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Abstract Kemeny Rank Aggregation is a consensus finding problem im-
portant in many areas ranging from classical voting over web search and
databases to bioinformatics. The underlying decision problem Kemeny Score
is NP-complete even in case of four input rankings to be aggregated into a “me-
dian ranking”. We analyze efficient polynomial-time data reduction rules with
provable performance bounds that allow us to find even all optimal median
rankings. We show that our reduced instances contain at most 16/3 · da candi-
dates where da denotes the average Kendall’s tau distance between the input
votes. On the theoretical side, this improves a corresponding result for a “par-
tial problem kernel” from quadratic to linear size. In this context we provide
a theoretical analysis of a commonly used data reduction. On the practical
side, we provide experimental results with data based on web search and sport
competitions, e.g., computing optimal median rankings for real-world instances
with more than 100 candidates within milliseconds. Moreover, we perform ex-
periments with randomly generated data based on two random distribution
models for permutations.
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1 Introduction

We investigate the effectiveness of polynomial-time data reduction for comput-
ing optimal solutions of the NP-hard Kemeny Rank Aggregation problem.
Kemeny’s corresponding voting scheme can be described as follows. An elec-
tion (V,C) consists of a set V of n votes and a set C of m candidates. A vote
or a ranking is a total order of all candidates. For instance, in case of three
candidates a, b, c, the order c > b > a means that candidate c is the best-liked
one and candidate a is the least-liked one. For each pair of votes v, w, Kendall’s
tau distance (also known as “inversion distance” since it measures the number
of inversions between two permutations) between v and w is defined as

KT-distance(v, w) =
∑

{c,d}⊆C

dv,w(c, d),

where dv,w(c, d) is set to 0 if v and w rank c and d in the same order, and is
set to 1, otherwise. The score of a ranking r with respect to an election (V,C)
is defined as

∑
v∈V KT-distance(r, v). A ranking r with a minimum score is

called a Kemeny ranking of (V,C) and its score is the Kemeny score of (V,C).
The central problem considered in this work is as follows:

Kemeny Rank Aggregation
Input: An election (V,C).
Task: Find a Kemeny ranking of (V,C).

Its decision variant Kemeny Score asks whether there is a Kemeny ranking
of (V,C) with score at most some additionally given positive integer k. The
Kemeny Rank Aggregation problem has numerous applications, ranging
from building meta-search engines for the web or spam detection [16] over
databases [17] to the construction of genetic maps in bioinformatics [22]. Ke-
meny rankings are also desirable in classical voting scenarios such as the deter-
mination of a president (see, for example, www.votefair.org) or the selection
of the best qualified candidates for job openings. The wide range of appli-
cations is due to the fulfillment of many desirable properties from the social
choice point of view. For example, the Kemeny rule is the unique preference
function that is neutral, consistent, and satisfies the Condorcet property [40].
These three properties are defined as follows.
Neutrality : The candidate names do not influence the Kemeny ranking, that is,
given a Kemeny ranking r for an election ({v1, v2, . . . , vn}, C), for every permu-
tation π : C → C, π(r) is a Kemeny ranking for ({π(v1), π(v2), . . . , π(vn)}, C).1

Consistency : Let (V1, C) and (V2, C) be two elections with disjoint vote sets,
that is, V1∩V2 = ∅. If r is a Kemeny ranking for (V1, C) and for (V2, C), then r
is also a Kemeny ranking for (V1 ∪ V2, C).
Condorcet property : If there is a candidate (Condorcet winner) who is better
than every other candidate in more than half of the votes, then this candidate
is also ranked first in every Kemeny ranking.

1 Let r = x1 > x2 > · · · > xm. Then, π(r) is the ranking π(x1) > π(x2) > · · · > π(xm).

www.votefair.org
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Previous work. First computational complexity studies of Kemeny Score go
back to Bartholdi et al. [3], showing its NP-completeness. Dwork et al. [16]
showed that the problem remains NP-hard even in the case of four votes—small
errors in their proof have been corrected by Biedl et al. [8]. Moreover, Dwork
et al. [16] demonstrated the usefulness of Kemeny Score in aggregating web
search results and provided several approximation and heuristic algorithms.
In earlier work, Hemaspaandra et al. [21] derived computational complex-
ity classifications for generalized versions of Kemeny Score. Recent papers
showed constant-factor approximability [1,41] and an (impractical) PTAS [24].
Schalekamp and van Zuylen [35] provided a thorough experimental study of
approximation and heuristic algorithms. Another extensive experimental study
compares 104 (mostly heuristic) algorithms solving Kemeny Rank Aggre-
gation in different situations [2]. Due to the importance of computing prov-
ably optimal solutions, there have been experimental studies in this regard
as well [13,14]: An integer linear program and a branch-and-bound approach
were applied to random instances generated under a noise model. Another
line of research concerns the interpretation of Kemeny rankings as maximum
likelihood estimators and several generalizations thereof [19,29,30,39].

From a parameterized complexity perspective [15,20,31], the following is
known. First fixed-parameter tractability results have been shown with re-
spect to the single parameters number of candidates, Kemeny score, maximum
range of candidate positions, and average KT-distance da [6]. The average KT-
distance

da :=
∑
v,w∈V

KT-distance(v, w)/(n(n− 1))

will also play a central role in this work. The range of positions of some can-
didate x is defined as the difference between its maximum position and its
minimum position where the position of x in a vote is defined as the number
of candidates that are ranked better than x. Kemeny Score remains NP-hard
when the average range of candidate positions is two [6], excluding hope for
fixed-parameter tractability with respect to this parameterization. Simjour [36]
further introduced the parameters “Kemeny score divided by the number of
votes” (which is identical to da up to some constants factors [36]) and “max-
imum KT-distance between two input votes” also showing fixed-parameter
tractability and improved the running times for the fixed-parameter algorithms
corresponding to the parameterizations by average KT-distance and Kemeny
score. Very recently, Nishimura and Simjour [32] developed a fixed-parameter
algorithm with respect to the parameter “Kemeny score divided by the num-
ber of votes” that enumerates all Kemeny rankings. Karpinski and Schudy [23]
and Fernau et al. [18] devised subexponential-time fixed-parameter algorithms
for the parameters Kemeny score, average KT-distance, and Kemeny score di-
vided by the number of votes. Mahajan et al. [26] studied above guarantee
parameterization with respect to the Kemeny score. Finally, introducing the
new concept of partial kernelization, it has been shown that with respect to
the average KT-distance da one can compute in polynomial time an equivalent
instance where the number of candidates is at most 162d2a + 9da [7].
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Formally, the concept of partial kernelization is defined as follows. Let
(I, k) be an instance of a parameterized problem P , where I ∈ Σ∗ denotes the
input instance and k a parameter. Let d : Σ∗ → N be a computable function
such that P is fixed-parameter tractable with respect to d(I). Then P admits
a partial kernel if there is a polynomial-time algorithm that computes an
instance (I ′, k′) of P such that (I, k) is a yes-instance if and only if (I ′, k′) is
a yes-instance, k′ ≤ g1(k), and d(I ′) ≤ g2(k) for computable functions g1 and
g2. A (partial) problem kernel is called enumerative if there is a one-to-one
correspondence between solutions to the original instances and solutions to
the kernel [37].

Our contributions. Our central focus is on mathematically analyzing and em-
pirically evaluating polynomial-time executable data reduction algorithms for
Kemeny Rank Aggregation. These rules preserve the possibility to find
optimal (not only approximate) solutions on the one hand, and provide an
efficient and effective preprocessing with provable performance guarantee on
the other hand. We remark that a similar data reduction has been used by
Cohen et al. [12] to improve the approximation quality (but not running time)
of a heuristic algorithm for a closely related (more general) problem. In our
setting, however, data reduction is shown to be the key to significantly improve
the running time of exact solution strategies.

On the theoretical side, we improve the previous partial kernel size [7] from
162d2a + 9da candidates to 16/3da candidates. More specifically, we investigate
data reduction rules exploiting majorities, ending up with an enumerative
partial kernel consisting of at most 16/3da candidates. Next, we show that
in case of dropping the quest for an enumerative kernel, our previous data
reduction rules are subsumed by a data reduction rule based on the well-known
Extended Condorcet Criterion [38]. We note that, very recently, Simjour [37]
showed a further improvement for the enumerative kernel to 4da candidates
and for the relaxed case to even (2 + ε)da candidates for ε > 0.

On the practical side, we provide empirical evidence for the usefulness of
data reduction rules associated with the above mentioned kernelization. An
essential property of the data reduction rules is that they can break instances
into several subinstances to be handled independently, that is, the relative or-
der between the candidates in two different subinstances in a Kemeny ranking
is already determined. This also means that for hard instances which we could
not completely solve we were still able to compute “partial rankings” of the
top and bottom ranked candidates. After exhaustive application of our data
reduction rules, we employ some of the known fixed-parameter algorithms [6,
11,36] and a known integer linear program formulation [13] to solve small parts
of the instances remaining after data reduction. Our experiments showed that
the data reduction rules allow for significantly decreased running times; they
are crucial to solving larger instances. For example, using data reduction rules
decreased the running time with the Gurobi ILP-solver for a test instance from
winter sports with 69 candidates from 3.9 seconds to 0.11 seconds. Further-
more, an instance generated from web search with 240 candidates, which could
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not be solved within 70 seconds without data reduction, was solved in three
seconds.

2 Data reduction and a linear partial problem kernel

In this section, we examine two simple properties of Kemeny rankings which
directly yield data reduction rules. In Section 2.2, we analyze natural exten-
sions of a majority-based property including limitations of the corresponding
data reduction rules. In Section 2.3, we show that the data reduction from
Section 2.2 provides a linear partial kernel for the parameter average KT-
distance that preserves all Kemeny rankings. In Section 2.4, we analyze a
known extension of the Condorcet property and show how the corresponding
data reduction rules relate to the data reduction from Section 2.2. In Sec-
tion 2.5, we briefly discuss the tightness of our kernelization upper bound and
highlight some practical consequences of our theoretical findings. We start in
Section 2.1 with some definitions and sketch some relevant previous results [7].

2.1 Definitions and previous results

As to the notation of rankings, we write the list of candidates separated by
the >-symbol in the corresponding preference order. For example, a > b > c
indicates that a is preferred to b and c, and b is preferred to c. When we express
partial information about the preference order we use quotation marks. For
example, “a > b” means that candidate a is preferred to b, without giving
further information about other candidates. Furthermore, let #v(a > b) denote
the number of votes with “a > b”. A candidate pair {a, b} is called a conflict
pair if #v(a > b) > 0 and #v(b > a) > 0.

The data reduction framework from previous work [7] introduces a “dirti-
ness concept” and shows that one can delete some “non-dirty candidates” by
a data reduction rule leading to a partial kernel with respect to the average
KT-distance. The “dirtiness” of a pair of candidates is measured by the degree
of agreement of the votes for this pair. To this end, we introduce the follow-
ing notation. For an election (V,C), two candidates c, c′ ∈ C, and a rational
number s ∈ ]0.5, 1], we write

c ≥s c′

if at least ds · |V |e of the votes prefer c to c′, that is, #v(c > c′) ≥ s · |V |. A
candidate pair {c, c′} is dirty according to the ≥s-majority if neither c ≥s c′ nor
c′ ≥s c. The remaining pairs are called non-dirty according to the ≥s-majority.
This directly leads to the parameter nsd denoting the number of dirty pairs
according to the ≥s-majority. To simplify matters, we write “>2/3” instead of

“≥s with s > 2/3”. In this sense, let n
>2/3
d denote the maximum number of

dirty pairs according to ≥s-majorities with s > 2/3. When the value of s is
clear from the context, then we speak of “dirty pairs” and omit “according to
the ≥s-majority”. Previous work only considered >2/3-majorities and provided
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Table 1 Partial kernelization and polynomial-time solvability. The term dirty refers to the
≥s-majority for the respective values of s. The number of dirty pairs is ns

d. A linear partial
kernel with respect to the average KT-distance follows directly from the linear partial kernel
with respect to ns

d (Theorem 1).

value of s partial kernel result no dirty pairs: ns
d = 0

2/3 < s < 3/4 quadratic partial kernel w.r.t. ns
d [7, Theorem 2] polynomial-time solvable

3/4 ≤ s < 1 linear partial kernel w.r.t. ns
d (Theorem 1) [7, Proposition 3]

a data reduction rule such that the number of candidates in a reduced instance
is at most quadratic in min{n>2/3

d , da}. In this work, we provide a linear partial
kernel with respect to nsd according to the ≥s-majority for s ≥ 3/4 and show
that this leads to a linear partial kernel with respect to da.

We say that c and c′ are ordered according to the ≥s-majority in a ranking l
if c > c′ in l and c ≥s c′. If all candidate pairs are non-dirty with respect to
the ≥s-majority for an s > 2/3, then there exists a ≥s-majority order, that
is, a ranking in which all candidate pairs are ordered according to the ≥s-
majority [7]. Furthermore, the corresponding >2/3-majority order can be found
in polynomial time and is a Kemeny ranking [7]. Candidates appearing only in
non-dirty pairs according to a ≥s-majority are called non-dirty candidates and
all remaining candidates are dirty candidates according to the ≥s-majority.
Note that with this definition a non-dirty pair can also be formed by two dirty
candidates. See Table 1 for an overview of partial kernelization results versus
polynomial-time solvability.

We end with some notation needed to state our data reduction rules. For a
candidate subset C ′ ⊆ C, a ranking fulfills the condition C ′ > C \ C ′ if every
candidate from C ′ is preferred to every candidate from C \C ′. A subinstance
of (V,C) induced by a candidate subset C ′ ⊆ C is given by (V ′, C ′) where
every vote in V ′ one-to-one corresponds to a vote in V keeping the relative
order of the candidates from C ′.

2.2 Exploiting ≥3/4-majorities

We generalize a well-known property of Kemeny rankings to develop data
reduction rules: If there is a specific candidate a such that all voters agree on
each relative ordering of a and some other candidate, then in every Kemeny
ranking the relative ordering of a and any other candidate is consistent with
the votes. Formally, we have the following observation.

Observation 1. Let a ∈ C be a non-dirty candidate with respect to the ≥1-
majority and b ∈ C \ {a}. If a ≥1 b, then in every Kemeny ranking “a > b”;
if b ≥1 a, then in every Kemeny ranking “b > a”.

This observation directly implies a simple data reduction rule which may
split the instance into two subinstances: one containing all votes restricted to
the candidates that are preferred to a by all votes and one containing all votes
restricted to the remaining candidates (except a). In the remaining part of
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Table 2 Properties “induced” by ≥s-majorities for different values of s.

value of s properties

1/2 ≤ s ≤ 2/3 a ≥s-majority order does not necessarily exist (Example 1)
2/3 < s < 3/4 a ≥s-majority order exists (follows from [7, Theorem 4])

but a non-dirty candidate and a dirty candidate do not have to be ordered
according to the ≥s-majority in a Kemeny ranking (Proposition 1)

3/4 ≤ s ≤ 1 a ≥s-majority order exists (follows from [7, Theorem 4])
and in every Kemeny ranking every non-dirty candidate is ordered according
to the ≥s-majority with respect to all other candidates (Lemma 1)

this subsection, we show how to extend this observation with respect to ≥s-
majorities, that is, to cases where only a ≥s-majority of the voters instead of all
voters agree on the relative orderings. We investigate to which ≥s-majorities
Observation 1 extends. An overview of properties for a Kemeny ranking for
different values of s is provided in Table 2.

The 3/4-Majority Rule. It is easy to see that Observation 1 cannot hold for
arbitrary ≥s-majorities. For example with s = 1/2 the observation would al-
ready be contradictory for the election consisting of two votes: a > b and
b > a. The following lemma shows that Observation 1 can be generalized for
all ≥s-majorities with 3/4 ≤ s ≤ 1.

Lemma 1. Let a ∈ C be a non-dirty candidate with respect to the ≥s-majority
and b ∈ C \ {a} with 3/4 ≤ s ≤ 1. If a ≥s b, then in every Kemeny ranking
“a > b”; if b ≥s a, then in every Kemeny ranking “b > a”.

Proof. Let the partial score of a candidate subset C ′ be the Kemeny score of
the subinstance induced by C ′. We consider the case a ≥3/4 b; the case b ≥3/4 a
and the proof for ≥s-majorities with s > 3/4 follow in complete analogy. The
proof is by contradiction. Assume that there is a Kemeny ranking l with “b >
D > a” for some D ⊆ C\{a, b}. Since a is non-dirty, for every candidate d ∈ D
it must either hold that a ≥3/4 d or d ≥3/4 a. Let D1 := {d ∈ D | a ≥3/4 d} and
D2 := {d ∈ D | d ≥3/4 a}. Consider the ranking l′ obtained from l through
replacing

“b > D > a” by “D2 > a > b > D1”,

where the positions of all other candidates remain unchanged and the candi-
dates within D1 and D2 have the same relative order as within D.

We show that the score of l is greater than the score of l′, contradicting
that l is a Kemeny ranking. The only pairs of candidates that have different
orders in l and l′ and thus can contribute with different partial scores to the
scores of l and l′ are {a, d1} and {d2, d1} for all d1 ∈ D1∪{b} and all d2 ∈ D2.
Consider any d1 ∈ D1∪{b} and d2 ∈ D2. Since |{v ∈ V | d2 ≥3/4 a}| ≥ 3/4 · |V |
and |{v ∈ V | a ≥3/4 d1}| ≥ 3/4 · |V |, the intersection of these two sets must
contain at least |V |/2 elements, that is, there must be at least |V |/2 votes with
“d2 > a > d1”. Thus, the partial score of {d2, d1} in l is at least as high as its
partial score in l′. The partial score of every pair {a, d1} with d1 ∈ D1 ∪ {b}
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in l′ is strictly less than the partial score in l. Since |D1 ∪ {b}| ≥ 1, the score
of l′ is smaller than the score of l and thus l cannot be a Kemeny ranking, a
contradiction.

As a direct consequence of Lemma 1 we can partition the candidates of
an election (V,C) as follows. Let N := {n1, . . . , nt} denote the set of non-
dirty candidates with respect to the ≥3/4-majority such that ni ≥3/4 ni+1

for 1 ≤ i ≤ t− 1. Then,

D0 := {d ∈ C \N | d ≥3/4 n1},
Di := {d ∈ C \N | ni ≥3/4 d and d ≥3/4 ni+1} for 1 ≤ i ≤ t− 1, and

Dt := {d ∈ C \N | nt ≥3/4 d}.
3/4-Majority Rule. Let (V,C) be an election and N and D0, . . . , Dt be the
sets of non-dirty and dirty candidates as specified above. Replace the original
instance by the t+ 1 subinstances induced by Di for i ∈ {0, . . . , t}.

The soundness of the 3/4-Majority Rule follows directly from Lemma 1. It
remains to discuss the running time of one application of the data reduction
rule. The application of the 3/4-Majority Rule works as follows. In a first step,
compute for each pair of candidates the majority ratio, that is, for each can-
didate pair {a, b} determine how many votes prefer a to b and vice versa. This
takes O(|V | · |C|2) time and a table storing this information takes O(|C|2)
space. In a second step, decide with O(|C|) table lookups for each candidate
whether it is dirty or non-dirty according to the ≥3/4-majority. This gives the
candidate set N as specified above. A third step is to compute the candi-
date sets D0, . . . , Dt. For each set, we need at most O(|C|) table lookups.
Finally, computing the t + 1 new instances takes O(|V | · |C|2) time, because
one just copies the original instance, leaving out the candidates that are not
in the corresponding candidate sets. Since t ≤ |C|, the overall running time
is O(|V | · |C|2).

Rules for weaker majorities. The existence of a data reduction rule analo-
gously to the 3/4-Majority Rule for ≥s-majorities for s < 3/4 would be desir-
able since such a rule might be more effective: There are instances for which
a candidate is dirty according to the ≥3/4-majority but non-dirty according to
a ≥s-majority with s < 3/4. Hence, for many instances, the number of dirty
pairs according to the ≥3/4-majority is higher than according to smaller val-
ues of s. In the following, we discuss why an analogous s-Majority Rule with
s < 3/4 cannot work. The decisive point of the 3/4-Majority Rule is that, in a
Kemeny ranking, every non-dirty candidate must be ordered according to the
≥3/4-majority with respect to every other candidate.

To this end, we start with the introduction of the concept of the ≥s-
majority order.

Definition 1. Let (V,C) be an election and r be a ranking over C and s ∈
[0, 1]. We say r is a ≥s-majority order if the following holds:

∀{a, b} ⊆ C : a ≥s b⇒ “a > b” in r.
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Informally speaking, a ≥s-majority order fully respects all ≥s-majority rela-
tions.

For the >2/3-majority, instances without dirty candidates are polynomial-
time solvable [7]. More specifically, the >2/3-majority order is a Kemeny rank-
ing. However, a simple example shows that, for any s ≤ 2/3, a ≥s-majority
order does not always exist.

Example 1. Consider the election consisting of the three candidates a, b, and c
and the three votes a > b > c, b > c > a, and c > a > b. Here, a ≥2/3 b, b ≥2/3 c,
and c ≥2/3 a. No linear order fulfills all three relations.

When the ≥s-majority order does not exist, then the ordering for the non-
dirty candidates is not clear. Hence, it is not even possible to compute the sets
D1, . . . , Dt as described in the 3/4-Majority Rule. It remains to study s-values
for s ∈]2/3, 3/4[. We show that in such cases a pair consisting of a dirty and a
non-dirty candidate needs not be ordered according to the ≥s-majority.

Proposition 1. Consider a ≥s-majority for any rational s ∈ ]2/3, 3/4[. For
a non-dirty candidate x and a dirty candidate y, x ≥s y does not imply x > y
in a Kemeny ranking.

Proof. Let s1 and s2 be two positive integers such that s = s1/s2. We construct
an election such that there is a non-dirty candidate x and a dirty candidate y
with x ≥s y but “y > x” in every Kemeny ranking. The set of candidates
is {x, y} ∪ A with A := {a1, a2, . . . , al} being the set of dummy candidates.
The number l of dummy candidates directly depends on s and will be discussed
later. For now, let l be a fixed integer greater than one. We have the following
votes, where A stands for a1 > a2 > . . . > al:

• s1 · s2 − s21 votes of type 1: x > y > A,

• 2s21 − s1 · s2 votes of type 2: A > x > y,

• s1 · s2 − s21 votes of type 3: y > A > x.

We first show that there is a positive number of votes of every type and
the total number of votes is s1 · s2: The total number of votes is

s1 · s2 − s21 + 2s21 − s1 · s2 + s1 · s2 − s21 = s1 · s2.

Considering the number of votes of types 1 and 3, recall that 3/4 > s1/s2 and
thus s2 > 4/3 · s1. Hence, for both types the number of votes is

s1 · s2 − s21 > s1 · (4/3 · s1 − s1) > 0.

Regarding votes of type 2, we use the trivial bound that s1/s2 > 1/2 and thus
their number is

2s21 − s1 · s2 > s1 · (2s1 − 2s1) = 0.

Now, we show that x is non-dirty and x ≥s y: The number of votes with
“a > x” for a ∈ A is

2s21 − s1 · s2 + s1 · s2 − s21 = s21 = s · |V |
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and the number of votes with “x > y” is

s1 · s2 − s21 + 2s21 − s1 · s2 = s21 = s · |V |.

Thus, x is non-dirty according to the ≥s-majority and x ≥s y.

In the following, we show that the score of “y > A > x” is smaller than
the score of every other ranking and, hence, there is no Kemeny ranking in
which x and y are ordered according to the ≥s-majority.

Having “a1 > a2 > . . . > al” in every vote, we also have “a1 > a2 > . . . >
al” in every Kemeny ranking (see, e.g., [6]). Distinguishing three cases, we
first show that in every Kemeny ranking “ai > x” if and only if “aj > x”, and
“ai > y” if and only if “aj > y” for every i, j ∈ {1, . . . , l}. After this, we can
treat A like one candidate of “weight” l. Thus, there remain only six rankings
for which the score has to be investigated in order to show that “y > A > x”
is the only ranking with minimum score.

Case 1: Consider the ranking . . . > ai > x > aj > . . ., that is, candidate ai is
directly followed by candidate x and x is directly followed by candidate aj .
Such a ranking cannot have minimum score since swapping x and aj leads
to a ranking with smaller score since “aj > x” in more than s·|V | > 2/3·|V |
votes.

Case 2: Consider the ranking . . . > ai > y > aj > . . ., that is, candidate ai is
directly followed by candidate y and y is directly followed by candidate aj .
This ranking cannot have minimum score since swapping ai and y leads to
a ranking with smaller score. This can be seen as follows. Since s1 < 3/4·s2,
the number of votes with “y > ai” is

2s1s2 − 2s21 > 2s1(s2 − 3/4 · s2) = 1/2 · s1s2 = |V |/2.

Case 3: This case consists of ranking . . . > ai > x > y > aj > . . . and the
same ranking with x and y swapped. The latter ranking would clearly have
a larger score than the former so it suffices to analyze the former. We show
that “ai > aj > x > y” has a smaller score than “ai > x > y > aj”. The
only pairs that change the score are {aj , y} and {aj , x}, contributing with

#v(aj > y)+#v(aj > x) = 2s21−s1s2 +2s21−s1s2 +s1s2−s21 = 3s21−s1s2

to the old score and with 2|V | − #v(aj > y) − #v(aj > x) to the “new”
score. Hence, it remains to show that the difference between the old and
the new score is positive, that is,

3s21 − s1s2 − 2s1s2 + 3s21 − s1s2 = 6s21 − 4s1s2 > 6 · 2/3 · s1s2 − 4s1s2 = 0.

Finally, consider the scores of all possible remaining six ranking types r1, . . . , r6:

r1 : A > x > yxxxxxxxx r3 : x > A > yxxxxxxxx r5 : y > A > x
r2 : A > y > x r4 : x > y > A r6 : y > x > A
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Let t(r) denote the score of a ranking r. It is easy to verify that t(r1) <
t(r2), t(r1) < t(r3), and t(r4) < t(r6). Hence, to show that r5 has the smallest
score, it remains to compare the score of r5 with the scores of r1 and r4.
This shows that r5 has a smaller score than r1 and r4: Since A represents
l candidates, we count the corresponding pairs l times in the following.

t(r4)− t(r5)

= #v(y > x) + l ·#v(A > x) + l ·#v(A > y)− l ·#v(A > y)− l ·#v(x > A)

−#v(x > y)

= #v(y > x) + l ·#v(A > x)− l ·#v(x > A)−#v(x > y)

= s1s2 − s21 + ls21 − ls1s2 + ls21 − s21
= 2(l − 1)s21 − (l − 1)s1s2.

In the following, we show that this term is positive. Note that s1/s2 > 2/3⇔
s1 > 2/3 · s2 and l > 1.

0 < 2(l − 1)s21 − (l − 1)s1s2 ⇔
0 < 2s21 − s1s2 ⇐
0 < 4/3 · s1s2 − s1s2 ⇔
0 < 1/3 · s21.

Thus, t(r5) < t(r4) and, therefore, t(r5) < t(r6).

t(r1)− t(r5)

= l ·#v(x > A) + l ·#v(y > A) + #v(y > x)− l ·#v(A > y)− l ·#v(x > A)

−#v(x > y)

= ls1s2 − ls21 + 2ls1s2 − 2ls21 + s1s2 − s21 − 2ls21 + ls1s2 − ls1s2 + ls21 − s21
= (3l + 1)s1s2 − (4l + 2)s21.

Again, we show that this term is positive. Note that s1/s2 < 3/4. Hence,
there is a fixed and positive number ε such that s2/s1 = 4/3 + ε, that is,
s2 = (4/3 + ε)s1.

0 < (3l + 1)s1s2 − (4l + 2)s21 ⇔
0 < (4/3 + ε)(3l + 1)s21 − (4l + 2)s21 ⇔
0 < 4l + 3lε+ 4/3 + ε− 4l − 2 ⇔
2 < 3lε+ 4/3 + ε.

For l > 1/ε, one has t(r5) < t(r1) and, hence, t(r5) < t(r2) and t(r5) < t(r3).
As we can see in the above terms, it remains to use a number of dummy

candidates l that only depends on the number s. Our counterexample works
for

l >
1

ε
=

1
1
s −

4
3

=
3s

3− 4s
.
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Altogether, we showed that r5 is the only Kemeny ranking. Thus, there
is an election with x ≥s y for every s ∈ ]2/3, 3/4[ such that every Kemeny
ranking fulfills “y > x”.

2.3 A linear partial kernel preserving all Kemeny rankings

Lemma 1 shows that the 3/4-Majority Rule preserves the possibility to find all
optimal solutions. After exhaustive application (at most |C| times) of the 3/4-
Majority Rule the remaining instances contain only dirty candidates. Making
use of a simple relation between the number of dirty candidates and the average
KT-distance as also used previously [7], we achieve the following.

Theorem 1. Let da be the average KT-distance and nsd be the number of
dirty pairs according to the ≥s-majority with s ≥ 3/4. Kemeny Rank Ag-
gregation admits a partial problem kernel with less than min{16da/3, 2n

s
d}

candidates. Moreover, every Kemeny ranking of the original instance contains
a Kemeny ranking of the reduced instance and every Kemeny ranking of the
reduced instance can be extended in polynomial time to a Kemeny ranking of
the original instance.

Proof. The partial kernel derives from applying the 3/4-Majority Rule, which
is (easily) adapted to work for the decision problem: An instance is reduced
by deleting all candidates from N , reordering every vote such that D0 >
D1 > · · · > Dt where, inside Di, 0 ≤ i ≤ t, the order of the candidates
remains unchanged, and decreasing the Kemeny score appropriately. After
having applied the adapted reduction rule, an instance containing only dirty
candidates remains. Let their total number be i. Since every dirty candidate
must be involved in at least one candidate pair that is not ordered according to
the ≥3/4-majority, there must be at least i/2 candidate pairs that contribute
to the average KT-distance. To analyze the contribution of such a pair, we
take a look at the definition of the average KT-distance.

da =
∑
v,w∈V

KT-distance(v, w)/(|V |(|V | − 1))

=
∑

{v,w}⊆V

KT-distance(v, w) · 2/(|V |(|V | − 1))

=
∑

{v,w}⊆V

∑
{c,d}⊆C

dv,w(c, d) · 2/(|V |(|V | − 1))

=
∑

{c,d}⊆C

∑
{v,w}⊆V

dv,w(c, d) · 2/(|V |(|V | − 1)).

That is, each candidate pair contributes to the average KT-distance with∑
{v,w}⊆V

dv,w(c, d) (1)
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normalized by the factor 2/(|V |(|V | − 1)). The sum in Equation (1) is the
number of votes that prefer c to d times the number of votes that prefer d
to c. In general, this value can be between (|V |/2) · (|V |/2) (as many votes
prefer c to d as votes prefer d to c) and 0 (all votes agree). However, for
our considered candidate pairs the contribution is at least (|V |/4) · (3|V |/4),
since they are not ordered according to the ≥3/4-majority. By definition of the
average KT-distance, it follows that

da ≥
i

2
· 2

|V |(|V | − 1)
· |V |

4
· 3|V |

4
>

3

16
· i⇒ 16/3 · da > i.

As a consequence, the reduced instance has less than 16da/3 candidates. The
upper bound 2nsd for the number of remaining (dirty) candidates is trivial.

The relation between Kemeny rankings of the original and of the reduced
instance follows with Lemma 1 and the polynomial-time computability of the
data reduction.

2.4 Exploiting the Condorcet property

In this subsection, we analyze a well-known data reduction rule of practical
relevance [12]. We show that it reduces an instance at least as much as the
3/4-Majority Rule, but it does not preserve all Kemeny rankings. The reduc-
tion rule is based on the following lemma which is known as the Extended
Condorcet Criterion [38]. We give a short proof for the sake of completeness.

Lemma 2. Let C ′ ⊆ C be a candidate subset with c′ ≥1/2 c for every c′ ∈ C ′
and every c ∈ C \ C ′. Then there is a Kemeny ranking fulfilling C ′ > C \ C ′.

Proof. If there is a Kemeny ranking l not fulfilling C ′ > C \ C ′, then replace
it by the ranking l′ with C ′ > C \ C ′ such that the relative order within the
candidates of C ′ and C \C ′ remains unchanged. Now, comparing the scores of
both rankings, they can only differ for pairs of candidates c′, c′′ with c′ ∈ C ′
and c′′ ∈ C \ C ′. However, every such pair contributes with at most as many
points to the score of l′ as to the score of l. Thus, l′ must also be a Kemeny
ranking.

A straight-forward implementation of Lemma 2 already leads to a data
reduction rule running in O(|V | · |C|3) time. However, it may happen that it is
applicable several times. The following data reduction rule runs in O(|V |·|C|2)
time and computes (in one application) the same output as the exhaustive
application of the straight-forward rule. To formulate the rule, we need the
concept of a majority graph.

Definition 2. Let (V,C) be an election. The strict (weak) majority graph of
(V,C) is a directed graph with C being the set of vertices that contains an arc
from x to y if and only if “x > y” in more than half of votes (in at least half
of votes).
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Extended Condorcet Rule. Let (V,C) be an election and let C1, . . . , Ct ⊆
C be the vertex sets forming the topologically ordered strongly connected com-
ponents in the strict majority graph of (V,C). Replace the original instance by
the subinstances induced by Ci with |Ci| ≥ 2, i ∈ {1, . . . , t}.

Constructing the strict majority graph takes O(|V | · |C|2) time. Computing
the strongly connected components (in topological ordering) takes O(|C|2)
time. Computing the subinstances takes O(|V | · |C|2) time. Hence, the total
running time of the Extended Condorcet Rule is O(|V | · |C|2). Alternatively,
one can find the set C1, . . . , Ct as defined in the Extended Condorcet Rule
by recursively applying Lemma 2. Formally, the Extended Condorcet Rule is
sound due to the following lemma (in combination with Lemma 2).

Lemma 3. Let (V,C) be an election and let C1, . . . , Ct ⊆ C be the candidate
sets as computed by the Extended Condorcet Rule. Then, ci ≥1/2 cj for every
ci ∈ Ci and every cj ∈ C \ Cj with 1 ≤ i < j ≤ t. Given a Kemeny ranking
for each subinstance induced by Ci, i ∈ {1, . . . , t}, one can compute a Kemeny
ranking of (V,C) in O(|V | · |C|2) time.

Proof. The sets C1, . . . , Ct ⊆ C represent the strongly connected components
of the strict majority graph in topological ordering, that is, by definition of the
topological ordering there is no arc from some vertex in Ci to some vertex in
Cj for 1 ≤ i < j ≤ t. By the definition of the strict majority graph, it follows
that ci ≥1/2 cj for every ci ∈ Ci and every cj ∈ C \ Cj with 1 ≤ i < j ≤ t.
Hence, by iteratively applying Lemma 2 one obtains a Kemeny ranking for the
original instance by concatenating the Kemeny rankings of the subinstances
induced by the vertex sets C1, . . . , Ct. (This includes to concatenate candidates
represented by components consisting of one single vertex.)

Remarkably, already in 1999 Cohen et al. [12] basically used what we now
call the Extended Condorcet Rule for improving the solution quality (but not
running time) of a greedy algorithm providing approximate results.

Although not explicitly stated, the Extended Condorcet Rule or a similar
rule has been used by Schalekamp and van Zuylen [35] as preprocessing. To
the best of our knowledge, in the context of exact algorithms neither its theo-
retically provable performance guarantees have been analyzed nor its practical
effectiveness has been evaluated.

Note that, Brandt et al. [10] used a similar preprocessing procedure for
computing so-called tournament solutions. Similarly to the components in the
Extended Condorcet Rule, they compute “dominating sets”, that is, subsets of
alternatives such that all alternatives from this set have the same relationship
to all alternatives not in the set.

The following proposition shows that the Extended Condorcet Rule is at
least as powerful as the 3/4-Majority Rule, implying that the Extended Con-
dorcet Rule provides a partial kernel with less than 16/3 · da candidates.

Proposition 2. An instance where the Extended Condorcet Rule has been
exhaustively applied cannot be further reduced by the 3/4-Majority Rule.
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Proof. The proof is by contradiction. Assume that there is an instance reduced
by the Extended Condorcet-Set Rule where the 3/4-Majority Rule successfully
applies. Then, there must be a non-dirty candidate x and a subset C ′ ⊆ C
with c′ ≥3/4 x for c′ ∈ C ′ and x ≥3/4 c

′′ for c′′ ∈ C ′′ with C ′′ := C \ (C ′∪{ni}).
Clearly, in the strict majority graph there is no arc from x to a vertex in C ′

and no arc from a vertex in C ′′ to x.

We can assume that C ′ and C ′′ are nonempty since otherwise the Extended
Condorcet Rule would obviously reduce this instance as x forms a strongly
connected component in the strict majority graph. Since |{v ∈ V : c′ ≥3/4

x}| ≥ 3/4 · |V | and |{v ∈ V : x ≥3/4 c
′′}| ≥ 3/4 · |V |, the intersection of these two

sets must contain at least |V |/2 elements, that is, there must be at least |V |/2
votes with “c′ > · · · > x > · · · > c′′” for c′ ∈ C ′ and c′′ ∈ C ′′. Hence, in the
strict majority graph of the instance there is no arc from a vertex in C ′′ to
a vertex in C ′. Thus, x forms a strongly connected component in the strict
majority graph, a contradiction to the fact that the Extended Condorcet Rules
was applied.

Note that the proof of Proposition 2 works analogously if one extends
the 3/4-Majority Rule to search for “subsets of non-dirty candidates”, that
is, to search for a subset C ′ ⊆ C such that 3/4 of the votes agree on the
relative ordering of every two candidates c′ ∈ C ′ and c′′ ∈ (C \ C ′). That is,
the Extended Condorcet Rule also subsumes this extended data reduction rule
which clearly reduces some instances that are not reducible by the 3/4-Majority
Rule.

Finally, we remark that the partial kernel obtained by the Extended Con-
dorcet Rule as defined above does not preserve the possibility to compute all
Kemeny ranking from the kernelized instance. Consider the simple election
consisting of the vote a > b and the vote b > a. When computing the partial
kernel, the Extended Condorcet Rule has to fix some topological ordering.
Moreover, candidates represented by strongly connected components of size
one have to be removed in order to obtain the kernel size upper bound (see
Theorem 1). Hence, the partial kernel obtained by the Extended Condorcet
Rule cannot distinguish between the simple election above and the election
consisting of two votes a > b, although the former has two Kemeny rank-
ings and the latter has only one Kemeny ranking. Of course, by providing
the kernelized instance with additional information one may find all Kemeny
rankings, but the partial problem kernel itself (which must be an instance of
the original problem) provided by the Extended Condorcet Rule does not pre-
serve all Kemeny rankings. Note that this observation is not only of theoretical
interest since a (partial) problem kernel has the nice property that one can
apply every algorithm that solves the original problem on the (partial) prob-
lem kernel. If one needs additional information to find all Kemeny rankings,
then such an algorithm must be able to handle this additional information.

Replacing the strict majority graph by a weak majority graph in the Ex-
tended Condorcet Rule, one obtains a slightly modified reduction rule. Fol-
lowing an argumentation analogous to Lemma 2 and Lemma 3 it is easy to
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verify that this modified Extended Condorcet Rule preserves all solutions. The
following example shows that the 3/4-Majority Rule reduces instances that are
not reduced by this modified rule.

Example 2. Consider the election consisting of the three candidates a, b,
and x and the following votes:

a > x > b, a > x > b, b > a > x, x > b > a.

The 3/4-Majority Rule identifies and removes the non-dirty candidate x (pre-
serving the only Kemeny ranking a > x > b). The modified Extended Con-
dorcet Rule constructs the weak majority graph with one single strongly con-
nected component consisting of a, b, and x and, hence, does not reduce any-
thing.

Example 2 shows that Proposition 2 does not extend to this case and it is
unclear whether the upper bound for the size of the partial kernel preserving all
Kemeny rankings transfers to this modified rule. A deeper analysis of kernels
preserving all Kemeny rankings, so to say enumerative kernels, is a topic of
independent interest [32,37].

2.5 Tightness of the kernel bound and practical consequences

Tightness of the kernel bound. As main theoretical contribution of this sec-
tion, we showed that Kemeny Rank Aggregation admits a partial problem
kernel where the number of candidates is linear in the average KT-distance
even if we require that the partial kernel preserves all Kemeny rankings for
a given election. The upper bound of 16/3 · da for the number of candidates
in the reduced instance, where da denotes the average KT-distance, already
holds when applying the “weaker” 3/4-Majority Rule. As the following example
shows, this bound is tight for the 3/4-Majority Rule.

Example 3. Consider an election with the candidates a and b such that
d3/4|V |e − 1 votes have “a > b” and the remaining votes have “b > a”. The
3/4-Majority Rule does not reduce this instance. The average KT-distance of
this election is asymptotically

lim
|V |→∞

3/4|V | · 1/4|V |/(|V | · (|V | − 1)/2) = 6/16.

The number of candidates in this election is two. This meets the upper bound
for the partial kernel of m = 16/3 · da = 16/3 · 6/16 = 2.

Proposition 2 shows that the Extended Condorcet Rule may yield a better
upper bound for the size of the partial problem kernel since it may reduce
instances that cannot be reduced by the 3/4-Majority Rule. The following
example shows that this bound cannot be smaller than 2da.

Example 4. Consider an election with the candidates a, b, c, and d and the
following votes:
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x votes: a > b > c > d,
x votes: c > d > a > b,
1 vote: b > c > d > a.

We consider the contribution of each candidate pair to the average KT-distance.
The pair {a, b} contributes with 2x, the pair {c, d} with zero, and every other
pair with x(x + 1). Hence, for an arbitrary large number x the average KT-
distance of this election is asymptotically

lim
x→∞

(2x+ 4x(x+ 1))/((2x+ 1) · 2x/2) = lim
x→∞

4

2x+ 1
+ 2 = 2.

Simjour’s recent PhD thesis [37] shows that slightly modifying the Ex-
tended Condorcet Rule yields an upper bound arbitrarily close to 2da.

Practical consequences. From the practical point of view our kernelization re-
sults show that by applying a relatively simple data reduction rule one ob-
tains reduced instances where the number of candidates is small if the average
Kendall Tau distance is small. This gives a theoretical explanation why this
kind of preprocessing is very effective for elections where the votes do not
“differ too much on average”.

If one is only interested in finding one Kemeny ranking instead of all Ke-
meny rankings, the Extended Condorcet Rule subsumes a lot of data reduction
rules, including

– a rule that detects and removes Condorcet winners (resp. Condorcet losers),
– the 3/4-Majority Rule, and
– an extension of the 3/4-Majority Rule to non-dirty candidate sets as dis-

cussed above.

It seems reasonable to assume that any preprocessing for Kemeny Rank Ag-
gregation should at least handle Condorcet winners and Condorcet losers.
Since the worst-case time complexity of O(|V | · |C|2) for finding Condorcet
winners is the same as for applying the Extended Condorcet Rule, we suggest
to solely implement the Extended Condorcet Rule for the scenario of finding
one Kemeny ranking.

Since our practical focus is computing one optimal Kemeny ranking, in the
next section, we analyze the effectiveness and the efficiency of the Extended
Condorcet Rule in practice.

3 Experimental work

In this section, we first provide a detailed overview of the data sets, imple-
mentation works, and test series that are used in our experiments. Then, we
summarize for each data set interesting specific results. Finally, we discuss the
suitability of our approach to exactly compute a Kemeny ranking with respect
to the specific data sets. Further tables with our experimental results can be
found in as supplementary material in
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kemeny-supplementary.pdf.

All experiments were carried out on a standard-PC with 3.4 GHz and 4 GB
RAM (CPU: Intel(R) Core(TM) i3-2130) running under Debian 6.0 (64 bit)
Linux. Source codes and test data are freely available under the GPL Version 3
license at http://www.akt.tu-berlin.de/menue/software/.

3.1 Data sets

Our test data consist of four sets of real-world data and two sets of synthetic
data. We used standard applications in sport competitions and web search to
obtain real-world rankings and two statistical model for random permutations
to generate synthetic rankings.

3.1.1 Winter sports

Given rankings in sports for several seasons, one may ask for an overall rank-
ing. This can be easily interpreted as ranking with individuals or teams as
candidates and the seasonal rankings as votes. We generated one such elec-
tion for ski jumping and one election for ski cross. To this end, we considered
the world cup rankings from the seasons 2005/2006 to 2008/2009,2 ignoring
candidates not appearing in all four rankings. We ended up with an election
consisting of four complete votes ranking 33 candidates for ski jumping and
with an election consisting of four complete votes ranking 69 candidates for
ski cross (see Table 1 in kemeny-supplementary.pdf).

3.1.2 Formula 1

Similarly to winter sports, determining the winner of a Formula 1 season can
be interpreted as an election where the candidates are the drivers and the
votes are the single races. We considered the seasons from 1970 till 2008.
Since our current algorithms and their implementation can neither handle
ties nor partial rankings, we only considered candidates that have competed
in all races. Candidates that dropped out of a race are ordered according to
the order determined by how long the drivers participated in the race. The
generated instances have around 16 votes and up to 28 candidates (see Table 5
in kemeny-supplementary.pdf).

3.1.3 Web search

A prominent application of Kemeny Rank Aggregation is to aggregate
search result rankings obtained from different web search engines. We queried
the same 37 search terms as Dwork et al. [16], Schalekamp and van Zuylen [35],
and Ali and Meilă [2] to generate rankings. We used the search engines Google,

2 Obtained from the German server http://www.sportschau.de/sp/wintersport/.

http://www.akt.tu-berlin.de/menue/software/
http://www.sportschau.de/sp/wintersport/


Data Reduction for Exact Kemeny Rank Aggregation 19

Lycos, MSN Live Search, and Yahoo to generate rankings of 1000 websites. We
considered two search results as identical if their URL is identical up to some
canonical form (cutting after the top-level domain). Results not appearing
in all rankings are ignored. Ignoring the term “zen budism” with only 18
candidates, this results in 36 instances having between 55 and 163 candidates
(see Table 9 in kemeny-supplementary.pdf).

3.1.4 Web impact

We generated rankings that measure the “impact in the web” of different
search terms. For a search engine, a list of search terms is ranked according
to the number of the hits of each single term. We used Ask, Google, MSN
Live Search, and Yahoo to generate rankings for all capitals (240 candidates),
all nations (242 candidates—we obtained more nations than capitals because
some capital names appeared twice), and the 103 richest people of the world
(see Table 13 in kemeny-supplementary.pdf).3

3.1.5 Mallows model

Our first source of synthetic instances are samples from the Mallows model [27].
This is an exponential model over rankings (resp. permutations in the original
setting). The Mallows model consists of a central ranking r0 of m elements
and a dispersion parameter θ ∈ R+ which quantifies the concentration of the
rankings around the peak r0 with respect to some distance measure (Kendall’s
tau distance in our case). The probability of a ranking r is

Pr0,θ(r) =
e−θ·d(r,r0)

Z
and Z =

∑
r∈Sm

e−θ·d(r,r0),

where d is Kendall’s tau distance and Sm denotes the symmetric group of
order m, that is, the set of all rankings of m elements. Note that the nor-
malization constant Z is actually independent of r0 and that Kemeny Rank
Aggregation is a log-likelihood estimator for r0 [28]. We remark that the
expected KT-distance between a ranking generated by the Mallows model and
its central ranking is linearly upper bounded by the number of candidates [19].
Since the KT-distance is a metric, this upper bound transfers to the average
KT-distance.

We used the following parameters to create our test instances:

– number of votes n: 4, 5, 10, 20;
– number of candidates m: 10, 20, . . . , 100, 125, 150, 175, 200;
– dispersion parameter θ: 0.005, 0.01, 0.05, 0.1, 0.2, . . . , 0.9, 0.95, 0.99, 0.995.

For each parameter combination, we created ten instances.

3 http://en.wikipedia.org/wiki/List_of_national_capitals, http://en.wikipedia.

org/w/index.php?title=Forbes_list_of_billionaires_%282008%29&oldid=335542552

http://en.wikipedia.org/wiki/List_of_national_capitals
http://en.wikipedia.org/w/index.php?title=Forbes_list_of_billionaires_%282008%29&oldid=335542552
http://en.wikipedia.org/w/index.php?title=Forbes_list_of_billionaires_%282008%29&oldid=335542552
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3.1.6 Plackett–Luce model

Our second source of synthetic instances are samples from the Plackett-Luce
model [25,33]. The model parameter is a set of weights S = {s1, . . . , sm} ∈ Rm+ .
The probability of a ranking r of m elements is

PS(r) =

m∏
i=1

sr−1(i)

Zi
and Zi =

m∑
i≤j

sr−1(j),

where r−1(j) denotes the jth elements of ranking r. In a sense, si denotes
the “importance” of element i. The Plackett-Luce model has not an as nice
interpretation as the Mallows model, but it is easy to see that the mode of
this distribution ranks the candidates decreasingly with respect to their im-
portance. The votes should be less divergent (and thus easier to solve) when
the weights decrease faster.

We used the following parameters to create our test instances:

– number of votes n: 4, 5, 10, 20;
– number of candidates m: 10, 20, . . . , 100, 125, 150, 175, 200;
– importance weights S: poly1={m,m−1, . . . , 1}, poly2={m2, (m−1)2, . . . , 1},

poly3={m3, (m− 1)3, . . . , 1}, exp2={2m, 2m−1, . . . , 2}.

For each parameter combination, we created ten instances.

3.2 Implementation and Test Series

Our algorithms are implemented in C++ using several libraries of the boost
package.4 Our implementation consists of about 4000 lines of code.

Data reduction. For the sake of completeness, we implemented all data re-
duction rules that are discussed in this paper including the 3/4-Majority Rule
extended to non-dirty candidate sets, the modified Extended Condorcet Rule
(restricted on the weak majority graph) and a rule that removes Condorcet
winners and Condorcet losers. Preliminary tests showed that it is most effi-
cient to only run the Extended Condorcet Rule—confirming our theoretical
findings. Thus, we restrict our evaluation to analyzing the efficiency and the
effectiveness of the Extended Condorcet Rule compared to running no data
reduction.

Implementation of the exact algorithms. To solve (hopefully small) parts of
the instances remaining after the application of the data reduction, we im-
plemented three exact algorithms. First, an extended version of the search
tree algorithm showing fixed-parameter tractability with respect to the Ke-
meny score [6,11]. Second, a dynamic programming algorithm running in

4 http://www.boost.org/

http://www.boost.org/
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O(2mm + nm2) time for m candidates and n votes [6,34]. Third, the inte-
ger linear program (ILP) [13, Linear Program 3] which was the fastest exact
algorithm in previous experimental studies [13,35]. We used the freely available
ILP-solver GLPK5 in version 4.43 as well as the two commercial ILP-solvers
CPLEX6 in version 12 and Gurobi7 in version 4.6.1 to solve the ILP.

Test series. Generally speaking, the algorithms supported by high-end ILP-
solvers turned out to be the fastest. Although the dynamic programming ap-
proach is provably fast for small instances up to 23 candidates and the search
tree algorithms are able to beat the dynamic programming algorithm in sev-
eral instances, we recommend to use the commercial ILP-solvers: Dynamic
programming and search tree algorithms are only faster than the ILP-solvers
in some small instances which could be solved by all considered approaches
in less than one second. The commercial solvers are significantly faster than
GLPK for all considered instances. Since the corresponding results leave no
doubt, we omit a detailed evaluation and we restrict our analysis in the follow-
ing to the ILP-solver approach with the two commercial ILP-solvers CPLEX
and Gurobi. However, we will see that the Extended Condorcet Rule (see Sec-
tion 2) significantly speeds up all approaches, thus confirming our theoretical
findings.

In the next subsections, we discuss the results of our experiments. To this
end, we computationally analyzed several properties of the input instances.
As already discussed in Section 2, the data reduction is able to split input
instances into smaller subinstances which can be solved independently. Hence,
the effectiveness of the data reduction reflects in the structure of these subin-
stances. To quantify this, after application of the data reduction we determined
the profile of the reduced instances. Basically, a profile is a string (consisting
of numbers separated by “>”) that expresses the sizes of the subinstances
as well as the way of combining the solutions of the subinstances to get the
overall solution. The profiles are be to read as follows. Every “1” stands for a
trivial subinstance with one candidate, that is, the position of the candidate
in the overall Kemeny ranking was determined by the data reduction. Higher
numbers stand for groups of candidates whose “internal” order could not be
determined by the data reduction, that is, non-trivial subinstances that can
be solved independently. Sequences of i number 1s are abbreviated by 1i. The
ordering of the numbers corresponds to the ordering in which one concatenates
the Kemeny rankings of the subinstances to get the overall Kemeny ranking.

For example, the profile “12>3>1>2” expresses that we know the best and
the second best candidate, we know the set of candidates that must assume
positions 3-5 without knowledge of their relative orders, we know the candidate
in position 6, and we know the two candidates that must assume positions 7
and 8 without knowledge of their relative order. Thus, in this toy example two
non-trivial subinstances remain, one with three and one with two candidates.

5 http://www.gnu.org/software/glpk/
6 http://www.ibm.com/software/integration/optimization/cplex-optimizer/
7 http://www.gurobi.com/

http://www.gnu.org/software/glpk/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.gurobi.com/
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Fig. 1 Speedup (left) and running times (right) of the two winter sports instances (arbi-
trarily ordered).

We performed the following test series on all instances in our data sets:

Properties. We computed basic properties of our instances: the number of
candidates and votes, the percentage of conflict pairs, the percentage of
candidate pairs ordered according to the ≥3/4-majority, simple lower and
upper bounds of the Kemeny score, the maximum position range of a can-
didate, the average KT-distance, and a maximum likelihood estimation for
the dispersion parameter θ of the Mallows model.

Reduction. We computed the profiles (as discussed above) of the reduced in-
stances and other reduction quality indicators such as the number of subin-
stances after preprocessing, the maximum number of candidates among the
subinstances, the average number of candidates among the subinstances,
and the percentage of conflict pairs whose ordering in the consensus could
be determined by the data reduction,.

Speedup. We computed a Kemeny consensus for each instance, once without
using data reduction and once with data reduction as preprocessing. We
compared both running times, computed the speedup gained by applying
the data reduction, and state the Kemeny scores of the instances.

3.3 Experimental Results

In this section, we summarize results from our test series applied to the six
ranking data sets.

Winter sports. Without data reduction, the ski cross instance, consisting of
69 candidates, was solved by the ILP-solver Gurobi in about 3.9 seconds. In
contrast, the instance was solved in 0.11 seconds when using the Extended
Condorcet Rule from Section 2 as preprocessing and then applying Gurobi
for the unresolved subinstances. This speedup is possible because the data
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Fig. 2 Speedup (left) and running times (right) of the Formula 1 instances (seasonal
ordering).

reduction solves the main part of the instance in milliseconds and leaves two
relatively small subinstances containing 12 and 15 candidates. Clearly, these
subinstances can be quickly solved by all ILP-solvers. Furthermore, the ski
jumping instance, consisting of 33 candidates, could be fully solved in mil-
liseconds by only applying the data reduction. The speedup through applying
data reduction is at least 8 with respect to both instances and both ILP-solvers.
Details concerning the experimental results of this data set can be found in
Tables 1-4 in kemeny-supplementary.pdf. Speedup and running times are
illustrated in Figure 1.

Formula 1. The data reduction was successful for most Formula 1 instances.
Except for one instance, namely the instance corresponding to the season 1983,
the data reduction ended up with subinstances with at most 13 candidates
each. Notably, also for 1983, for more than 20% of the candidates their exact
positions could be already determined by the data reduction. More details
about the structure of the reduced instances can be found in the profiles table
(Table 7 in kemeny-supplementary.pdf). As we can learn from Figure 2 and
from Table 8 in kemeny-supplementary.pdf, applying the data reduction
gives a significant speedup for the overall running time in most cases. However,
all Formula 1 instances are still small enough to solve them without data
reduction in less than one second.

Currently, the winner determination in the Formula 1 is based on a “scoring
rule”, that is, in a single race every candidate gets some points depending on
the outcome, and the candidate with highest total score wins. To compare
with the official winners, we computed Kemeny winners for the seasons from
1970 till 2008.

The Kemeny winner in most of the considered seasons is the same as the
candidate selected by the scoring rule used by the FIA. In 2008, however, Lewis
Hamilton was elected as world champion (beating Felipe Massa by only one
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Kemeny consensus: Massa > Hamilton > Räikkonen > Kubica > Heidfeld > Kovalainen >
Alonso > Trulli > Webber > Glock > Rosberg > Piquet > Vettel > Coulthard > Barrichello
> Nakajima > Button > Bourdais > Fisichella > Sutil

Formula 1 ranking: Hamilton > Massa > Räikkonen > Kubica > Alonso > Heidfeld >
Kovalainen > Vettel > Trulli > Glock > Webber > Piquet > Rosberg > Barrichello >
Nakajima > Coulthard > Bourdais > Button > Fisichella > Sutil

Fig. 3 Comparing the computed Kemeny consensus ranking with the official Formula 1
ranking of season 2008.
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Fig. 4 Speedup (left) and running times (right) of the web search instances (alphabetical
ordering according to the search terms).

point) whereas Massa was the “Condorcet driver” and thus the first candidate
in every Kemeny ranking (see Figure 3). Since in contrast to Kemeny’s voting
system there is no scoring-based rule fulfilling the Condorcet property [40],
such a difference in outcomes is no real surprise.

Web search. Applying the data reduction as preprocessing helps to signifi-
cantly speed up the running times of solving the Kemeny Rank Aggrega-
tion problem by the ILP-solvers (illustrated in Figure 4). All details concern-
ing the experimental results for this data set can be found in Tables 9-12 in
kemeny-supplementary.pdf.

For all instances with more than 100 candidates, the results of the data
reduction are displayed in Table 3: the Extended Condorcet Rule is not only
able to reduce candidates at the top and the last positions but also partition
some instances into several smaller subinstances. Out of the 36 instances, 22
were solved directly by the reduction and one of the other algorithms in less
than five minutes. Herein, the data reduction always contributed with less than
0.5 seconds to the running time. For all other instances we still could compute
the “top” and the “flop” candidates of an optimal ranking. For example, for the
search term “telecommuting” there remains a subinstance with 109 candidates
but we know the best nine candidates (and their order). The effectiveness in
terms of candidates positions that have been fixed by the reduction rules is
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Table 3 Web data instances with more than 100 candidates. The first column denotes
the search term, the second the number of candidates, the third the running time of data
reduction in seconds, and the last column the profiles remaining after data reduction.

search term # cand. time profile of reduced instance

affirmative action 127 0.18 127 > 41 > 159

alcoholism 115 0.14 1115

architecture 122 0.16 136 > 12 > 130 > 17 > 127

blues 112 0.13 174 > 9 > 129

cheese 142 0.23 194 > 6 > 142

classical guitar 115 0.13 16 > 7 > 150 > 35 > 117

Death+Valley 110 0.13 115 > 7 > 130 > 8 > 150

field hockey 102 0.09 137 > 26 > 120 > 4 > 115

gardening 106 0.10 154 > 20 > 1 > 1 > 9 > 18 > 4 > 19

HIV 115 0.14 162 > 5 > 17 > 20 > 121

lyme disease 153 0.25 125 > 97 > 131

mutual funds 128 0.18 19 > 45 > 19 > 5 > 1 > 49 > 110

rock climbing 102 0.10 1102

Shakespeare 163 0.33 1100 > 10 > 125 > 6 > 122

telecommuting 131 0.18 19 > 109 > 113

illustrated in Figure 5. For example, the data reduction was able to fix more
than 50 percent of the candidate positions for more than 70 percent of the
instances.

Web impact. As for the capitals, in less than two seconds our algorithms (the
data reduction and the ILP-solvers) computed a Kemeny ranking. The data
reduction performed very well; the remaining subinstances correspond to the
profile

17>5>110>9>114>34>15>6>13>6>17>9>136>11>19>43>126.

Thus, only two harder subinstances of sizes 34 and 43 remained for the ILP-
solvers. The final Kemeny ranking starts as follows: London > Paris > Madrid
> Singapore > Berlin > . . .. For aggregating the nation rankings, our algo-
rithms were less successful. However, we could still compute the top 6 and
the flop 14 candidates with the data reduction. Surprisingly, the best rep-
resented nation in the web seems to be Indonesia, followed by France, the
United States, Canada, and Australia. The instance consisting of the 103 rich-
est persons could be solved exactly in milliseconds by only applying the data
reduction. Details concerning the experimental results of this data set can be
found in Tables 13-16 in kemeny-supplementary.pdf. Speedup and running
times are illustrated in Figure 6.

Mallows model. Confirming our findings for the real-world data sets, the data
reduction was also successful on this synthetic data set. For example, for in-
stances with 100 candidates and 10 rankings, the data reduction was able to
reduce the instances into at least 26 subinstances with maximum 36 candidates
on average when the dispersion parameter θ is 0.1 or higher.
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Fig. 5 Effectiveness and speedup for web search instances with more than 50 candidates.
Left: We use two different measures of effectiveness: the percentage of candidate positions
that could be determined by the data reduction (crosses) and the percentage of conflict pairs
that could be resolved by the data reduction (boxes). The position on the x-axis gives the
number of candidates and the position on the y-axis gives the value of the corresponding
measure.
Right: A cross (box) at position (x, y) means that at least x percent of the candidate
positions (conflict pairs) could be determined by the data reduction for at least y percent
of the instances. For example, this means that for 80% of the instances with more than
50 candidates more than 65% of the conflict pairs could be resolved by the data reduction.
Furthermore, 100% of the candidate positions (that is, the instance was solved) could be
determined for more than 25% of the web search instances with more than 50 candidates.
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Fig. 6 Speedup (left) and running times (right) of the web impact instances (arbitrary
ordering).
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Table 4 Typical structure of the reduced subinstances computed from the Mallows model
instances.

θ n m time for data reduction profile

0.05 4 50 0.02 s 1>7>18>29>15

0.1 20 50 0.02 s 1>3>12>5>11>13>3>14 8>13>7
0.1 10 100 0.50 s 13>34>15>16>4>12>3>14 21>1>6>1
0.2 4 200 1.15 s 140>12>122>4>163>5>154
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Fig. 7 Speedup (left) and running times (right) of the Mallows model instances. Upper
diagrams: Instances with 50 candidates and 4 votes. Lower diagrams: Instances with 50 can-
didates and 20 votes.

Interestingly, the data reduction was not only able to compute some top
and flop candidates, but usually, also the exact positions of candidates in the
middle of the final ranking were computed. Examples can be found in Table 4.

As expected, our test series also showed a correlation between the disper-
sion parameter θ and the running time for solving Kemeny Rank Aggre-
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Fig. 8 Speedup (left) and running times (right) of the Mallows model instances. Upper
diagrams: Instances with 100 candidates and 10 votes. Lower diagrams: Instances with
200 candidates and 4 votes.

gation. When the number of candidates and rankings is fixed, the running
time is highest when θ is close to zero (that is, all possible rankings are almost
equally likely) and the running time is lowest when θ is close to one (that
is, every ranking differing from the central ranking is very unlikely). Overall,
the data reduction was quite successful for most test instances: For 100 can-
didates and 10 rankings, the data reduction enabled a speedup for θ = 0.01
and greater. The speedup factor for CPLEX is more than 10 for θ ≥ 0.2. Sim-
ilar effects can be observed for 4, 5, and 20 rankings. The speedup factor for
Gurobi is slightly higher for most instances.

The observed effects are stronger with increasing θ as well as with decreas-
ing number of candidates and rankings, respectively. Furthermore, the effects
are weaker with decreasing θ as well as with increasing number of candidates
and rankings, respectively. We illustrate speedup and running times in Figure 7
and Figure 8.
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Table 5 Typical structure of the reduced subinstances computed from Plackett-Luce model
instances.

weights n m time for data reduction profile

poly 1 20 50 0.03 s 22>3>13>122

poly 2 4 50 0.01 s 122>8>13>8>19

poly 3 10 100 0.47 s 13>97
poly 3 4 200 9.24 s 15>193>12

However, even for 200 candidates, 20 rankings and θ ≥ 0.1, the data re-
duction caused average speedup factors between 14 and 20 for CPLEX and
between 22 and 59 for Gurobi. A detailed collection of our results for these
instances can be found in the supplementary material.

Plackett–Luce model. In contrast to the Mallows model, the data reduction
was less successful for instances sampled from the Plackett-Luce model. Es-
pecially for instances with 80 and more candidates, the data reduction could
often only compute some top and flop instances. The data reduction could not
break up the Plackett–Luce model instances into many subinstances like the
Mallows model instances. Examples can be found in Table 5.

However, computing some top and flop candidates also leads to some
speedup. For example, consider the instances with 70 candidates, 5 votes, and
exponential decreasing weight vectors. The average speedup through comput-
ing some top and flop candidates was 1.6.

The speedups tend to be stronger with increasing polynomial degree for
polynomially decreasing weight vectors as well as with decreasing number of
candidates and rankings, respectively. A detailed collection of our results for
these instances can be found in the supplementary material.

4 Conclusion

Our experiments showed that the Extended Condorcet Rule allows for the com-
putation of optimal Kemeny rankings for real-world instances of non-trivial
sizes within seconds. We could find exact solutions for large real-world in-
stances with more than 100 candidates by means of data reduction within
milliseconds while the corresponding instances could not be directly solved
within 10 seconds by sole use of the ILP (the fastest exact algorithm [13]). A
key feature of the Extended Condorcet Rule is to break instances into smaller,
independent instances. In more general terms, algorithm engineering in com-
bination with data reduction and kernelization for NP-hard voting problems
seems to be an area with several promising challenges [5].

On the theoretical side, we improved the previous partial problem kernel [7]
with respect to the parameter average KT-distance from quadratic to linear
size. It is open whether there is a linear partial kernel with respect to the ≥s-
majority for any s < 3/4, thus potentially giving data reduction rules that are
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not subsumed by the Extended Condorcet Rule. A natural step in answering
this question seems to investigate whether for two non-dirty candidates a, b
there must be a Kemeny ranking with a > b if a ≥s b.

An important extension of Kemeny Rank Aggregation is to consider
“constraint rankings”, that is, the problem input may additionally contain
a prespecified order of some candidate pairs in the consensus list [41]. Here,
the considered data reduction cannot be applied anymore. Extending the data
reduction framework to rankings with ties or partial rankings would be of high
interest as well.

Kemeny Rank Aggregation with Partial Rankings seems to be
the most interesting extension. Unfortunately, considering majorities (as the
3/4-Majority Rule and the Extended Condorcet Rule do) seems not to be
promising for practically important instances where the majority of the pair-
wise relations of the candidates is left unspecified. Furthermore, the problem
becomes more difficult: It is NP-hard already for two partial rankings [9] and
even if the maximum KT-distance between two input rankings is zero [4], de-
stroying any hope for fixed-parameter tractability or (partial) problem kernels
for the parameter “maximum KT-distance” or “average KT-distance”. Hence,
a different approach and different parameters seem necessary to obtain any
provable guarantees for the effect of polynomial-time preprocessing.

In contrast to Kemeny Rank Aggregation with Partial Rankings,
for Kemeny Rank Aggregation with Ties a quadratic partial kernel with
respect to the parameter “average KT-distance” is known [7]. It looks promis-
ing to investigate whether this can also be improved to a linear partial kernel.
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