
On Problem Kernels for Possible Winner Determination
Under the k-Approval Protocol

Nadja Betzler⋆

Institut für Informatik, Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

nadja.betzler@uni-jena.de

Abstract. The POSSIBLE WINNER problem asks whether some distinguished
candidate may become the winner of an election when the givenincomplete votes
(partial orders) are extended into complete ones (linear orders) in a favorable
way. Under thek-approval protocol, for every voter, the bestk candidates of his
or her preference order get one point. A candidate with maximum total number
of points wins. The POSSIBLEWINNER problem fork-approval is NP-complete
even if there are only two votes (andk is part of the input). In addition, it is NP-
complete for every fixedk ∈ {2, . . . , m − 2} with m denoting the number of
candidates if the number of votes is unbounded. We investigate the parameterized
complexity with respect to the combined parameterk and “number of incomplete
votes” t, and with respect to the combined parameterk′ := m − k and t. For
both cases, we use kernelization to show fixed-parameter tractability. However,
we show that whereas there is a polynomial-size problem kernel with respect
to (t, k′), it is very unlikely that there is a polynomial-size kernel for (t, k). We
provide additional fixed-parameter algorithms for some special cases.

1 Introduction

Voting situations arise in political elections, multi-agent systems, human resource de-
partments, etc. This includes scenarios in which one is interested in finding a small
group of winners (or losers), such as awarding a small numberof grants, picking out a
limited number of students for a graduate school, or voting for a committee with few
members. Such situations are naturally reflected by a variant of approval voting, the
k-approvalvoting system, where every voter gives one point to each of the k alterna-
tives/candidates which he or she likes best and the candidates having the most points in
total win. On the one side,k-approval extendsplurality where a voter gives one point to
one candidate, that isk = 1, and, on the other side, it extendsvetowhere a voter gives
one point to all but one candidate, that is,k′ = 1 for k′ := m − k andm candidates.

At a certain point in the decision making process one might face the situation that
the voters have made up their minds “partially”. For example, for the decision about
the Nobel prize for peace in 2009, a committee member might have already known that
he (or she) prefers Obama and Bono to Berlusconi, but might have not decided on the
order of Obama and Bono yet. This immediately leads to the question whether, given a

⋆ Supported by the DFG, research project PAWS, NI 369/10.

set of “partial preferences”, a certain candidate may stillwin. The formalization of this
question leads to the POSSIBLE WINNER problem.

The POSSIBLE WINNER problem has been introduced by Konczak and Lang [15]
and since then its computational complexity has been studied for several voting sys-
tems [2, 3, 5, 17, 18]. Even for the comparatively simplek-approval voting, it turned out
that POSSIBLE WINNER is NP-complete except for the special cases of plurality and
veto [3], that is, for anyk greater than one and smaller than the number of candidates
minus one. A multivariate complexity study showed that it isNP-complete if there are
only two voters whenk is part of the input but fixed-parameter tractable with respect
to the “number of candidates” [5]. In contrast, for the approval voting variant where
each voter can assign a point toup tok candidates, it can easily be seen that POSSIBLE

WINNER can be solved in polynomial-time. A prominent special case of POSSIBLE

WINNER is the MANIPULATION problem, where the input consists of a set of linear
orders and a set of completely unspecified votes. Fork-approval, it is easy to see that
MANIPULATION is solvable in polynomial time for unweighted votes but for weighted
votes it is NP-complete for all fixedk 6= 1 [14].

The above described hardness results motivate a multivariate analysis with respect
to the combined parameter “number of voters”and “number of candidates to which a
voter gives one/zero points” fork-approval. Can we efficiently solve POSSIBLE WIN-
NER in the case that these parameters are both small? Directly related questions are
whether we can ignore or delete candidates which are not relevant for the decision
process and how to identify such candidates. In this context, parameterized algorith-
mics [10, 16] provides the concept of kernelization by meansof polynomial-time data
reduction rules that “preprocess” an instance such that thesize of the “reduced” instance
only depends on the parameters [6, 13].

In this work, we use kernelization to show the fixed-parameter tractability of POS-
SIBLE WINNER for k-approval in two “symmetric” scenarios. First, we considerthe
combined parameter “number of incomplete votes”t and “number of candidates to
which every voter gives zero points”k′ := m− k for m candidates (directly extending
the veto voting system withk′ = 1). Making use of a simple observation we show that
POSSIBLE WINNER admits a polynomial-size problem kernel with respect to(t, k′)
and provide two algorithms: one with exponential running time factor2O(k′) in case of
constantt and one with exponential running time factor2O(t) in case of constantk′.
Second, we consider the combined parametert andk, wherek denotes the “number of
candidates to which a voter gives a point”. We observe that here one cannot argue sym-
metrically to the first scenario. Using other arguments, we give a superexponential-size
problem kernel showing the fixed-parameter tractability ofPOSSIBLE WINNER with
respect to(t, k). For the special case of 2-approval, we give an improved polynomial-
size kernel withO(t2) candidates. Using a methodology due to Bodlaender et al. [7],
our main technical result shows that POSSIBLE WINNER is very unlikely to admit a
polynomial-size problem kernel with respect to(t, k).

Preliminaries. A linear voteis a transitive, antisymmetric, and total relation on a setC
of candidates andpartial vote a transitive and antisymmetric relation on a setC of
candidates. We use> to denote the relation between candidates in a linear vote and≻ to
denote the relation between candidates in a partial vote. Weoften specify a subsetD ⊆

2

C of candidates instead of single candidates in a partial vote; for a candidatee ∈ C \D
andD = {d1, . . . , ds}, the meaning of “e ≻ D” is “ {e ≻ d1, e ≻ d2, . . . , e ≻ ds}”.
A linear votevl extendsa partial votevp if vp ⊆ vl, that is, for everyi, j ≤ m,
from ci ≻ cj in vp it follows that ci > · · · > cj in vl. An extensionE of a set of
partial votesV p = {vp

1 , . . . , vp
n} is a mapping fromV p to a set of linear votesV l :=

{vl
1, . . . , v

l
n} such thatvl

i extendsvp
i for everyi. Given a set of partial votesV p on C,

a candidatec ∈ C is a possible winnerif there exists awinning extensionE, that is,
c wins in E with respect to a considered voting system. For any voting systemR, the
underlying decision problem is defined as follows.

POSSIBLE WINNER

Given: A set of candidatesC, a set of partial votesV onC, and a distinguished candi-
datec ∈ C.
Question: Is there an extensionE of V such thatc wins with respect toR in E?

We focus on the voting systemk-approvalwhere, given a setV of linear votes on a
setC of candidates, the firstk candidates within a vote get one point and the remaining
candidates get zero points. For every candidatec′ ∈ C, one sums up the points over
all votes fromV to obtain itsscores(c′) and the candidates with maximum score win.
We call the firstk positions of a voteone-positionsand the remaining positionszero-
positions. All results are given for theunique winnercase, that is, looking for a single
candidate with maximum score, but can be adapted easily to hold for the “co-winner”
case where several candidates may get the maximum score and all of them win.

A parameterized problemL is a subset ofΣ∗ × Σ∗ for some finite alphabetΣ [10,
16]. An instance of a parameterized problem consists of(x, p) wherep is called the
parameter. We mainly consider “combined” parameters whichare tuples of positive
integers. A parameterized problem isfixed-parameter tractableif it can be solved in
timef(|p|)·poly(|x|) for a computable functionf . A kernelization algorithm consists of
a set of(data) reduction rulesworking as follows [6, 13, 16]. Given an instance(x, p) ∈
Σ∗ × Σ∗, they output in time polynomial in|x| + |p| an instance(x′, p′) ∈ Σ∗ × Σ∗

such that the following two conditions hold. First,(x, p) is a yes-instance if and only if
(x′, p′) is a yes-instance (termedsoundness). Second,|x′| + |p′| ≤ g(|p|) whereg is a
computable function. Ifg is a polynomial function, then we say that the parameterized
problem admits apolynomial kernel.

Some of the reduction rules given in this work will not directly decrease the instance
size by removing candidates or votes but instead only decrease the number of possible
extensions of a vote, for example, by “fixing” candidates. Tofix a candidate at a certain
position means to specify its relation to all other candidates. Clearly, a candidate may
not be fixed at every position in a specific partial vote. To take this into account, an
important concept is the notation ofshiftinga candidate. More precisely, we say a can-
didatec′ can shift a candidatec′′ to the left (right) in a partial votev if c′′ ≻ c′ (c′ ≻ c′′)
in v, that is, settingc′ to a one-position (zero-position) implies settingc′′ to a one-
position (zero-position) as well. For every candidatec′ ∈ C and a partial votev ∈ V ,
let L(v, c′) := {c′′ ∈ C | c′′ ≻ c′ in v} andR(v, c′) := {c′′ ∈ C | c′ ≻ c′′ in v}.
Then, fixing a candidatec′ ∈ C as good as possiblemeans to addL(v, c′) ≻ c′ ≻
C \ (L(v, c′)∪{c′}) to v. Analogously, fixing a candidateas bad as possibleis realized

3

by addingC \ (R(v, c′) ∪ {c′}) ≻ c′ ≻ R(v, c′) to v. If a candidatec′ ∈ C is fixed in
all partial votes, this implies that also its scores(c′) is fixed.

The votes of an input instance of POSSIBLE WINNER can be partitioned into a
(possibly empty) set of linear votes, calledV l, and a set of proper (non-linear) partial
votes, calledV p. We state all our results for the parametert := |V p|. All positive results
also hold for the parameter number of total votesn := |V l| + |V p|. Due to the space
restrictions, several (parts of) proofs are deferred to a full version of this work.

2 Fixed number of zero-positions

For(m−k′)-approval withk′ < m, k′ denotes the number of zero-positions. We give a
polynomial kernel with respect to(t, k′) for POSSIBLEWINNER wheret is the number
of partial votes. In addition, we provide two parameterizedalgorithms for special cases.

2.1 Problem kernel

Consider a POSSIBLE WINNER instance with candidate setC, vote setV = V l ∪
V p, and distinguished candidatec ∈ C for (m − k′)-approval. We start with a simple
reduction rule that is a crucial first step for all kernelization results in this work.

Rule 1 For every votevi ∈ V p, if |L(vi, c)| < m − k′, fix c as good as possible invi.

The soundness and polynomial-time running time of Rule 1 is easy to verify. The condi-
tion |L(vi, c)| < m− k′ is crucial since otherwisec might shift a candidatec′ to a one-
position whereasc is assigned to a zero position and this could causec′ to beatc. After
applying Rule 1, the score ofc is fixed at the maximum possible value since it makes
one point in all votes in which this is possible. Now, for every candidatec′ ∈ C \ {c},
by counting the points thatc′ makes within the linear votesV l, compute the number of
zero positions thatc′ must assume within the partial votesV p such that it is beaten byc.
Let this number bez(c′) andZ+ := {c′ ∈ C \ {c} | z(c′) > 0}. Since there are only
tk′ zero positions inV p, one can observe the following.

Observation 1 In a yes-instance,
∑

c′∈C\{c} z(c′) ≤ tk′ and|Z+| ≤ tk′.

Observation 1 provides a simple upper bound for the number ofcandidates inZ+.
By formulating a data reduction rule that bounds the number of remaining candidates
and replacing the linear votesV l by a bounded number of “equivalent votes” we can
show the following theorem. The basic idea is that since a remaining candidate from
C \ (Z+ ∪ {c}) can be set arbitrarily in every vote without beatingc, it is possible to
replace the set of all remaining candidates bytk′2 “representative candidates”.

Theorem 1. For (m − k′)-approval,POSSIBLE WINNER with t partial votes admits a
polynomial kernel with at mosttk′2 + tk′ + 1 candidates.

4

Initialization:
For everyD′ ∈ D \ {(d1, . . . , dp)}, setT (0, D′) = 0.
SetT (0, (d1, . . . , dp)) = 1.

Update:
For0 ≤ i ≤ t − 1,
for everyD′ = (d′

1, . . . , d
′

p) ∈ D,
T (i + 1, D′) = 1 if there are two candidateszg, zh that can take the zero-positions invi+1

andT (i, D′′) = 1 with D′′ := {d′′

1 , . . . , d′′

p} and
d′′

j = d′

j for j ∈ {1, . . . , q} \ {g, h}, d′′

g ≤ d′

g + 1, andd′′

h ≤ d′

h + 1.

Output:
“yes” if T (t, (0, . . . , 0)) = 1, “no” otherwise

Fig. 1. Dynamic programming algorithm for(m − 2)-approval.

2.2 Parameterized algorithms

We give algorithms running in2O(p) · poly(n, m) time with p denoting eitherk′ or
t where the other parameter is of constant value. Note that thekernelization from the
previous subsection does not imply such running times.

Constant number of partial votes.For two partial votes, there can be at most2k′ can-
didates that must take a zero-position in a yes-instance (see Observation 1). Branching
into the two possibilities of taking the zero-position in the first or in the second vote
for every such candidate, results in a search tree of size22k′

= 4k′

. For every “leaf” of
the search tree it is easy to check if there is a correspondingextension. Using similar
arguments, one arrives at the following.

Proposition 1 For a constant numbert of partial votes,POSSIBLE WINNER for (m −

k′)-approval can be solved in2t2k′

· poly(n, m) time.

Constant number of zero-positions.For constantk′ the existence of an algorithm with
running time2O(t) ·poly(n, m) seems to be less obvious than for the case of constantt.
We start by giving a dynamic programming algorithm for(m−2)-approval. Employing
an idea used in [4, Lemma 2], we show that it runs in4t · poly(n, m) time and space.

As in the previous subsection, fixc according to Rule 1 such that it makes the maxi-
mum possible score and letZ+ := {z1, . . . , zp} denote the set of candidates that take at
least one zero-position in a winning extension. Letd1, . . . , dp denote the corresponding
number of zero-positions that must be assumed and letD := {(d′1, . . . , d

′
p) | 0 ≤ d′j ≤

dj for 0 ≤ j ≤ p}. Then, the dynamic programming tableT is defined byT (i, D′)
for 1 ≤ i ≤ t andD′ = (d′1, . . . , d

′
p) ∈ D. Herein,T (i, D′) = 1 if the partial votes

from {v1, . . . , vi} can be extended such that candidatezj takes at leastdj − d′j zero-
positions for1 ≤ j ≤ p; otherwiseT (i, D′) = 0. Intuitively, d′j stands for the number
of zero-positions whichzj must still take in the remaining votes{vi+1, . . . , vt}. Clearly,
if T (t, (0, . . . , 0)) = 1 for an instance, then it is a yes-instance. The dynamic program-
ming algorithm is given in Figure 1. By further extending it to work for any constantk′

we can show the following.

5

Theorem 2. For (m − 2)-approval witht partial votes,POSSIBLE WINNER can be
solved in4t ·poly(n, m) time andO(t · 4t) space. For(m− k′)-approval witht partial
votes,POSSIBLE WINNER can be solved in2O(t) · poly(n, m) time for constantk′.

3 Fixed number of one-positions

We study POSSIBLE WINNER for k-approval with respect to the combined parame-
terk and numbert of partial votes. The problem can be considered as “filling”tk one-
positions such that no candidate beatsc. In the previous section, we exploited that the
number of candidates that must take a zero-position is already bounded by the com-
bined parametert and “number of zero-positions” in a yes-instance (Observation 1).
Here, we cannot argue analogously: Our combined parameter(t, k) only bounds the
number of one-positions but there can be an unbounded numberof candidates that may
take a one-position in different winning extensions of the partial votes. Hence, we argue
that if there are too many candidates that can take a one-position, then there must be
several choices that lead to a valid extension. We show that it is sufficient to keep a set
of “representative candidates” that can take the required one-positions if and only if this
is possible for the whole set of candidates. This results in aproblem kernel of super-
exponential size showing fixed-parameter tractability with respect to(t, k). We comple-
ment this result by showing that it is very unlikely that there is a kernel of polynomial
size. In addition, we give a polynomial kernel withO(t2) candidates for2-approval.

3.1 Problem kernels

We first describe a kernelization approach for POSSIBLE WINNER for k-approval in
general and then show how to obtain a better bound on the kernel size for 2-approval.

Problem kernel for k-approval. In order to describe more complicated reduction rules,
we assume that a considered instance is exhaustively reduced with respect to some
simple rules. To this end, we fix the distinguished candidatec as good as possible by
Rule 1 (using thatm− k′ = k). Afterwards, we apply a simple reduction rule to get rid
of “irrelevant” candidates and check whether an instance isa trivial no-instance:

Rule 2 First, for every candidatec′ ∈ C \ {c}, if making one point in the partial votes
causesc′ not to be beaten byc, then fixc′ as bad as possible in every vote. Second,
compute the setD of candidates that can be deleted: For every candidatec′ ∈ C \ {c}
with |L(v, c′)| > k for all v ∈ V p, if the scores(c′) is at leasts(c), then output “no
solution”, otherwise addc′ to D. DeleteD and replaceV l by an equivalent set.

The soundness of Rule 2 is easy to see: Every candidate fixed bythe first part cannot be
assigned to a one-position in any winning extension. For thesecond part, every winning
extension of an unreduced instance can easily be transformed into a winning extension
for the reduced one by deleting the candidates specified by Rule 2 andvice versa. A set
of equivalent linear votes can be found according to [3, Lemma 1]1.

1 Herein, it might be necessary to add one new candidate. However, this will not affect the
following analysis and will be discussed in more detail in the full version of this work.

6

test..................terst..a
b d

h

e

g

f

20 1

v : a ≻ b ≻ d ≻ x,

e ≻ f,

g ≻ f ≻ y ≻ c,

a ≻ h

Fig. 2. Example for 3-approval: Partial votev (left-hand side) and corresponding digraph with
levels0, 1, and2. Arcs following by transitivity are omitted. Note thatx, y, andc do not appear
in the digraph since they are irrelevant forv.

In the following, we assume that Rule 2 has been applied, thatis, all remaining
candidates can make at least one point in an extension without beatingc. To state further
reduction rules, a partial votev is represented as a digraph with vertex set{c′ | c′ ∈
C \ {c} and|L(v, c′)| < k}. All other candidates are considered as “irrelevant” for this
vote since they cannot take a one-position. The vertices areorganized intok levels. For
0 ≤ j ≤ k − 1, let Lj(v) := {c′ | c′ ∈ C \ {c} and|L(v, c′)| = j} containing all
candidates that shift exactlyj candidates to a one-position if they are assigned to the
best possible position. There is a directed arc fromc′ to c′′ if and only if c′′ ∈ L(v, c′).
Figure 2 displays an example for the representation of a partial vote for 3-approval.

In general, the number of candidates per level is unbounded.However, for some
cases it is easy to see that one can “delete” all but some representative candidates. The
following reduction rule provides such an example using thefact that in any vote a
candidate from the first level can be set to an arbitrary one-position without shifting any
other candidate.

Rule 3 For v ∈ V p with |L0(v)| ≥ tk, consider any subsetL′ ⊆ L0(v) with |L′| = tk.
AddL′ ≻ C \ L′ to v.

To see the soundness of Rule 3 consider a winning extensionE for a non-reduced
instance and a votev ∈ V p with |L0(v)| ≥ tk. Since there aretk one-positions in the
partial votes, there must be at leastk candidates fromL′ not having assumed a one-
position within the othert−1 votes. Setting thesek candidates to the one-positions inv
leads to a winning extension of the reduced instance. The other direction is obvious.

If Rule 3 applies to all partial votes, then in a reduced instance at mostt2k can-
didates are not fixed at zero-positions inV p and the remaining candidates can be
deleted by Rule 2. Hence, we consider the situation that there is a partial votev with
|L0(v)| < tk. Then, we cannot ignore the candidates from the other levelsbut replace
them by a bounded number of representatives. We first discusshow to find a set of rep-
resentatives for 2-approval and then extend the underlyingidea to work for generalk.

For 2-approval, for a votev with |L0(v)| < 2t, it remains to bound the size ofL1(v).
This is achieved by the following reduction rule: Fix all but2t in-neighbors of every
candidate fromL0(v) at zero-positions. To see the soundness, we show, given a win-
ning extensionE for the non-reduced instance, how to obtain a winning extension E′

for v after the reduction (the other direction is obvious). Clearly, in E(v) the first po-
sition must be assigned to a candidatec′ from L0(v) andc′ can also be assigned to

7

the first position inE′(v). If there is another candidate fromL0(v) that takes the sec-
ond position inE(v), one can do the same inE′(v). Otherwise, distinguish two cases.
First, c′ has less than2t in-neighbors, then the reduction rule has not fixed any can-
didate that shiftsc′ to the first position and thusv can be extended in the same way
as inE. Second,c′ has at least2t in-neighbors. Since there are only2t one-positions
and2t non-fixed in-neighbors, the second position ofv can be assigned to a candidate
that does not take a one-position in any other vote ofE.

Altogether, for2-approval, one ends up with up to4t2 non-fixed candidates per
vote and hence withO(t3) non-reduced candidates in total. For generalk, extend this
approach iteratively by bounding the number of candidates for every level:

Rule 4 Consider a partial votev ∈ V p with |L0(v)| < tk. Start withi = 1 and repeat
until i = k.
- For every candidatec′ ∈ Li(v), if there are more thantk candidates inLi(v) which
have the same neighborhood asc′ in L0(v) ∪ L1(v) ∪ · · · ∪ Li−1(v), fix all but tk of
them as bad as possible.
- Seti := i + 1.

Using Rule 4 one can show the following.

Theorem 3. For k-approval,POSSIBLE WINNER admits a problem kernel with size
bounded by a computable function ink and the number of partial votest.

Improved problem kernel for 2-approval. As discussed above, the kernelization as
stated fork-approval in general leads to a polynomial kernel withO(t3) candidates for
2-approval. To give a kernel withO(t2) candidates, we use some properties of bipartite
graphs. For a bipartite graph(G ∪ H, E) with vertex setG ∪ H and edge setE ⊆
{{g, h} | g ∈ G andh ∈ H}, a matchingdenotes a subsetM ⊆ E such that for
all e, e′ ∈ M , e ∩ e′ = ∅. A vertex contained ine for an e ∈ M is calledmatching
vertexand, for{g, h} ∈ M , g andh arematching neighbors. A maximum matchingis
a matching with maximum cardinality. Theopen neighborhoodof a vertexg ∈ G is
denoted byN(g) := {h | {g, h} ∈ E} and, forG′ ⊆ G, N(G′) :=

⋃
g∈G′ N(g).

Lemma 1. For a bipartite graph(G ∪ H, E) with maximum matchingM , there is a
partition of G into G1 ⊎ G2, such that the following holds. First, all neighbors ofG1

are part ofM . Second, every vertex fromG2 has a matching neighbor outsideN(G1).

Now, we employ Lemma 1 to design a reduction rule. Note that similar arguments are
used in several works, see [8, 16]. In the following, we assume that Rule 1 and Rule 2
have been applied. We define a bipartite graph(G ∪ H, E) as follows. For a partial
profile with partial votesV p and candidate setC, let V ′ := {v′ ∈ V p | |L0(v

′)| <
2t}. For everyv′i ∈ V ′, for 1 ≤ j ≤ |L0(v

′
i)|, add a vertexgj

i to G. Intuitively,
for every candidate that can take a first position inv′i there is a corresponding vertex
in G. If a candidate can take the first position in several votes, then there are several
vertices corresponding to this candidate. The vertex setH contains one vertex for every
candidate from(

⋃
v′∈V ′ L1(v

′)) \ (
⋃

v′∈V ′ L0(v
′)). There is an edge betweengj

i ∈ G
andh ∈ H if setting the candidate corresponding toh to the second position inv′i shifts
the candidate corresponding togj

i to the first position. Now, we can state the following.

8

Rule 5 Compute a maximum matchingM in (G ∪ H, E). Fix every candidate corre-
sponding to a non-matched vertex inH as bad as possible in every vote fromV ′.

Lemma 2. Rule 5 is sound and can be carried out inO(|E| · |G∪H |+ |V | · |C|) time.

Proof. A winning extension for an instance reduced with respect to Rule 5 is also a
winning extension for an unreduced instance. Now, we show the other direction. Given
a winning extensionE for an unreduced instance, we construct a winning extensionEr

for a reduced instance. Since Rule 5 does not fix any candidatewhich can take the first
position in at least one vote, the first positions inEr can be assumed by the same candi-
dates as inE. It remains to fix the second positions without beatingc. For every votevi,
let ge

i denote the candidate that takes the first position invi in E. For the correspond-
ing vertexge

i one can distinguish two cases: First,ge
i ∈ G1. In this case, none of the

neighbors ofge
i have been fixed and, thus, the candidate which takes the second position

in vi in E can also take the second positionEr. Second,ge
i ∈ G2. In this case, set the

candidate corresponding to the matching neighbor fromge
i to the second position. Now,

it is not to hard to see thatc wins in Er: The only candidates that possibly make more
points inEr than inE are the candidates corresponding to the matching neighborsof
vertices fromG2. Due to the matching property, every such candidate makes atmost
one point inV ′. By definition,G only contains vertices that can make at least one point
and for all votes fromV p \ V ′ one can easily find a winning extension which does not
assign the “matching-candidates” to one-positions (see Rule 2). It follows thatc also
wins in the extensionEr. The claimed running time follows since a maximum bipartite
matching can be found inO(|E| · |G ∪ H |) time. ⊓⊔

Bounding the size of candidates in level 0 by Rule 3 and the (remaining) candidates in
level 1 by Rule 5 one arrives at the following.

Theorem 4. For 2-approval witht partial votes,POSSIBLEWINNER admits a polyno-
mial kernel with less than4t2 candidates.

3.2 Kernel lower bound

We use a method introduced by Bodlaender et al. [7] and Fortnow and Santhanam [12]
to show that, fork-approval, POSSIBLEWINNER cannot have a polynomial kernel with
respect to(t, k). They provide a general scheme to show the non-existence of polyno-
mial kernels under some reasonable assumptions from classical complexity theory.

Definition 1. [7] A composition algorithm for a parameterized problemL ⊆ Σ∗ ×N
is an algorithm that receives as input a sequence((x1, p), . . . , (xq, p)) with (xi, p) ∈
Σ∗ × N for each1 ≤ i ≤ q, uses time polynomial in

∑q

i=1 |xi| + p, and outputs
(y, p′) ∈ Σ∗ ×N with (a) (y, p′) ∈ L ⇔ (xi, p) ∈ L for some1 ≤ i ≤ q and (b)p′

is polynomial inp. A parameterized problem is compositional if there is a composition
algorithm for it.

Theorem 5. [7, 12] LetL be a compositional parameterized problem whose unparam-
eterized version is NP-complete. Then, unlesscoNP ⊆ NP / poly, there is no polyno-
mial kernel forL.

9

Dom et al. [9] provide a framework to build composition algorithms by using “identi-
fiers”. One of the necessary conditions is the existence of analgorithm running in2pγ

·
poly time for the considered parameterp and a fixed constantγ. Considering the com-
bined parameter “number of ones”k and “number of partial votes”t for POSSIBLE

WINNER underk-approval, there is no known algorithm running in2(tk)γ

· poly(|X |)
time. Hence, we apply the following overall strategy (whichmight be also useful for
other problems).

Overall strategy.We employ a proof by contradiction. Assume that there is a polynomial
kernel with respect to(t, k). Then, since for POSSIBLE WINNER there is an obvious
brute-force algorithm running inmtk · poly(n, m) time for m candidates andn votes,
there must be an algorithmA with running timepoly(t, k)tk · poly(n, m) < 2(tk)γ

·
poly(n, m) for an appropriate constantγ. In the next paragraph, we use the existence of
algorithmA to design a composition algorithm for the combined parameter (t, k). Since
it is easy to verify that the unparameterized version2 of POSSIBLE WINNER is NP-
complete, it follows from Theorem 5 that there is no polynomial kernel with respect
to (t, k), a contradiction unlesscoNP ⊆ NP / poly. Altogether, it remains to give a
composition algorithm.

Composition algorithm.Consider a sequence((x1, (t, k)), . . . , (xq , (t, k))) of q POS-
SIBLE WINNER instances fork-approval. To simplify the construction, we make two
assumptions. First, we assume that there is no “obvious no-instance”, that is, an instance
in which a candidatec′ beatsc even if c′ makes zero points in all of the partial votes.
This does not constitute any restriction since such instances can be found and removed
in time polynomial in

∑q

i=1 |xi|. Second, we assume that forxj , 1 ≤ j ≤ q, within the
partial votes the distinguished candidate makes zero points in every extension. Since it
follows from known constructions [3, 5] that the unparameterized version of the prob-
lem remains NP-complete for this case, this assumption leads to a non-existence result
for this special case and thus also for the general case.

Now, we give the composition algorithm. Ifq > 2(tk)γ

for γ as given by algo-
rithmA, the composition algorithm appliesA to every instance. This can be done within
the running time bound required by Definition 1 and, in the following, we can assume
that the number of instance is at most2(tk)γ

. This can be used to assign an “identi-
fier” of sufficiently small size to every instance. Basically, the identifiers, which will
be realized by specific sets of candidates, rely on the binaryrepresentation of the num-
bers from{1, . . . , q}. The size of an identifier will be linear ins := ⌈log q⌉ which is
polynomial in the combined parameter(t, k) sinceq ≤ 2(tk)γ

.
Compose the sequence of instances to one big instance(X, (3s + 4, 2t)) with X =

(C, V l ∪ V p, c) as follows. For1 ≤ i ≤ q, let xi be(Ci, V
l
i ∪ V p

i , ci). Then,

C :=
⊎

1≤i≤q

(Ci \ {ci}) ⊎ {c} ⊎ D ⊎ Z ⊎ A ⊎ B

with D := {d0
0, . . . , d

0
s} ∪ {d1

0, . . . , d
1
s}, Z :=

⋃
1≤j≤t Zj with Zj := {z0

h,j | 0 ≤ h ≤

s} ∪ {z1
h,j | 0 ≤ h ≤ s}, A := {a1, . . . , aq}, and a setB with |B| := 2s + 3 − k. The

candidates fromD andZ will be used as identifiers for the different instances: Every

2 See [7] for a formal definition.

10

V
p
1 : Zw,1 > Dw > Zw,t > aw > C \ (Zw,1 ∪ Dw ∪ Zw,t)

Zw,j > Dw > Zw,j−1 > aw > C \ (Zw,j ∪ Dw ∪ Zw,j−1) for 2 ≤ j ≤ t

V
p
2 : B > Dw > wj > C \ (B ∪ Dw ∪ (Cw \ {cw})) for 1 ≤ j ≤ t

Fig. 3. Extension forX in which c wins. For a winning extensionE(xw) = w′

1, . . . , w
′

t of xw,
let wj denotes the linear order given byw′

j restricted to the candidates fromCw \ {c}.

instancexi is uniquely identified by the binary code of the integeri = b0 ·2
0 + b1 ·2

1 +
· · · + bs · 2s with bh ∈ {0, 1}. Then, a subsetDi ⊂ D identifiesxi whend1

h ∈ Di if
and only ifbh = 1 andd0

h ∈ Di if and only if bh = 0. Let Di := D \Di. Similarly, for
every1 ≤ j ≤ t, the setZi,j denotes the candidates fromZj that identifyi, that is,

Zi,j := {z0
h,j | h ∈ {0, . . . , s} andbh = 0} ∪ {z1

h,j | h ∈ {0, . . . , s} andbh = 1}.

Let Zi,j := Zj \ Zi,j denote the remaining candidates fromZj.
The set of partial votesV p consists of two subsetsV p

1 andV p
2 , both containingt

partial votes. The basic idea is that a winning extension ofV p
1 “selects” an (arbitrary)

instancexi and there is a winning extension forxi if and only if V p
2 can be extended

such thatc wins. The setV p
1 contains the vote

{Zi,1 ∪ Di ∪ Zi,t ≻ ai | 1 ≤ i ≤ q}, D ∪ Z ∪ A ≻ C \ (D ∪ Z ∪ A),

meaning that the vote contains the conditionZi,1 ∪Di ∪Zi,t ≻ ai for everyi. Further-
more, for everyj ∈ {2, . . . , t}, the setV p

1 contains the vote

{Zi,j ∪ Di ∪ Zi,j−1 ≻ ai | 1 ≤ i ≤ q}, D ∪ Z ∪ A ≻ C \ (D ∪ Z ∪ A).

The setV p
2 consists of the partial votesv1, . . . , vt. Every votevj ∈ V p

2 “composes” the
votesvj

i for 1 ≤ i ≤ q wherevj
i denotes thejth vote from instancexi after deletingci.

Then, for1 ≤ j ≤ t, the votevj is

B ≻ (C\B), {vj
i | 1 ≤ i ≤ q}, {Di ≻ Ci\{ci} | 1 ≤ i ≤ q}, C\(A∪Z∪{c}) ≻ A∪Z∪{c}.

Using [3, Lemma 1], one can construct a setVl of linear votes polynomial in|C|
and|V p| such that in every winning extension, withinV p,
(a) for i ∈ {1, . . . , q}, the number of points a candidatec′ ∈ Ci \ {ci} makes is at
most the maximum number of points whichc′ makes in a winning extension within the
partial votes fromxi,
(b) every candidate fromA ∪ D ∪ B makes at mostt points, and
(c) every candidate fromZ makes at most one point.

Fig. 3 sketches a winning extension of the composed instanceX making use of a win-
ning extension of an instancexw. We omit to show that the constructed instancedX is
a yes-instance for(3s+4)-approval if and only if there is ani ∈ {1, . . . , q} such thatxi

is a yes-instance fork-approval.

Theorem 6. For k-approval,POSSIBLEWINNER with t partial votes does not admit a
polynomial problem kernel with respect to(t, k) unlessNP ⊆ coNP / poly.

11

4 Outlook

Can similar results as in this paper be obtained for “more general” problems such as
SWAP BRIBERY [11] or the counting version of POSSIBLE WINNER[1]? This com-
prises the development of reduction rules preserving all winning extensions. Another
interesting scenario might be as follows. Given a numbers of winners in the input, for
example, the size of a committee, one is interested in thes candidates such that each
of them has more points than the remaining candidates. For this scenario, the nega-
tive results for POSSIBLE WINNER for k-approval as given in this work and related
work [3, 5] can be adapted by addings − 1 fixed candidates that always win, but as to
the algorithmic results, it is open whether they extend to this scenario.

References

1. Y. Bachrach, N. Betzler, and P. Faliszewski. Probabilistic possible winner determination. In
Proc. of 24th AAAI, 2010. To appear.

2. D. Baumeister and J. Rothe. Taking the final step to a full dichotomy of the Possible Winner
problem in pure scoring rules. InProc. of 19th ECAI, 2010. Short paper.

3. N. Betzler and B. Dorn. Towards a complexity dichotomy of finding possible winners in
elections based on scoring rules. InProc. of 34th MFCS, volume 5734 ofLNCS, pages
124–136. Springer, 2009. Longversion to appear inJ. Comput. Syst. Sci.

4. N. Betzler, J. Guo, and R. Niedermeier. Parameterized computational complexity of Dodgson
and Young elections.Inform. Comput., 208(2):165–177, 2010.

5. N. Betzler, S. Hemmann, and R. Niedermeier. A multivariate complexity analysis of de-
termining possible winners given incomplete votes. InProc. of 21st IJCAI, pages 53–58,
2009.

6. H. L. Bodlaender. Kernelization: New upper and lower bound techniques. InProc. of 4th
IWPEC, volume 5917 ofLNCS, pages 17–37. Springer, 2009.

7. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without
polynomial kernels.J. Comput. Syst. Sci., 75(8):423–434, 2009.

8. B. Chor, M. Fellows, and D. W. Juedes. Linear kernels in linear time, or how to savek colors
in o(n2) steps. InProc. of 30th WG, volume 3353 ofLNCS, pages 257–269. Springer, 2004.

9. M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibilitythrough colors and IDs. InProc.
of 36th ICALP, volume 5555 ofLNCS, pages 378–389. Springer, 2009.

10. R. G. Downey and M. R. Fellows.Parameterized Complexity. Springer, 1999.
11. E. Elkind, P. Faliszewski, and A. Slinko. Swap bribery. In Proc. of 2nd SAGT, volume 5814

of LNCS, pages 299–310. Springer, 2009.
12. L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for

NP. InProc. of 40th STOC, pages 133–142. ACM, 2008.
13. J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization.ACM

SIGACT News, 38(1):31–45, 2007.
14. E. Hemaspaandra and L. A. Hemaspaandra. Dichotomy for voting systems.J. Comput. Syst.

Sci., 73(1):73–83, 2007.
15. K. Konczak and J. Lang. Voting procedures with incomplete preferences. InProc. of IJCAI-

2005 Multidisciplinary Workshop on Advances in PreferenceHandling, 2005.
16. R. Niedermeier.Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
17. M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Incompleteness and incomparability in

preference aggregation. InProc. of 20th IJCAI, pages 1464–1469, 2007.
18. L. Xia and V. Conitzer. Determining possible and necessary winners under common voting

rules given partial orders. InProc. of 23rd AAAI, pages 196–201. AAAI Press, 2008.

12

