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Abstract. The RossIiBLE WINNER problem asks whether some distinguished
candidate may become the winner of an election when the gieemplete votes
(partial orders) are extended into complete ones (lineders) in a favorable
way. Under the:-approval protocol, for every voter, the béstandidates of his
or her preference order get one point. A candidate with mamintotal number
of points wins. The BsSIBLEWINNER problem fork-approval is NP-complete
even if there are only two votes (aids part of the input). In addition, it is NP-
complete for every fixed € {2,...,m — 2} with m denoting the number of
candidates if the number of votes is unbounded. We investtha parameterized
complexity with respect to the combined paramétand “number of incomplete
votes” t, and with respect to the combined paraméter= m — k andt. For
both cases, we use kernelization to show fixed-parameteahitity. However,
we show that whereas there is a polynomial-size problemekemith respect
to (¢, k"), it is very unlikely that there is a polynomial-size kernet {¢, k). We
provide additional fixed-parameter algorithms for somegdeases.

1 Introduction

\oting situations arise in political elections, multi-ageystems, human resource de-
partments, etc. This includes scenarios in which one igégsted in finding a small
group of winners (or losers), such as awarding a small numbgrants, picking out a
limited number of students for a graduate school, or votorgaf committee with few
members. Such situations are naturally reflected by a vtaofaapproval voting, the
k-approvalvoting system, where every voter gives one point to eachef thlterna-
tives/candidates which he or she likes best and the camrditialzing the most points in
total win. On the one sidé;-approval extendglurality where a voter gives one point to
one candidate, that /s = 1, and, on the other side, it extendstowhere a voter gives
one point to all but one candidate, thatk$~= 1 for ¥’ := m — k andm candidates.

At a certain point in the decision making process one migte the situation that
the voters have made up their minds “partially”. For examfie the decision about
the Nobel prize for peace in 2009, a committee member mighe blkeady known that
he (or she) prefers Obama and Bono to Berlusconi, but migre hat decided on the
order of Obama and Bono yet. This immediately leads to thstgprewhether, given a
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set of “partial preferences”, a certain candidate maywtill. The formalization of this
guestion leads to thedssiBLE WINNER problem.

The RossiBLE WINNER problem has been introduced by Konczak and Lang [15]
and since then its computational complexity has been dudieseveral voting sys-
tems[2,3,5,17,18]. Even for the comparatively simiplapproval voting, it turned out
that FossiBLE WINNER is NP-complete except for the special cases of plurality and
veto [3], that is, for anyk greater than one and smaller than the number of candidates
minus one. A multivariate complexity study showed that iNB-complete if there are
only two voters wherk is part of the input but fixed-parameter tractable with respe
to the “number of candidates” [5]. In contrast, for the apatosoting variant where
each voter can assign a pointup tok candidates, it can easily be seen thasBIBLE
WINNER can be solved in polynomial-time. A prominent special cak®®@sSIBLE
WINNER is the MANIPULATION problem, where the input consists of a set of linear
orders and a set of completely unspecified votes.iapproval, it is easy to see that
MANIPULATION is solvable in polynomial time for unweighted votes but farighted
votes it is NP-complete for all fixed # 1 [14].

The above described hardness results motivate a multieaielysis with respect
to the combined parameter “number of voteasid “number of candidates to which a
voter gives one/zero points” farapproval. Can we efficiently solved®sIBLE WIN-
NER in the case that these parameters are both small? Diretdliedequestions are
whether we can ignore or delete candidates which are notamtidor the decision
process and how to identify such candidates. In this conparameterized algorith-
mics [10, 16] provides the concept of kernelization by meafrzolynomial-time data
reduction rules that “preprocess” an instance such thaitiesof the “reduced” instance
only depends on the parameters [6, 13].

In this work, we use kernelization to show the fixed-paramesetability of Fos-
SIBLE WINNER for k-approval in two “symmetric” scenarios. First, we consitiez
combined parameter “number of incomplete votesind “number of candidates to
which every voter gives zero points” := m — k for m candidates (directly extending
the veto voting system with’ = 1). Making use of a simple observation we show that
PossiBLE WINNER admits a polynomial-size problem kernel with respectitd:’)
and provide two algorithms: one with exponential runnimgetifactor2®(*") in case of
constant: and one with exponential running time facf**) in case of constari’.
Second, we consider the combined paramegerd i, wherek denotes the “number of
candidates to which a voter gives a point”. We observe tha bee cannot argue sym-
metrically to the first scenario. Using other arguments, ive g superexponential-size
problem kernel showing the fixed-parameter tractabilityPoflSSIBLE WINNER with
respect tq(t, k). For the special case of 2-approval, we give an improvedruotjal-
size kernel withO(¢?) candidates. Using a methodology due to Bodlaender et al. [7]
our main technical result shows thab ®sIBLE WINNER is very unlikely to admit a
polynomial-size problem kernel with respect(tok).

Preliminaries. A linear voteis a transitive, antisymmetric, and total relation on a(set
of candidates angartial vote a transitive and antisymmetric relation on a 6ebf
candidates. We use to denote the relation between candidates in a linear vate-dan
denote the relation between candidates in a partial voteoft¥a specify a subsdd C



C of candidates instead of single candidates in a partial fote candidate € C'\ D
andD = {di,...,ds}, the meaning ofé¢ = D" is “{e > dy,e = da,...,e = ds}".
A linear votev! extendsa partial votev? if vP C o!, that is, for everyi,j < m,
from¢; > ¢; ino? it follows thate; > -+ > ¢; in vl. An extensionE of a set of
partial votesV’? = {v},... v2} is a mapping fron¥/? to a set of linear vote¥’ :=
{vt, ..., v} such that! extends)? for everyi. Given a set of partial votel? on C,
a candidate: € C' is apossible winneif there exists avinning extensiort, that is,
¢ wins in E with respect to a considered voting system. For any votistesy 2, the
underlying decision problem is defined as follows.

PossIBLEWINNER

Given: A set of candidate€’, a set of partial vote§” on C', and a distinguished candi-
datec € C.

Question: Is there an extensioA of V' such that wins with respect ta? in £7?

We focus on the voting systektapprovalwhere, given a set” of linear votes on a
setC of candidates, the firgt candidates within a vote get one point and the remaining
candidates get zero points. For every candidate C, one sums up the points over
all votes fromV’ to obtain itsscores(c¢’) and the candidates with maximum score win.
We call the firstk positions of a vot@ne-positionand the remaining positioreero-
positions All results are given for thenique winnercase, that is, looking for a single
candidate with maximum score, but can be adapted easilyltbftwothe “co-winner”
case where several candidates may get the maximum scord ahtham win.

A parameterized problerh is a subset of* x 3* for some finite alphabe¥ [10,
16]. An instance of a parameterized problem consistgtop) wherep is called the
parameter. We mainly consider “combined” parameters whightuples of positive
integers. A parameterized problemfised-parameter tractablé it can be solved in
time f(|p|)-poly(|x|) for a computable functiofi. A kernelization algorithm consists of
a set of(data) reduction rulesvorking as follows [6, 13, 16]. Given an instangce p) €
X* x X*, they output in time polynomial ifw| + |p| an instancéa’,p’) € X* x ¥*
such that the following two conditions hold. Firéi;, p) is a yes-instance if and only if
(«',p’) is a yes-instance (termadundnegs Second|z’| + [p’| < g(|p|) whereg is a
computable function. I is a polynomial function, then we say that the parameterized
problem admits @olynomial kernel

Some of the reduction rules given in this work will not dilgatecrease the instance
size by removing candidates or votes but instead only deerége number of possible
extensions of a vote, for example, by “fixing” candidatesfiX@a candidate at a certain
position means to specify its relation to all other candidaClearly, a candidate may
not be fixed at every position in a specific partial vote. Tcetékis into account, an
important concept is the notation sifiiftinga candidate. More precisely, we say a can-
didatec’ can shift a candidaté’ to the left (right) in a partial vote if ¢/ = ¢’ (¢’ = )
in v, that is, setting”’ to a one-position (zero-position) implies settid§to a one-
position (zero-position) as well. For every candidéte C and a partial vote € V,
let L(v,) == {" € C | " > inv}andR(v,d) := {¢" € C | ¢ = " inv}.
Then, fixing a candidate’ € C as good as possiblmeans to add.(v, ) > ¢ >
C\ (L(v, ) U{c'}) towv. Analogously, fixing a candidates bad as possible realized



by addingC \ (R(v,c’) U{c'}) = ¢ > R(v,d) tov. If a candidate’ € C is fixed in
all partial votes, this implies that also its scafe’) is fixed.

The votes of an input instance oOBSIBLE WINNER can be partitioned into a
(possibly empty) set of linear votes, calléd, and a set of proper (non-linear) partial
votes, called’?. We state all our results for the parameter |V?|. All positive results
also hold for the parameter number of total votes= |V!| + |V?|. Due to the space
restrictions, several (parts of) proofs are deferred tdlavéusion of this work.

2 Fixed number of zero-positions

For (m —k’)-approval witht’ < m, k&’ denotes the number of zero-positions. We give a
polynomial kernel with respect t@, ') for PossIBLEWINNER wheret is the number
of partial votes. In addition, we provide two parameteriakggbrithms for special cases.

2.1 Problem kernel

Consider a BssIBLE WINNER instance with candidate sét, vote setl = V! U
VP, and distinguished candidate= C for (m — k’)-approval. We start with a simple
reduction rule that is a crucial first step for all kerneliaatresults in this work.

Rule 1 For every votey; € VP, if |L(v;, )| < m — k', fixc as good as possible .

The soundness and polynomial-time running time of Rule asy ¢o verify. The condi-
tion |L(v;, ¢)| < m — k' is crucial since otherwisemight shift a candidate’ to a one-
position whereas is assigned to a zero position and this could catise beatc. After
applying Rule 1, the score efis fixed at the maximum possible value since it makes
one point in all votes in which this is possible. Now, for gveandidate’ € C \ {c},

by counting the points that makes within the linear votég’, compute the number of
zero positions that’ must assume within the partial vot&8 such that it is beaten by

Let this number be(c¢') andZ, := {¢' € C'\ {c} | z(¢) > 0}. Since there are only
tk’ zero positions irl/?, one can observe the following.

Observation 1 In a yes-instancey . o (. 2(¢’) < tk" and|Z,| < tk'.

Observation 1 provides a simple upper bound for the numbeantiidates inz.. .

By formulating a data reduction rule that bounds the numlbeemaining candidates
and replacing the linear votd$' by a bounded number of “equivalent votes” we can
show the following theorem. The basic idea is that since aaneimg candidate from
C\ (Z; U{c}) can be set arbitrarily in every vote without beatingt is possible to
replace the set of all remaining candidateghy “representative candidates”.

Theorem 1. For (m — k’)-approval,PossiBLEWINNER with ¢ partial votes admits a
polynomial kernel with at mosk’? + tk’ + 1 candidates.



Initialization:
For everyD’ € D\ {(du, ..
SetT'(0, (di,...,dp)) = 1.
Update:
Foro0<i<t-—1,
foreveryD' = (di, ...,d;,) € D,
T(i+ 1, D") = 1ifthere are two candidates,, z,, that can take the zero-positionsuin; 1
andT'(i, D") = 1 with D" := {df,...,d;} and
dj =djforje{1,...,q} \{g,h}, dy <dy+1,andd; <dj, +1.

., dp)}, setT'(0,D") = 0.

Output:
‘yes” if T'(t,(0,...,0)) = 1, “no” otherwise

Fig. 1. Dynamic programming algorithm fdrm — 2)-approval.

2.2 Parameterized algorithms

We give algorithms running i2©®) . poly(n,m) time with p denoting either’ or
t where the other parameter is of constant value. Note thataheelization from the
previous subsection does not imply such running times.

Constant number of partial voteBor two partial votes, there can be at mdat can-
didates that must take a zero-position in a yes-instanee@sservation 1). Branching
into the two possibilities of taking the zero-position iretfirst or in the second vote
for every such candidate, results in a search tree of%fze= 4*'. For every “leaf” of
the search tree it is easy to check if there is a corresporeditension. Using similar
arguments, one arrives at the following.

Proposition 1 For a constant numbeirof partial votesPOSSIBLE WINNER for (m —
k')-approval can be solved i&f %" - poly(n, m) time.

Constant number of zero-positiorfr constant’ the existence of an algorithm with
running time 2°®) . poly(n, m) seems to be less obvious than for the case of constant
We start by giving a dynamic programming algorithm for — 2)-approval. Employing
an idea used in [4, Lemma 2], we show that it rungfinpoly(n, m) time and space.

As in the previous subsection, fixaccording to Rule 1 such that it makes the maxi-
mum possible score and I8t := {z1,..., z,} denote the set of candidates that take at
least one zero-position in a winning extension. égt. . ., d, denote the corresponding
number of zero-positions that must be assumed arld tet {(d},...,d;,) | 0 < d} <
d; for0 < j < p}. Then, the dynamic programming talifeis defined byI'(i, D’)
forl1 <i <tandD' = (dy,...,d,) € D.Herein,T(i,D') = 1 if the partial votes
from {v1,...,v;} can be extended such that candidat¢akes at least; — d’; zero-
positions forl < j < p; otherwisel'(i, D') = 0. Intuitively, d; stands for the number
of zero-positions which; must still take in the remaining votgs; .1, . .., v }. Clearly,
if T'(t,(0,...,0)) = 1 for an instance, then it is a yes-instance. The dynamic progr
ming algorithm is given in Figure 1. By further extendingatwork for any constant’
we can show the following.



Theorem 2. For (m — 2)-approval witht partial votes,POSSIBLE WINNER can be
solved ind! - poly(n, m) time andO(t - 4') space. For(m — k’)-approval witht partial
votes,POsSIBLE WINNER can be solved ig@®) . poly(n, m) time for constant’.

3 Fixed number of one-positions

We study ®ssiBLE WINNER for k-approval with respect to the combined parame-
ter k and numbet of partial votes. The problem can be considered as “fillitigbne-
positions such that no candidate beati the previous section, we exploited that the
number of candidates that must take a zero-position is@rbaunded by the com-
bined parametet and “number of zero-positions” in a yes-instance (Obs@wat).
Here, we cannot argue analogously: Our combined pararieter only bounds the
number of one-positions but there can be an unbounded nwhbandidates that may
take a one-position in different winning extensions of theipl votes. Hence, we argue
that if there are too many candidates that can take a onéigpgghen there must be
several choices that lead to a valid extension. We showtisasufficient to keep a set
of “representative candidates” that can take the requinedaositions if and only if this

is possible for the whole set of candidates. This resultspnodlem kernel of super-
exponential size showing fixed-parameter tractabilithwitspect td¢, k). We comple-
ment this result by showing that it is very unlikely that thés a kernel of polynomial
size. In addition, we give a polynomial kernel with#?) candidates foz-approval.

3.1 Problem kernels

We first describe a kernelization approach fayS3i1BLE WINNER for k-approval in
general and then show how to obtain a better bound on thelk@recfor 2-approval.

Problem kernel for k-approval. In order to describe more complicated reduction rules,
we assume that a considered instance is exhaustively rédvitie respect to some
simple rules. To this end, we fix the distinguished candidaie good as possible by
Rule 1 (using thatn — &’ = k). Afterwards, we apply a simple reduction rule to get rid
of “irrelevant” candidates and check whether an instanegtivial no-instance:

Rule 2 First, for every candidate’ € C'\ {c}, if making one point in the partial votes
causes’’ not to be beaten by, then fixc’ as bad as possible in every vote. Second,
compute the se® of candidates that can be deleted: For every candidate C \ {c}
with |L(v, )| > k for all v € VP, if the scores(¢’) is at leasts(c), then output “no
solution”, otherwise add’ to D. DeleteD and replacel/! by an equivalent set.

The soundness of Rule 2 is easy to see: Every candidate fixha lbiyst part cannot be
assigned to a one-position in any winning extension. Fos#tend part, every winning
extension of an unreduced instance can easily be transfiointeea winning extension
for the reduced one by deleting the candidates specified lyZRandvice versaA set
of equivalent linear votes can be found according to [3, Lendih.

! Herein, it might be necessary to add one new candidate. Haw#his will not affect the
following analysis and will be discussed in more detail ia fall version of this work.
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Fig. 2. Example for 3-approval: Partial vote (left-hand side) and corresponding digraph with
levels0, 1, and2. Arcs following by transitivity are omitted. Note that y, andc do not appear
in the digraph since they are irrelevant for

In the following, we assume that Rule 2 has been applied,ithatll remaining
candidates can make at least one pointin an extension witkeatingc. To state further
reduction rules, a partial voteis represented as a digraph with vertex §ét| ¢’ €
C\{c} and|L(v, )| < k}. All other candidates are considered as “irrelevant” fos th
vote since they cannot take a one-position. The verticesrganized intd: levels. For
0<j<k-1letL;j(v):={c | € C\{c}and|L(v,c')| = j} containing all
candidates that shift exactlycandidates to a one-position if they are assigned to the
best possible position. There is a directed arc fromo ¢ if and only if ¢/ € L(v, ).
Figure 2 displays an example for the representation of agbadte for 3-approval.

In general, the number of candidates per level is unbourtdedever, for some
cases it is easy to see that one can “delete” all but somesemaive candidates. The
following reduction rule provides such an example using féw that in any vote a
candidate from the first level can be set to an arbitrary arstipn without shifting any
other candidate.

Rule 3 Forv € VP with |Lo(v)| > tk, consider any subsét’ C Lo (v) with |L'| = tk.
AddL’' - C\ L' tow.

To see the soundness of Rule 3 consider a winning exterfsiéor a non-reduced
instance and a vote € V' with |Lo(v)| > tk. Since there arék one-positions in the
partial votes, there must be at ledstandidates fronl’ not having assumed a one-
position within the othet — 1 votes. Setting thesecandidates to the one-positionsin
leads to a winning extension of the reduced instance. Ther difection is obvious.

If Rule 3 applies to all partial votes, then in a reduced instaat most?k can-
didates are not fixed at zero-positionsliif and the remaining candidates can be
deleted by Rule 2. Hence, we consider the situation thaetisea partial voter with
|Lo(v)| < tk. Then, we cannot ignore the candidates from the other Iéglseplace
them by a bounded number of representatives. We first dismyvgso find a set of rep-
resentatives for 2-approval and then extend the underligizayto work for generat.

For 2-approval, for a vote with | Lo (v)| < 2t, it remains to bound the size &f (v).
This is achieved by the following reduction rule: Fix all Ritin-neighbors of every
candidate fromL,(v) at zero-positions. To see the soundness, we show, given-a win
ning extensior® for the non-reduced instance, how to obtain a winning exbens’
for v after the reduction (the other direction is obvious). Qlean E(v) the first po-
sition must be assigned to a candidatérom Ly(v) and¢’ can also be assigned to



the first position inE’ (v). If there is another candidate frofiy(v) that takes the sec-
ond position inE(v), one can do the same il (v). Otherwise, distinguish two cases.
First, ¢ has less thaft in-neighbors, then the reduction rule has not fixed any can-
didate that shifts’ to the first position and thus can be extended in the same way
as inE. Second¢’ has at leas?t in-neighbors. Since there are orfly one-positions
and2t¢ non-fixed in-neighbors, the second positiorvafan be assigned to a candidate
that does not take a one-position in any other voté& of

Altogether, for2-approval, one ends up with up t#? non-fixed candidates per
vote and hence witld (%) non-reduced candidates in total. For genéradxtend this
approach iteratively by bounding the number of candidaiesvery level:

Rule 4 Consider a partial voter € VP with |Lo(v)| < tk. Start withi = 1 and repeat
until i = k.

- For every candidate’ € L;(v), if there are more thamk candidates inZ;(v) which
have the same neighborhoodd@sn Lo(v) U Ly (v) U --- U L;_1(v), fix all buttk of
them as bad as possible.

-Seti :=i+ 1.

Using Rule 4 one can show the following.

Theorem 3. For k-approval, PossIBLE WINNER admits a problem kernel with size
bounded by a computable functionirand the number of partial votes

Improved problem kernel for 2-approval. As discussed above, the kernelization as
stated fork-approval in general leads to a polynomial kernel vitft*) candidates for
2-approval. To give a kernel witt(¢2) candidates, we use some properties of bipartite
graphs. For a bipartite graplt- U H, E') with vertex setG U H and edge sebl C
{{g9,h} | ¢ € Gandh € H}, amatchingdenotes a subsét/ C F such that for
alle,e’ € M,ene’ = 0. A vertex contained ire for ane € M is calledmatching
vertexand, for{g,h} € M, g andh arematching neighborsA maximum matching

a matching with maximum cardinality. Thepen neighborhoodf a vertexg € G is
denoted byV(g) := { | {g,h} € E} and, forG’ C G, N(G') := U e N(9)-

Lemma 1. For a bipartite graph(G U H, E') with maximum matching/, there is a
partition of G into G; W G2, such that the following holds. First, all neighbors@f
are part of M. Second, every vertex frof¥y, has a matching neighbor outsidé(G1 ).

Now, we employ Lemma 1 to design a reduction rule. Note thailai arguments are
used in several works, see [8, 16]. In the following, we asstimat Rule 1 and Rule 2
have been applied. We define a bipartite gréghu H, E) as follows. For a partial
profile with partial votes’? and candidate sef, let V' := {v' € V? | |Lo(v')| <
2t}. For everyv; € V', for1 < j < |Lo(v})|, add a vertexy] to G. Intuitively,
for every candidate that can take a first position/jrthere is a corresponding vertex
in G. If a candidate can take the first position in several votesn there are several
vertices corresponding to this candidate. The vertex/sebntains one vertex for every
candidate fron{UJ,, oy L1(v")) \ (U, ey Lo(v")). There is an edge betwegh € G
andh € H if setting the candidate correspondingitto the second position irf shifts
the candidate correspondinggfnto the first position. Now, we can state the following.



Rule 5 Compute a maximum matchidd in (G U H, E). Fix every candidate corre-
sponding to a non-matched vertexfihas bad as possible in every vote frém

Lemma 2. Rule 5 is sound and can be carried outi|E| - |G U H| + |V | - |C]) time.

Proof. A winning extension for an instance reduced with respectutef is also a
winning extension for an unreduced instance. Now, we shevother direction. Given

a winning extensiors for an unreduced instance, we construct a winning exterfsjon
for a reduced instance. Since Rule 5 does not fix any candiddtd can take the first
position in at least one vote, the first positiongincan be assumed by the same candi-
dates as irtr. It remains to fix the second positions without beatingor every vote;,

let g¢ denote the candidate that takes the first position; im £. For the correspond-
ing vertexgs one can distinguish two cases: Firgt, € G;. In this case, none of the
neighbors of{ have been fixed and, thus, the candidate which takes thedposition

in v; in £ can also take the second positiBp. Secondg; € G». In this case, set the
candidate corresponding to the matching neighbor fgpto the second position. Now,

it is not to hard to see thatwins in E,.: The only candidates that possibly make more
points in E,. than in £/ are the candidates corresponding to the matching neiglabors
vertices fromG,. Due to the matching property, every such candidate make®st
one point inV’. By definition,G only contains vertices that can make at least one point
and for all votes froni’? \ V' one can easily find a winning extension which does not
assign the “matching-candidates” to one-positions (sde Ru It follows thatc also
wins in the extensiot,.. The claimed running time follows since a maximum bipartite
matching can be found i@(|E| - |G U H|) time. O

Bounding the size of candidates in level O by Rule 3 and thedieing) candidates in
level 1 by Rule 5 one arrives at the following.

Theorem 4. For 2-approval witht partial votes,POssIBLEWINNER admits a polyno-
mial kernel with less thant? candidates.

3.2 Kernel lower bound

We use a method introduced by Bodlaender et al. [7] and Ferémal Santhanam [12]
to show that, fok-approval, ®ssIBLEWINNER cannot have a polynomial kernel with
respect tq¢, k). They provide a general scheme to show the non-existencelyrfigr
mial kernels under some reasonable assumptions fromadssimplexity theory.

Definition 1. [7] A composition algorithm for a parameterized probldmC X* x N
is an algorithm that receives as input a sequefg, p), . .., (zq,p)) With (z;,p) €
X* x N for eachl < i < ¢, uses time polynomial i}"{_, |z;| + p, and outputs
(y,p') € X* x N with (a) (y,p') € L & (x;,p) € L forsomel < i < g and (b)p’
is polynomial inp. A parameterized problem is compositional if there is a cositjpn
algorithm for it.

Theorem 5. [7,12] Let L be a compositional parameterized problem whose unparam-
eterized version is NP-complete. Then, unteg$P C NP / poly, there is no polyno-
mial kernel forL.



Dom et al. [9] provide a framework to build composition aligfems by using “identi-
fiers”. One of the necessary conditions is the existence afgorithm running ire?” -
poly time for the considered paramegeand a fixed constant. Considering the com-
bined parameter “number of ones”and “number of partial votest for POSSIBLE
WINNER underk-approval, there is no known algorithm running2iti*)” - poly (| X|)
time. Hence, we apply the following overall strategy (whioight be also useful for
other problems).

Overall strategyWe employ a proof by contradiction. Assume that there is grpmhial
kernel with respect tdt, k). Then, since for BssiBLE WINNER there is an obvious
brute-force algorithm running im‘* - poly(n, m) time form candidates and votes,
there must be an algorithea with running timepoly (¢, k)** - poly(n,m) < 2% .
poly(n, m) for an appropriate constamt In the next paragraph, we use the existence of
algorithmA to design a composition algorithm for the combined paran{été). Since

it is easy to verify that the unparameterized versioh POSsIBLE WINNER is NP-
complete, it follows from Theorem 5 that there is no polynahkiernel with respect

to (¢, k), a contradiction unlessoNP C NP /poly. Altogether, it remains to give a
composition algorithm.

Composition algorithmConsider a sequendéz., (¢, k)), ..., (x4, (¢, k))) of ¢ Pos-
SIBLE WINNER instances fok-approval. To simplify the construction, we make two
assumptions. First, we assume that there is no “obviousstasice”, that is, an instance
in which a candidate’ beatsc even if ¢’ makes zero points in all of the partial votes.
This does not constitute any restriction since such ingsuwean be found and removed
in time polynomial in)"?_; |z;|. Second, we assume that foy, 1 < j < ¢, within the
partial votes the distinguished candidate makes zero pirdvery extension. Since it
follows from known constructions [3, 5] that the unparamietl version of the prob-
lem remains NP-complete for this case, this assumptiorsl&ad non-existence result
for this special case and thus also for the general case.

Now, we give the composition algorithm. 4f > 2(**)" for v as given by algo-
rithm A, the composition algorithm appliesto every instance. This can be done within
the running time bound required by Definition 1 and, in théofeing, we can assume
that the number of instance is at mast*)”. This can be used to assign an “identi-
fier” of sufficiently small size to every instance. Basicallye identifiers, which will
be realized by specific sets of candidates, rely on the birggomesentation of the num-
bers from{1,...,¢}. The size of an identifier will be linear in := [log ¢| which is
polynomial in the combined parameterk) sinceq < 2(t%)",

Compose the sequence of instances to one big inst@nd8s + 4, 2t)) with X =
(C, VU VP, c) as follows. Forl < i < g, letz; be(C;, V! UVP, ¢;). Then,

C:= |H (Ci\{c})¥w{c}wDwZWAwUB

1<i<q

with D = {dg, ..., dJ} U{dp, ..., di}, Z := U<, Zj With Zj = {2) ; [0 < h <
s}U{z ;|0 <h<s}, A:={a1,...,a,}, and a seB with |B| := 25 + 3 — k. The
candidates fronD and Z will be used as identifiers for the different instances: Ever

2 See [7] for a formal definition.
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le : Zw’l > E > Zw,t > Ay > C\ (Zw,1 UD_wU Zw,t)
Zw’j > Dy > Zw,j_l > Ay > C\ (Zw,j UJ D, U Zw,j—l) for2 < J<t
Vy:B > Dy > w; > C\ (BUDyuU (Cy\{cw})) for1 <j<t

Fig. 3. Extension forX in which ¢ wins. For a winning extensioR (z.,) = w1, ..., w; of z,
letw; denotes the linear order given hy; restricted to the candidates fram, \ {c}.

instancer; is uniquely identified by the binary code of the integer by - 2° + b, - 2! +
-+ by - 2° with by, € {0,1}. Then, a subseb; C D identifiesz; whend; € D; if
and only ifb, = 1 andd)) € D; if and only ifb;, = 0. Let D; := D\ D;. Similarly, for
everyl < j <t, the setZ; ; denotes the candidates frary that identifyi, that is,

Zi g = {z,?j | h€{0,...,s}andb, =0} U {z,lw | h€{0,...,s}andby, = 1}.

LetZ; ; := Z; \ Z;; denote the remaining candidates fram

The set of partial vote¥? consists of two subsets” and V', both containing
partial votes. The basic idea is that a winning extensiol,0f'selects” an (arbitrary)
instancer; and there is a winning extension foy if and only if V.’ can be extended
such that wins. The seV} contains the vote

{Z;1UD;UZ;y=a;|1<i<q}, DUZUA>=C\(DUZUA),

meaning that the vote contains the condition U D; U Z; ; = a; for everyi. Further-
more, for everyj € {2,...,t}, the set? contains the vote

{Z;jUD;UZ;;1>=a;|1<i<q}, DUZUA>C\(DUZUA).

The setV’ consists of the partial votes, . . ., v;. Every votev; € V’ “composes” the
votesv! for 1 < i < g wherev] denotes thgth vote from instance; after deleting:;.
Then, forl < j <t, the votev; is

B >~ (C\B), {vf [1<i<gq}, {D;=C\{c;} |1 <i<gq}, O\(AUZU{c}) » AUZU{c}.

Using [3, Lemma 1], one can construct a $¢tof linear votes polynomial ir|C|
and|V?| such that in every winning extension, witHif?,

(a) fori € {1,...,q}, the number of points a candidatee C; \ {c¢;} makes is at
most the maximum number of points whichmakes in a winning extension within the
partial votes frome;,

(b) every candidate from U D U B makes at most points, and

(c) every candidate from makes at most one point.

Fig. 3 sketches a winning extension of the composed instAngeking use of a win-
ning extension of an instanag,. We omit to show that the constructed instancéds
ayes-instance fq3s+4)-approval if and only if there is anc {1, ..., ¢} such thatr;
is a yes-instance fde-approval.

Theorem 6. For k-approval,POSSIBLEWINNER with ¢ partial votes does not admit a
polynomial problem kernel with respect(tg k) unlessNP C coNP / poly.
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4

Outlook

Can similar results as in this paper be obtained for “moreega@h problems such as
SwAP BRIBERY [11] or the counting version of &ssiBLE WINNER[1]? This com-
prises the development of reduction rules preserving ailhimig extensions. Another
interesting scenario might be as follows. Given a numbafrwinners in the input, for
example, the size of a committee, one is interested irs tb@ndidates such that each

of

them has more points than the remaining candidates. Foistenario, the nega-

tive results for BssIBLE WINNER for k-approval as given in this work and related
work [3, 5] can be adapted by adding- 1 fixed candidates that always win, but as to
the algorithmic results, it is open whether they extend i® $henario.
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