

• remove Nprison(v, w) and Nguard(v, w) ∩ N(v) from G.

(1.3) If Nprison(v, w)∩B ⊆ N(w), but not Nprison(v, w)∩B ⊆ N(v), then it is optimal to choose w: proceed as
in (1.2) with roles of v and w interchanged.

Case 2 If Nprison(v, w) cannot be dominated by a single vertex from {v, w}, then it is optimal to choose both v and w:

• remove v and w from G and color all their neighbors white and

• remove Nprison(v, w) and Nguard(v, w) from G.

It is not hard to see that Main Rules 1 and 2 lead to an optimal dominating set and they can be carried out in time
O(|V |3) and O(|V |4), respectively (see [2]).2 Our basic reduction then processes the graph by choosing all possible
(pairs of) vertices until no more application of one of the rules is possible. Observe, that for efficiency reasons, one
prefers to apply Rule 1 as long as possible and the continue with Rule 2. It may happen, then, that after Rule 2 again
Rule 1 applies due to the new graph structure caused by Rule 2.

Further Reduction Rules. The original versions of the above two reduction rules turned out to be sufficient for
theoretical purposes, i.e., they were sufficient for proving a linear problem kernel on planar networks [2]. The following
rules were basically introduced in [1] as a tool in the theoretical analysis of a search tree algorithm for Dominating
Set on planar graphs. Notably, they lead to significant further improvements and speedups in our experimental
analysis to follow.

1. Delete edges between white vertices.

2. Let u be a white vertex of degree at most 1. Then, delete u.

3. Let u be a white vertex of degree 2, with two black neighbors u1 and u2.

(a) If u1 and u2 are connected by an edge, then delete u.

(b) If u1 and u2 are connected via a third (black or white) vertex u3, then delete u.

4. Let u be a white vertex of degree 3, with three black neighbors u1, u2, and u3. If the edges {u1, u2} and {u2, u3}
are present in G (and possibly also {u1, u3}), then delete u.

2These running times are pure worst-case estimates and turn out to be much better on average in our experimental studies. In particular,
for practical purposes it is important to see that Rule 2 can only be applied for vertex pairs that are at distance at most three.
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AS model: Oregon refined AS model: Oregon+

date vertices edges % reduced DS vertices edges % reduced DS

03/31/01 10670 22002 100% 957 10900 31180 100.00% 936
04/07/01 10729 21999 100% 969 10981 30855 99.97% 935
04/14/01 10790 22469 100% 978 11019 31761 99.92% 949
04/21/01 10895 22747 100% 982 11080 31538 99.95% 956
04/28/01 10886 22493 100% 991 11113 31434 100.00% 965
05/05/01 10943 22607 100% 988 11157 30943 99.89% 960
05/12/01 11011 22677 100% 988 11260 31303 99.89% 961
05/19/01 11051 22724 100% 979 11375 32287 99.90% 968
05/26/01 11174 23409 100% 993 11461 32730 99.92% 966

Table 1: Autonomous Systems Networks: Experimental results for the AS networks as obtained from routing tables

collected by the Oregon route server at different dates, using both models—the standard model (“Oregon”) and the refined

model (“Oregon+”) by Chen et al. [3]. The columns show the size of the different networks, and the amount by which our

reduction rules reduced the given network. In addition, the last column reports on the size of the minimum dominating set

(DS) as computed by our method.

Dealing with Directed Dominating Set. In several applications we have to deal with directed networks. Here, a
vertex v is dominated iff it is in the dominating set or if there is an arc (u, v) (i.e., v is an outgoing neighbor of u) and u is
in the dominating set. In order to cope with such settings, we describe a transformation from Directed Dominating
Set to (undirected) Annotated Dominating Set. Let G = (V, A) be an instance of Directed Dominating
Set. Then we construct an undirected black-and-white network G′ = (B ⊎ W, E) as follows: B := {u′ | u ∈ V },
W := {u′′ | u ∈ V }, and E :=

{

{u′, u′′} | u ∈ V
}

∪
{

{u′′, v′}, {u′′, v′′} | (u, v) ∈ A
}

. In other words, every vertex u

in G is duplicated with a black copy u′ (which enforces that u needs to be dominated) and a white copy u′′ (which
simulates the choice of u to belong to a dominating set). We add edges connecting u′′ with u′ and u′′′ with all outgoing
neighbors of u in the directed network.

It is easy to see that G admits an optimal directed dominating set of size k if and only if G′ admits an optimal
annotated dominating set of size k.

3 Experimental Results

We tested our algorithmic framework on various network data provided in the literature and publically available on
the web. Our focus was on networks obtained from (Internet) topology generators (Inet, BRITE) [8, 9], networks of
autonomous systems [3]. Besides many others, one possible interest in computing small dominating sets in Internet
networks might be time servers (NTP protocol). Here, the time servers (i.e., the vertices of a dominating set) might
quickly provide the time signal to all other vertices in the network since following only one single link is enough. Finally,
we will have a brief look at three examples of directed networks (an HTML network and two food web networks from
biology). All our experiments ran on a 2.26 GHz Linux Pentium 4 PC with 1 GB main memory. The code was
implemented in C++ using the algorithm library LEDA.

Autonomous systems networks. Chen et al. [3] provided network data concerning Internet connectivity at the
level of autonomous systems (AS). They report on “AS connectivity maps” obtained from routing tables collected by
the Oregon route server, argue why these may provide an incomplete picture of the physical connectivity that exists
in the actual Internet, and present a network model and refined connectivity maps that are supposed to provide a
more complete picture of the Internet connectivity (see [3] for any details). Thus, one arrives at two sets of network
data supposed to model the (time) varying Internet structure, the “Oregon data” and the more refined data proposed
by Chen et al. We took both these data sets and applied our data reduction techniques to compute minimum size
dominating sets in these networks of more than 10000 vertices and around 20000 (old model) and 30000 (new model)
edges. For both cases, we either could already compute an optimal dominating set or, in few cases, we were left with a
drastically reduced network where one could easily compute the remaining optimal domination vertices by brute-force
methods. Table 1 lists the results for the old model (here the computation per network took several minutes) and the
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Inet: 5000 vertices Inet: 7500 vertices Inet: 10000 vertices

parameter edges time reduced DS edges time reduced DS edges time % reduced DS

d: 0.5 9121 21 100% 1085 13811 47 100% 1650 18532 93 100% 2129

d: 0.3 10434 148 100% 1062 15765 237 100% 1584 21145 386 100% 2102

d: 0.2 11084 250 100% 993 16758 467 100% 1483 22451 1338 100% 1955

d: 0.1 11470 888 100% 900 17733 1581 100% 1356 23764 4505 100% 1802

d: 0.05 12066 1758 100% 847 18225 4840 100% 1265 24416 10427 100% 1699

d: 0.001 12383 7373 99.9% 814 18712 14688 100% 1198 25045 27920 100% 1595

Table 2: Inet 2.0 Topology Generator: The table summarizes the performance of the data reduction on various networks

generated with the generator in [8]. We constructed networks of 5000, 7500, and 10000 vertices using the default configuration

and varying over the parameter d (expressing the fraction of low-degree vertices, see [8] for details) in order to obtain networks

with various numbers of edges. The columns show the performance of our data reduction, reporting on the time needed (in

seconds), the amount by which the networks were reduced, and the size of an optimal dominating set (DS) as computed by our

method.

BRITE: 1000 vertices, 1997 edges BRITE: 5000 vertices, 9997 edges

Type 1 Type 2 Type 3 Type 4 Type 5 Type 1 Type 2 Type 3 Type 4 Type 5

# vertices removed 1000 668 906 915 751 4993 4907 4156 4321 4917
(percentage) 100% 64.8% 90.6% 91.5% 75.1% 99.9% 98.1% 83.1% 86.4% 98.3%

# edges removed 1997 1450 1873 1892 1558 9990 9893 8569 8982 9907
(percentage) 100% 72.6% 93.8% 94.7% 78.0% 99.9% 98.9% 85.7% 89.9% 99.1%

#vertices for DS found 195 120 173 176 146 941 934 771 792 913

time (sec) 77 127 67 71 87 5516 5472 7423 8496 8153

Table 3: BRITE Topology Generator: The table summarizes the performance of the data reduction on various networks

generated with the generator in [9]. We constructed networks of 1000 and 5000 vertices using various parameter settings in

the generator (Type 1–5). The parameters provided by BRITE are Node Placement Strategy (NPS), Growth Type (GT),

Preference Connectivity (PF) (see [9] for details). We used the following settings: Type 1 (NPS:random, GT:all, PC:on), Type

2 (NPS:heavy, GT:incremental, PC:none), Type 3 (NPS:heavy, GT:incremental, PC:on), Type 4 (NPS:random, GT:all, PC:on),

Type 5 (NPS:random, GT:incremental, PC:on). Each class consists of a sample of five networks and, for each network class,

we averaged the number of vertices and edges removed by the reduction rules and the number of vertices that were determined

to belong to an optimal dominating set (which also gives a lower bound on the size of a minimum dominating set of the overall

network).

new model (here the computation per network took few hours).
Interestingly, the sizes of the optimal dominating sets seem to be rather stable slightly below 1000 in all networks

(old and new). The new model (with almost 50% more edges) seems to yield only slightly smaller domination numbers.

Networks from topology generators. Here we report on results using network data produced by the Internet
topology generators Inet [8] and BRITE [9]. We refer to the given papers for any details. Tables 2 and 3 give our
results and the parameter settings we used for generating the corresponding networks from Inet 2.0 and BRITE
(Barabási-Albert model).

We only particularly emphasize few of our experimental findings. Concerning Inet networks, it is striking that
except for one all networks could be completely resolved for up to 10000 vertices and usually more than twice as many
edges. The spectrum of running times is fairly big, ranging from about 20 seconds up to seven hours. The dominating
set sizes, however, did not vary that much and were between more than 800 and less than 2130. Concerning BRITE
networks, our rules were not quite as successful as in the case of Inet. For networks with 1000 and 5000 vertices, we
had running times in the same dimension as for Inet, but more often an optimal dominating set could not completely
be found by sole use of our rules. In particular, there were two network instances of Type 5 for 1000 vertices and
Type 3 for 5000 vertices where our rules only achieved a small reduction of the network. By way of contrast, most
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networks of Type 3 and Type 5 (both for 1000 and 5000 vertices), which are considered to be particularly realistic
models of the Internet [9], were almost always completely resolved.

Some directed networks. Finally, to gain first insights for directed networks, we also tested our rules on the
proposed translation of directed networks into undirected ones. Because of the lack of space, however, we only mention
results for three particular networks. Firstly, we considered an HTML network with 739 vertices and 3447 arcs. This
network was created by taking the HTML document SELFHTML, Version 7.0 (an HTML tutorial), available from
http://selfaktuell/teamone.de. Links in this document translated into arcs and particular pages translated into
vertices. Within less than 10 seconds our reduction rules computed an optimal dominating set of size 141. Thus, this
dominating set contains the minimum amount of pages from which each other page of the HTML document can be
reached following only one link (i.e., by one click).

Secondly, we considered two food web networks from biology (from http://www.cosin.org/ network data sets),
where an arc points from prey to predator. We considered the Silwood Park food web with 308 vertices and 884 arcs.
In slightly more than one second an optimal dominating set of only 24 preys was determined. The second food web
we tested is Ythan Estuary consisting of 270 vertices and 1286 arcs. In this case, after about 7 seconds we obtained
14 preys that are part of an optimal dominating set. We were left with a reduced network of 21 vertices and 43 arcs
where no more reduction rule applied. Within few more seconds, using a tree decomposition based algorithm we
determined the remaining vertices of an optimal dominating set such that the optimal dominating set of the whole
food web consisted of 17 preys. Here, for instance, an optimal dominating set can be interpreted as a minimum size
set of preys whose disappearance would affect the menu of all predators. Further investigations on various directed
networks (also on social networks as discussed in [12]) remain to be conducted in future work.

Final Conclusion and Outlook. We demonstrated the potential of comparatively simple and easy to implement
efficient data reduction rules in order to compute optimal dominating sets in realistic networks up to sizes of ten thou-
sands of vertices and edges. In many cases, the problem was completely solved, yielding dominating sets of minimum
size. Otherwise, usually a significant reduction of the size of the input data was achieved. Our main conclusion is that
data reduction should become a must for everyone dealing with domination in networks. On the “negative” side, our
data reduction rules seem to behave poor when applied to dense graphs with many edges. Sanchis [11] generates these
sorts of data and proposes heuristic algorithms to compute not necessarily optimal dominating sets in these settings.
However, for many naturally occurring networks our data reduction rules performed extremely good.
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