
Finding Connected Subgraphs of
Fixed Minimum Density:

Implementation and Experiments?

Christian Komusiewicz, Manuel Sorge, and Kolja Stahl

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{christian.komusiewicz,manuel.sorge}@tu-berlin.de

kolja.stahl@campus.tu-berlin.de

Abstract. We consider the following problem. Given a graph and a ra-
tional number µ, 0 < µ ≤ 1, find a connected subgraph of density at
least µ with the largest number of vertices. Here, the density of an n-
vertex graph with m edges is m/

(
n
2

)
. This problem arises in many appli-

cation contexts such as community detection in social networks. We im-
plement a branch and bound algorithm and tune it for efficiency on sparse
real-world graphs for the case µ ≥ 1/2. Central issues for the implemen-
tation are the choice of branching candidates, two new upper bounding
procedures, and several data reduction and early termination rules.

1 Introduction

Identifying dense subgraphs is a problem arising in the analysis of social [4],
financial [5], and biological networks [3]. In most applications, the desired dense
subgraphs do not contain an edge between each vertex pair but rather adhere to
a more relaxed notion of density. Many different, mathematically precise defini-
tions of such desired subgraphs have been proposed [4, 10]. We consider the con-
cept of µ-cliques, used for example by Abello et al. [1, 2]. It is defined as follows.

Definition 1. The density of an n-vertex graph with m edges is m/
(
n
2

)
. A graph

is a µ-clique if its density is at least µ.

In general, µ-cliques need not be connected. However, this is an important prop-
erty expected from a community. Hence, we impose connectivity as a further
constraint on the µ-cliques we are looking for. As observed previously, demand-
ing connectivity also allows for a simple solving algorithm [9].

Our goal in this work is to develop an implementation for finding large con-
nected µ-cliques in a given graph for some fixed µ ≥ 1/2. Most input graphs in
the mentioned applications are sparse with few high-degree vertices [5, 15]. We
thus aim to tune the implementation to perform well on graphs with this struc-
ture. Our implementation is based on an exact algorithm which, given k, either

? An extended abstract of this manuscript is to appear in the Proceedings of the 14th
International Symposium on Experimental Algorithms, LNCS, Springer, 2015.

finds a µ-clique with k vertices or determines correctly that no such subgraph
exists. Exact algorithms are desirable because they yield reference points for the
performance of heuristics and because surprising results can be attributed to the
model (here: connected µ-cliques) rather than to deficiencies of the algorithm.

Contribution. Our implementation follows the branch and bound paradigm and
is based on an algorithm proposed by a subset of the authors [9]. The input
is a graph G, the density threshold µ, and the minimum required number k of
vertices in the desired µ-clique. The algorithm proceeds roughly as follows. In
each step, we maintain a set P of vertices which we aim to extend to a µ-clique.
To do this, we maintain also an active vertex v whose neighbors we will consider
to add to P first. That is, given P and v we branch into all possibilities of adding
a neighbor of v to P , and into the possibility of making v permanently inactive
and consequently choosing a new active vertex in P . We terminate this process
if P has size k and report G[P] if it is a connected µ-clique.

This algorithm is called for increasing values of k. If for some value of k
no connected µ-clique is found, then it stops and returns the largest µ-clique
computed so far. This approach is only correct if the nonexistence of a µ-clique
of order k implies that there is also no µ-clique of order k+ 1. In a first step, we
thus examine whether connected µ-cliques fulfill a nestedness property (which
is called quasi-heredity [12]). We obtain that for µ ≥ 1/2, connected µ-cliques
are quasi-hereditary, but that for µ < 1/2, they cannot be assumed to be quasi-
hereditary. Accordingly, we focus on the case µ ≥ 1/2 in our experiments.

We develop several approaches to improve the running time of the above
algorithm and we detail them in Sections 3 and 4: First, we consider upper
bounds on the density we can achieve when we are given P . If the upper bound
is smaller than the given µ, then we can terminate branching early. We modify a
known upper bound [11], obtaining two new variants. Second, we develop scoring
functions to determine which vertex should be chosen as active vertex and which
of its neighbors should be included into P first, so to quickly find solutions.
Finally, we also employ several further “early termination” rules (either finding a
connected µ-clique of the desired order or deciding that there is none), improved
branching rules, as well as several heuristic tricks that speed up the computation
of the upper bounds, for example.

In Section 5 we report our experimental findings. Briefly, we find that our
branching approach for connected µ-cliques is competitive with the state of the
art algorithm for possibly disconnected µ-cliques. The upper bound k imposed on
the solution order (which is incremented until we face a no-instance) seems to be
crucial to limit the search space. Using this approach we find optimal connected
µ-cliques for several real-world instances for the first time. Furthermore, we find
that a very simple bound performs best, since the upper bounds are often applied
without avail. Due to lack of space, we defer proofs to a full version of this article.

Related Work. Finding a µ-clique of order k in a given graph is a decision version
of Densest k-Subgraph, where we seek to find a k-vertex subgraph with the

2

maximum number of edges. This problem is NP-hard even on graphs with max-
imum degree three [7]. Moreover, it is W[1]-hard with respect to k [6] and thus
unlikely to be solvable in f(k) · nO(1) time. Under the Unique Games Conjec-
ture there is no polynomial-time constant-factor approximation algorithm [13].
Finding µ-cliques with k vertices remains NP-hard for every rational µ [12]. On
the positive side, finding µ-cliques of maximum order is tractable on graphs with
small maximum degree and on graphs with few high-degree vertices [9].

We are aware of two experimental studies for finding large µ-cliques via exact
algorithms. Pattillo et al. [12] develop two mixed-integer programming (MIP)
formulations for this problem, which were used to solve several real-world in-
stances with up to 154 vertices with CPLEX. Pajouh et al. [11] instead imple-
mented an algorithm which implicitly enumerates vertex subsets. They devel-
oped an easy-to-compute upper bound for the number of edges induced by any
extension of a vertex set P to one with k vertices. Their algorithm seems to
be the state of the art, improving on the MIP formulation in almost all test
instances. Hence, we use it as a main reference point here. Note that, in contrast
to our algorithm, both algorithms may report disconnected µ-cliques.

There is also a large body of work on heuristic algorithms for finding µ-cliques
(see [1, 2, 16], for example) as well as heuristics and exact algorithms for other
concepts of dense subgraphs (see Balasundaram and Pajouh [4] for a survey).

Preliminaries. We consider only undirected and simple graphs G = (V,E) where
V = V (G) denotes the vertex set and E = E(G) denotes the edge set. Unless
stated otherwise, n denotes the number of vertices, also called order of the
graph, and m the number of edges of G. The open neighborhood of a vertex v
is denoted by N(v). The degree of a vertex v is denoted by deg(v) := |N(v)|.
For a vertex set S ⊆ V , we use NS(v) := N(v) ∩ S and degS(v) := |NS(v)|
to denote the neighborhood and degree restricted to S. Furthermore, we use
G[S] := (S, {{u, v} ∈ E | {u, v} ⊆ S}) to denote the subgraph of G induced
by S. The degeneracy of a graph G is the smallest integer d such that every
subgraph of G has a vertex of degree at most d.

2 Connected µ-cliques and Quasi-Heredity

We now study some properties of connected µ-cliques. The property of being
a µ-clique, without the connectivity constraint, is not hereditary [10, 12]. That
is, there are µ-cliques G such that some induced subgraph of G is not a µ-clique.
Being a µ-clique is, however, quasi-hereditary, that is, every µ-clique G or order n
has an induced subgraph of order n−1 which is a µ-clique. This is implied by the
following which slightly extends [10, Proposition 6.3.2] and [12, Proposition 2].

Lemma 1. Let G = (V,E) be a graph with density exactly µ and let v be a vertex
in G. Then, G[V \ {v}] has density at least µ if and only if deg(v) ≤ 2m/n.

Thus, removing a vertex of minimum degree in a µ-clique yields a µ-clique,
implying the quasi-heredity of µ-cliques.

3

The argument for µ-cliques does not extend easily to connected µ-cliques:
it could be the case that all vertices v with deg(v) ≤ 2m/n are cut-vertices.
Moreover, it is not hard to check that additionally demanding connectedness
does not yield a hereditary graph property (consider a clique with a degree-
one vertex attached to it). Thus, it is interesting to know whether connected
µ-cliques are at least quasi-hereditary. Somewhat surprisingly, this depends on µ:
for large µ we observe quasi-heredity whereas for small µ this is impossible.

Theorem 1. If µ ≥ 1/2, then “being a connected µ-clique” is quasi-hereditary.

In contrast, for µ < 1/2, we obtain a family of counterexamples, showing
that we can use quasi-heredity safely only when µ ≥ 1/2.

Theorem 2. For any fixed rational µ = a/b such that 0 < µ < 1/2 and b is
odd, “being a connected µ-clique” is not quasi-hereditary.

3 Upper Bounds

In this section we detail several upper bounds that are used in the algorithm.
We start with a previously known upper bound on the order of the µ-clique that
depends on the number of edges m and number of vertices n in the graph G.

Proposition 1 (Edge bound [12]). If G[S] is a µ-clique in a connected graph G,

then |S| ≤
(
µ+ 2

√
(µ+ 2)2 + 8(m− n)µ

)
/2µ.

This upper bound obviously also applies to connected µ-cliques. In the course of
the algorithm, some vertices of the input graph G are discarded in some recursive
branches. Thus m and n decrease in these branches and the bound may then
show that no µ-clique of order k exists. While the bound is easy to compute, it
rarely leads to early termination.

The following bounds are based on the strategy to gradually extend the
“pivot” set P . The aim is to decide whether it is still possible to extend P to
a µ-clique of order k. In the following, let ` := k − |P | denote the number of
vertices that we still need to add. Moreover, for a vertex set S ⊆ V let m(S)
denote the number of edges in G[S]. Pajouh et al. [11] proved the following.

Proposition 2 (Inner P -bound [11]). Let G = (V,E) be a graph and P ⊆ V
a vertex subset. Then, for any S ⊇ P with |S| − |P | = `, we have

m(S) ≤ m(P) +
1

2

∑
v∈P

min{degV \P (v), `}

+
1

2

∑̀
i=1

(
degP (vi) + min{degV \P (vi), `− 1}

)
,

where v1, . . . , v` ∈ V \ P exhibit the largest values of

(degP (vi) + min{degV \P (v), `− 1})/2.

4

Note that the degree of the vertices in P can be large, and hence, the sum over
all v ∈ P does not make a good estimate on the number of edges between P
and S \ P in this case. We now aim to make this estimate from “outside” of P
instead. This often yields a better bound because |P | is usually relatively small
in the course of the algorithm.

Proposition 3 (Outer P -bound). Let P ⊆ V be a vertex set in G = (V,E).
Then for any S ⊇ P with |S| − |P | = `, we have

m(S) ≤ m(P) +
∑̀
i=1

(
degP (vi) + min{degV \P (vi), `− 1}/2

)
,

where v1, . . . , v` ∈ V \ P exhibit the largest values of

degP (vi) + min{degV \P (vi), `− 1}/2.

By replacing the estimate of the edges contained in G[S \P] by the trivial upper
bound

(
`
2

)
, we get the following.

Proposition 4 (Simple P -bound). Let P ⊆ V be a vertex set in G = (V,E).
Then for any S ⊇ P with |S| − |P | = `, we have

m(S) ≤ m(P) +

(
`

2

)
+
∑̀
i=1

degP (vi),

where v1, . . . , v` ∈ V \ P exhibit the largest values of degP (vi).

While the simple P -bound is the least tight of these three P -bound variants, it
is also the one with the least computational overhead. It thus is a crucial feature
of our algorithm (see Section 5).

4 Algorithm and Heuristic Improvements

We now describe our algorithm in detail, including several heuristic speed-ups; a
pseudocode is shown in Algorithm 1. As outlined in the introduction, we main-
tain a partial solution P throughout the execution of the algorithm as well as an
active vertex v. Initially, P contains a single vertex (we try all possibilities). We
successively either add a neighbor of v to P (trying all possibilities) or make v
inactive, meaning that no further neighbors of v should be added to P . Inactive
vertices are maintained in a set I ⊆ P . The procedure is terminated if P reaches
size k or all vertices are inactive. As previously shown, this strategy finds a con-
nected µ-clique with k vertices if there is one [9]. After each step of either adding
a vertex to P or making a vertex inactive, we check whether the bounds from
Section 3 imply that no k-vertex µ-clique containing P exists.

Our general strategy to find the largest µ-clique is to apply Algorithm 1 with
successively increasing k. Due to quasi-heredity, once the algorithm asserts that
there is no k-vertex µ-clique subgraph, then there is also none with more than k
vertices. Next, we describe several speed-up tricks.

5

Algorithm 1: Find µ-clique

Input: A graph G, k ∈ N, 1/2 ≤ µ ≤ 1
Output: A connected µ-clique in G of order k if there is one, otherwise ⊥.

11 foreach v ∈ V (G) do
2 Recurse(G, {v}, ∅, v)
3 Remove v from G

4 return ⊥
5 Procedure Recurse(G, P , I, a)
6 if |P | = k and G[P] is a µ-clique then return P
7 if |P | = k and G[P] is not a µ-clique then break
8 if edge bound, simple P -bound, or outer P -bound are violated then break
99 foreach u ∈ N(a) \ P do

10 Recurse(G, P ∪ {u}, I, a)
11 Remove u from G

12 I ← I ∪ {a}
13 if P = I then break
14 Remove all vertices in N(a) \ P from G, choose w ∈ P \ I, and set a← w
15 Recurse(G, P , I ∪ {u}, a)

4.1 Simple Early Termination Rules and Improved Branching

The goal of the following modifications is to avoid branching (Line 9, Algo-
rithm 1) if a solution can be obtained greedily or if some branches are symmetric
to others that have been already explored.

Simple Rules.We use two greedy termination rules. First, if at some time in
Algorithm 1 the graph G is a connected µ-clique, then we can obtain a k-vertex
µ-clique using Theorem 1 by greedily deleting a non-cut vertex of minimum de-
gree. Second, if adding k−|P | edges toG[P] would yield a µ-clique, then it suffices
to simply check whether the connected component containing P is large enough.

Pending Trees. The latter observation can be extended to any pending tree
on P , that is, an induced tree T in G containing exactly one vertex v of P
such that deleting v cuts T from the rest of the graph. We avoid branching on
vertices in pending trees as follows. Adding ` vertices from such a tree to P adds
exactly ` edges. Hence, any solution containing pending tree vertices is found by
first branching on the vertices that are not in pending trees and then applying
the simple check described above. Hence, after computing the set of all pending
trees, we can restrict the branching step in Line 9 of Algorithm 1 to vertices not
contained in any pending tree.

Twins. We call two vertices u and v twins if N(u) \ {v} = N(v) \ {u}. While
we cannot assume that, if a vertex is in a solution, then also all its twins are,
we do have the following property. Given P ⊆ V (G), if there is no k-vertex
µ-clique that contains P and a vertex v ∈ V (G) \ P , then there is no µ-clique
containing P and any of the twins of v in V (G) \ P . Note that after Line 10 in
Algorithm 1 we know that no k-vertex µ-clique containing u exists. Hence, we

6

may not only remove u in Line 11, but also all its twins in V (G) \ P . In order
to do this, we compute the set of twins for each vertex in the beginning. (Note
that two twins in a graph remain twins after deleting any subset of vertices.)

Pre-evaluation of the Modifications. Since the simple rules above can be com-
puted very quickly, we enabled them in all variants of Algorithm 1 we tested.
Regarding pending trees and twins, we found that their benefits overlapped
strongly in our benchmark instances of Section 5. That is, enabling both at the
same time did not yield meaningful speed-up over the variants in which only
one of them was enabled. Hence, we enabled only the twin modification, which
showed a slightly greater reduction in calls to Recurse.

4.2 Order of adding vertices to P

We now consider the order in which vertices are added to the partial solution P
in Lines 1 and 9 of Algorithm 1. Intuitively, for a yes-instance, we would like to
order the vertices in such a way that a solution is discovered within only few
branches. This approach is followed in our optimistic ordering. The optimistic
ordering also serves as a greedy heuristic by determining which vertices to add
in the first descent in the recursion. For a no-instance, however, it is better to
add vertices to P that lead to sparse partial solutions, so that it can be easily
determined that these vertices are not in a solution. Subsequently, these vertices
will be removed in Lines 3 and 11, truncating the search space. This approach
is followed in our pessimistic ordering.

Basic Optimistic Ordering. The optimistic ordering is based on two simple
heuristics. The first heuristic, MaxDegKeep, starts with a highest-degree vertex
and then recursively selects neighbors of already selected vertices with highest
degree, until k vertices are selected. The second one, MinDegDel, instead removes
vertices of minimum degree—omitting cut vertices—until only k vertices remain.
In preliminary experiments we observed that the inequality d ≥ ∆/10 seems to
be a good predictor on which of the two heuristics performed better. Here, ∆ is
the maximum degree of the input graph, and d is its degeneracy. If d ≥ ∆/10,
then MaxDegKeep worked better and MinDegDel otherwise.

Based on the above observation we define score(v) for each vertex v and we
first add vertices with the higher scores to P in Lines 1 and 9. If d ≥ ∆/10,
then score(v) is simply the degree of v in the input graph. If d < ∆/10, then
score(v) is the largest degree encountered when deleting vertices of minimum
degree from the input graph until v is deleted.

Breaking Ties. Most of our instances, and most of the instances we expect
to be encountered in practice, fall into the “d < ∆/10” category. Since often
these graphs have thousands of vertices and small maximum score, many ver-
tices receive the same score. Thus, we try to break ties by modifying the score.
We tested two alternatives for tie-breaking: a) the number of neighbors with
larger score, and b) the number of edges in the neighborhood of the vertex.
Interestingly, pre-evaluation showed that a) performed worse than without tie
breaking, increasing running times and calls to Recurse. Tie breaker b) showed
improvements on some instances, so we opted to test only b) in Section 5.

7

Neighborhood-based Scoring. As the set P grows, it intuitively becomes more
important to add many edges to G[P] when adding vertices. Thus, in a variant
of the vertex scoring, for each vertex v ∈ V \ P , we add |NP (v)| to score(v).

Pessimistic Ordering. The pessimistic ordering is obtained by essentially re-
versing the ordering given by the score of the vertices. That is, we first consider
vertices, which we expect to not be in a µ-clique of order k. We break ties among
them by considering first vertices with the fewest number of edges in the neigh-
borhood. In the neighborhood-based scoring for the pessimistic variant, we score
vertices with the fewest neighbors in P highest.

4.3 Application of the Upper Bounds

We now list several optimizations we employed for Line 8 of Algorithm 1.

− Since the edge bound and simple P -bound can be computed quickly, we
determined in preliminary experiments that it is always better to enable both
bounds. In particular, the simple P -bound has to be enabled in any good con-
figuration of the algorithm. Thus, both bounds are always enabled in Section 5.

− The simple P -bound and outer P -bound rely on knowing the number of
neighbors in P for each vertex outside of P . To amortize the corresponding
computation cost, this information is kept and updated in each call to Recurse.

− The outer P -bound is based on certain values for each vertex. Then, from
the ` largest of these values, it derives an upper bound on the density achiev-
able in a k-vertex subgraph containing P . Compared to the trivial approach of
computing all values, a considerable speed-up can be achieved by computing
the values one-by-one, and only as long as the upper bound derived from the
` largest values computed so far still is below µ.

5 Implementation and Experiments

The algorithm described in Section 4 was implemented in Haskell and compiled
using ghc version 7.4.1; the source code and test data is freely available, see
http://fpt.akt.tu-berlin.de/connected-mu-clique. All experiments were
run on an Intel Xeon E5-1620 computer with 4 cores at 3.6 GHz and 64 GB
RAM. The operating system was Debian GNU/Linux 6.0. Our implementation
does not use multiprocessing capabilities, however, up to four experiments were
run on the machine at once (one on each core). Unless stated otherwise, the time
limit was one hour.

We performed the following experiments. First, for µ = 0.7, we compared all
configuration variants of our algorithm in order to identify the best ones. The
comparison is done on 25 real-world and benchmark instances. Then, we compare
our algorithm to the one of Pajouh et al. [11] on a representative subset of the
real-world instances for several values of µ. Finally, we perform experiments on
random graphs to determine more precisely the limits of our algorithm and of
the algorithm of Pajouh et al. [11].

8

Table 1. Reported µ-clique orders and running times (s) of the algorithm configura-
tions across the test data set. The “# solved” column denotes the number of instances
solved to optimality. Optimality is also indicated by a star on the µ-clique order. For
any variant, the “# max k” column denotes the number of graphs where the largest µ-
clique order was achieved among all variants. This is also indicated by a bold µ-clique
order. A bold time means that this variant was the fastest among all variants that
solved this instance.

#
m

ax
k

#
so

lv
ed

E
R

D
O

S
-9

9-
2

H
u
m

an
-a

ll

G
E

O
M

-0

em
ai

l-
E

n
ro

n

A
ck

er
-a

ll

A
ck

er
-p

c

(O)-(↑)-(B) 24 6
15* 25 28 58 25 17*

(2850.14) (3600.0) (3600.0) (3600.0) (3600.0) (199.03)

(O)-(↑)-(B,N) 24 6
15* 25 28 58 25 17*

(2850.27) (3600.0) (3600.0) (3600.0) (3600.0) (201.31)

(↑)-(B,N) 24 6
15* 25 28 58 25 17*

(2809.09) (3600.0) (3600.0) (3600.0) (3600.0) (190.91)

(↓)-(B) 6 3
15* 16 28 20 20 17*

(3319.91) (3600.0) (3600.0) (3600.0) (3600.0) (64.36)

5.1 Finding the best Algorithm Variants

Our test bed consists of 25 networks overall. Of these networks, 12 are from the
Second DIMACS Implementation Challenge, chosen to represent hard instances
for dense subgraph problems, and 13 are real-world social and biological net-
works, chosen from several applications to represent instances one might face in
practice. Table 1 shows the performance of four algorithm variants (including
the three best) on a subset of these instances. Each variant is represented by a
string in which O denotes that the outer P -bound is enabled, B denotes that
tie-breaking is enabled, N denotes that neighborhood-based scoring is enabled,
↑ denotes the optimistic ordering and ↓ denotes the pessimistic ordering.

Our observations are roughly as follows: For instances with larger maxi-
mum k, the optimistic ordering outperforms the pessimistic one. Those with
small maximum k are solved slightly faster with pessimistic ordering. The outer
P -bound usually does not reduce search tree size significantly but it runs fast
enough to have only a small negative effect on running times. Tie-breaking allows
to discover several µ-cliques in instances of medium difficulty which otherwise
seem to be hard to find. The effect of neighborhood-based scoring is negligible.

5.2 Comparison with a Previous Approach

We compared our algorithms with an exact branch and bound algorithm for
finding µ-cliques by Pajouh et al. [11]. In the following, we denote their al-
gorithm by BB. (Recall that BB may report disconnected µ-cliques.) For the

9

Table 2. Largest µ-cliques found by the branch and bound algorithm (BB) by Pajouh
et al. [11], and by our algorithm (O)-(↑)-(B,N), indicated by A1, and (O)-(↑)-(N),
indicated by A2. Bold values represent maximum connected µ-clique orders as reported
by the corresponding algorithm.

µ = 0.55 µ = 0.7 µ = 0.9
BB A1 A2 BB A1 A2 BB A1 A2

Acker-all 32 32 32 25 25 25 15 15 15
Human-all 41 37 39 31 26 27 20 20 18

email-Enron 86 81 68 55 58 44 29 29 21
ERDOS-99-2 20 19 20 14 14 14 9 9 9

GEOM-0 39 32 32 30 28 28 23 23 23
wiki-Vote 104 84 103 65 62 61 31 28 26

comparison, we chose several real-world instances from the test bed above and
the three values of µ = 0.55, 0.7, 0.9. The results are shown in Table 2. In terms
of quickly finding large solutions, BB performs better than our algorithm but
the favor shifts towards ours for larger µ. Our algorithm could verify optimality
for several instances with larger values of µ, whereas BB was never able to ver-
ify optimality within the time limit. While Table 2 shows results with the outer
P -bound enabled; In some instances, enabling the outer P -bound reduces the
number of calls to Recurse, but this is rare.

5.3 Evaluation on Random Instances

Erdős-Rényi Random Graphs. For each combination of n = 10, 20, . . . , 1200 ver-
tices and edge probability p = 0.05, 0.1, 0.2, we generated 15 Erdős-Rényi random
graphs. The average running times of our algorithm variant (↑)-(B,N) and algo-
rithm BB are shown in Fig. 1 for those n, where all 15 instances were solved to
optimality within 20 minutes. For p = 0.1 and p = 0.2, the reported maximum
µ-cliques of our algorithm were around ten at the cut-off points due to the time
limit. Our algorithm clearly outperforms BB in terms of verifying optimality
on these instances. Furthermore, the differences get more pronounced as p gets
smaller, that is, the graphs get sparser.

Random Small-World Graphs with Planted µ-cliques. In order to assess the
order of the retrieved µ-cliques, we generated random networks with a planted µ-
clique of order 10, 20, and 30. For each order, we created six networks, two
networks with 500 vertices, two with 1000 vertices, and two with 2000 vertices.
First, we sample a µ-clique of the appropriate order using the Erdős-Rényi model
with edge probability p = µ and ensuring density at least µ. Then, we add ver-
tices according to the Barabási-Albert model, making a new vertex adjacent to
bk/ic previous ones with probability proportional to their degrees. Herein, k is
the µ-clique order and i = 2 for the first graph and i = 4 for the second one.
Table 3 shows our results. If the planted µ-clique has order 10, our algorithm out-
performs BB as it can exactly solve these instances. For planted µ-cliques of order

10

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200

R
u
n
n
in

g
ti

m
e

(s
)

Number of vertices

A3, p = 0.05
BB, p = 0.05

A3, p = 0.1
BB, p = 0.1
A3, p = 0.2
BB, p = 0.2

Fig. 1. Running times for varying order and edge probability p of Erdős-Rényi graphs.
A3 denotes our algorithm in variant (↑)-(B,N).

Table 3. Comparison of the retrieved µ-clique orders in random small-world networks.
Here, k denotes the order of the planted µ-clique, n denotes the order of the input
graph, and each * denotes an instance that was solved within the time limit.

k n (↑)-(B,N) (↑)-(N) (O)-(↑)-(N) (O)-(↑)-(B,N) BB

500 11.0 (**) 11.0 (**) 11.0 (**) 11.0 (**) 10.0
10 1000 12.0 (**) 12.0 (**) 12.0 (**) 12.0 (**) 11.0

2000 12.0 (**) 12.0 (**) 12.0 (**) 12.0 (**) 11.0

500 21.5 (*) 21.5 (*) 21.0 21.0 21.5
20 1000 21.0 21.0 21.0 21.0 21.0

2000 20.5 20.5 20.5 20.5 20.5

500 26.0 26.0 25.5 25.5 30.5
30 1000 29.0 29.0 29.0 29.0 31.0

2000 30.0 30.0 30.0 30.0 30.0

30, BB outperforms our algorithm. For order 20, they behave roughly the same.
The algorithm variants without outer P -bound perform slightly better than the
ones with the outer P -bound, tie-breaking has no effect in these instances.

6 Conclusion and Outlook

We proposed a new algorithm for finding connected µ-cliques which is based on
searching for successively larger solutions. As known upper bounds are appar-
ently not tight enough, this strategy seems to be imperative for bounding the
search space in each iteration. Using this approach, we could verify optimality
for several real-world instances.

In ongoing work, we developed two tighter upper bounds. They showed
promising reductions of the search space for some instances. However, they

11

require more computational overhead which increases the overall computation
time. It is thus interesting to improve the corresponding implementations and
to find easily checkable conditions on when the bounds might apply.

Acknowledgment. Manuel Sorge and Kolja Stahl gratefully acknowledge sup-
port by Deutsche Forschungsgemeinschaft (DFG), project DAPA, NI 369/12.

References

[1] J. Abello, P. M. Pardalos, and M. G. C. Resende. On maximum clique
problems in very large graphs. In External Memory Algorithms and Visu-
alization, volume 50 of DIMACS, pages 119–130. AMS, 1999.

[2] J. Abello, M. G. C. Resende, and S. Sudarsky. Massive quasi-clique detec-
tion. In Proc. 5th LATIN, volume 2286 of LNCS, pages 598–612. Springer,
2002.

[3] G. D. Bader and C. W. Hogue. An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics, 4(1):
2, 2003.

[4] B. Balasundaram and F. M. Pajouh. Graph theoretic clique relaxations and
applications. In Handbook of Combinatorial Optimization, pages 1559–1598.
Springer, 2013.

[5] V. Boginski, S. Butenko, and P. M. Pardalos. On structural properties
of the market graph. In Innovations in Financial and Economic Networks,
New Dimensions in Networks, pages 29–45. Edward Elgar Publishing, Chel-
tenham, England, 2003.

[6] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness II: On completeness for W[1]. Theoretical Computer Science, 141
(1&2):109–131, 1995.

[7] U. Feige and M. Seltser. On the densest k-subgraph problem. Technical re-
port, The Weizmann Institute, Department of Applied Math and Computer
Science, 1997.

[8] F. Harary. The maximum connectivity of a graph. Proceedings of the Na-
tional Academy of Science of the United States of America, 48(7):1142–1146,
1962.

[9] C. Komusiewicz and M. Sorge. Finding dense subgraphs of sparse graphs. In
Proc. 7th IPEC, volume 7535 of LNCS, pages 242–251. Springer, 2012. Long
version to appear under the title “An Algorithmic Framework for Fixed-
Cardinality Optimization in Sparse Graphs Applied to Dense Subgraph
Problems” in Discrete Applied Mathematics, Elsevier.

[10] S. Kosub. Local density. In Network Analysis, volume 3418 of LNCS, pages
112–142. Springer, 2004.

[11] F. M. Pajouh, Z. Miao, and B. Balasundaram. A branch-and-bound ap-
proach for maximum quasi-cliques. Annals of Operations Research, 216(1):
145–161, 2014.

[12] J. Pattillo, A. Veremyev, S. Butenko, and V. Boginski. On the maxi-
mum quasi-clique problem. Discrete Applied Mathematics, 161(1-2):244–
257, 2013.

12

[13] P. Raghavendra and D. Steurer. Graph expansion and the unique games
conjecture. In Proc. 42nd STOC, pages 755–764. ACM, 2010.

[14] P. Turán. On an extremal problem in graph theory. Matematikai és Fizikai
Lapok, 48(436-452):137, 1941.

[15] A. Wagner and D. A. Fell. The small world inside large metabolic networks.
Proceedings of the Royal Society of London. Series B: Biological Sciences,
268(1478):1803–1810, 2001.

[16] J. Zhang and Y. Chen. Monte Carlo algorithms for identifying densely
connected subgraphs. Journal of Computational and Graphical Statistics,
2014. Available Online.

13

7 Appendix

7.1 Omitted Proofs from Section 2

Proof (Lemma 1). The statement is obviously true for n ≤ 2, thus assume
that n > 2 in the following. Let µ′ denote the density of G[V \ {v}]. Then,
µ ≤ µ′ if and only if

2m

n(n− 1)
≤ 2(m− deg(v))

(n− 1)(n− 2)

⇔ 2m

n
≤ 2(m− deg(v))

(n− 2)

⇔ 2mn− 4m ≤ 2mn− 2 deg(v)n

⇔ −4m ≤ −2 deg(v)n

⇔ 2m

n
≥ deg(v).

ut

In the following, we call vertices with degree less or equal than 2m/n density-
deletable which indicates that deleting them results in a graph which fulfills the
density condition (Lemma 1).

Proof (Theorem 1). The claim is trivially true for µ = 1. Thus, let G = (V,E)
be a connected µ-clique, 1/2 ≤ µ < 1. We show that G contains a vertex v such
that v is not a cut-vertex and v is density-deletable, that is, deg(v) ≤ 2m/n. We
distinguish two cases.

Case 1: G does not contain a cut-vertex. Let v be the vertex with minimum
degree in G. Obviously, deg(v) ≤ 2m/n. Then, by Lemma 1, G[V \ {v}] is
a µ-clique. By the case assumption, it is also connected.

Case 2: G has a cut-vertex u. Let G1, . . . , Gi, i ≥ 2 be the connected com-
ponents of G[V \ {u}]. Let G1 be the connected component with the minimum
number of vertices and observe that G1 has at most (n − 1)/2 vertices. There-
fore, the degree of every vertex v in G1 is at most (n− 1)/2: the vertex v has at
most (n− 1)/2− 1 neighbors in G and at most one further neighbor, namely u.
Since G is a µ-clique and µ ≥ 1/2 we have 2m/n ≥ (n−1)/2. By the observation
above, each vertex v in G1 has degree at most (n− 1)/2 and (n− 1)/2 ≤ 2m/n
by the discussion above. Consequently, every vertex v in G1 is density-deletable.

At least one vertex in G1 is not a cut-vertex in G. Deleting this vertex results
in a connected µ-clique. ut

Proof (Theorem 2). Let µ = a/b be as described above and assume without loss
of generality that a > 3. We construct a connected µ-clique G on n vertices
and then show that every (n − 1)-vertex subgraph of G has either density less
than µ or two connected components. The graph G will consist of two disjoint
subgraphs G′ that are connected by a path on three vertices. These vertices will

14

be the only density-deletable vertices, and hence, any proper density-µ subgraph
will be disconnected by Lemma 1.

Let ε := 1/2−a/b and observe that ε > 0 by the assumption of the statement.
To construct G, first choose n to be an odd integer such that n > 1/ε, n is a
multiple of b, and m := (a/b) ·

(
n
2

)
is an even integer. Eventually, G will have

exactly m edges and thus density exactly µ. Let us show that an integer n as
above exists. Note that, if n fulfills the second condition, to fulfill the third
condition it suffices that (n− 1)/2 is even.

There is clearly an odd integer x that fulfills the first two conditions. Since x
is odd, we have x = 2y + 1 for some integer y. Thus, if the third condition
is not fulfilled by setting n := x, then (x − 1)/2 = y is odd. Then, however,
setting n := 3x = 6y + 3 gives (n − 1)/2 = (3x − 1)/2 = (6y + 2)/2 = 3y + 1.
Since y is odd, this number is even. Thus, there exists an n which fulfills all
three conditions.

The next step is to construct a graph G∗ on bn/2c = (n − 1)/2 vertices
and m/2 edges. Such a graph G∗ exists if the desired number of edges does not
exceed the number of all possible edges. That is,

µ ·
(
n

2

)
· 1

2
<

(
n− 1

2

)
⇔ µ · n · (n− 1)

4
<

(n− 1)(n− 2)

8

⇔ µ · n < (n− 2)

2

⇔ n

2
− ε · n < n

2
− 1.

The last inequality is fulfilled since n > 1/ε. Hence, such a graph G∗ exists.
Consider now the average degree δ over all vertices of G∗. We have

δ = 2 · m
2
· 1

(n− 1)/2
= µ ·

(
n

2

)
· 2

n− 1
= µ · n.

Since n is a multiple of b, the average degree is thus an integer and since a > 3 we
have δ ≥ 3. For an integer average degree δ < p − 1, there exists a δ-connected
δ-regular graph on p vertices [8], meaning that removing any set of less than
δ edges leaves a connected graph and each vertex has degree exactly δ. Thus, we
let G∗ be a δ-connected δ-regular graph on (n− 1)/2 vertices.

Now, we perform a final modification to G∗ in order to obtain a new graph:
Pick a vertex u and two nonadjacent neighbors v and w of u. Since G∗ is con-
nected and not a clique, such a vertex u exists. Now remove the edges {u, v}
and {u,w} and add the edge {v, w}. Call the resulting graph G′, and observe
that G′ has m/2−1 edges and all vertices in G′ have degree δ, except one vertex,
which has degree δ−1. Moreover, G′ is connected since G∗ is δ-connected, δ ≥ 3,
and thus removing two edges does not make it disconnected.

We now obtain G as follows: Take the disjoint union of two copies of G′,
add one further vertex v′, and make this vertex adjacent to the uniquely defined

15

vertex of minimum degree in each copy of G′. The graph G has 2(m/2 − 1) +
2) = m edges and thus it has density exactly µ. There are three vertices in G
whose degree is at most the average degree: v∗ and its two neighbors. These
three vertices are cut-vertices. Consequently, every density-deletable vertex is
a cut-vertex which implies that G has no (n − 1)-vertex subgraph that is a
connected µ-clique. ut

7.2 Omitted Proofs from Section 3

Proof (Proposition 3). Clearly, we have

m(S) = m(P) +
∑
v∈P

degS\P (v)/2 +
∑

v∈S\P

(degS\P (v) + degP (v))/2.

Grouping the terms counting edges between S \ P and P , we get

m(S) = m(P) +
∑

v∈S\P

(
degP (v) + degS\P (v)/2

)
= m(P) +

∑
v∈S\P

(
degP (v) + min{degS\P (v), `− 1}/2

)

≤ m(P) +
∑̀
i=1

(
degP (vi) + min{degV \P (vi), `− 1}/2

)
,

where v1, . . . , v` ∈ V \ P exhibit the largest values of

degP (vi) + min{degV \P (vi), `− 1}/2.

ut

7.3 Further Upper bounds

Here, we describe the two additional upper bounds mentioned in Section 6.
A worst-case example for the three P -bounds described Section 3 occurs if

there are ` vertices V ′ adjacent to all vertices of P such that each vertex of V ′

has `−1 further degree-one neighbors. Then all P -bound variants above evaluate
to the trivial upper bound of m(S) ≤ m(P)+ |P | · `+

(
`
2

)
. To avoid this behavior

we now look at pairs of vertices outside of P instead of just singletons. The
bound we obtain in this manner is given below. Let us first define the following
function describing a value that each vertex pair may contribute to m(S). Here,
A4B := (A\B)∪(B \A) denotes the symmetric difference of two sets A and B.

Definition 2. For u, v ∈ V \ P, u 6= v, define

val(u, v) := degP (u) + degP (v) + I(u, v) +D(u, v)/2 + |N(v) ∩ {u}|,

16

where

I(u, v) := min{|NV \P (u) ∩NV \P (v)|, `− 2}, and

D(u, v) := min

{
|(NV \P (u)4NV \P (v)) \ {u, v}|,
max{0, `− 2− |NV \P (u) ∩NV \P (v)|}.

Proposition 5 (Pairwise P -bound). Let P ⊆ V be a vertex set in G =
(V,E). Then for any S ⊇ P with |S| − |P | = ` ≥ 2, we have

m(S) ≤ m(P) +
1

`− 1

(`
2)∑

i=1

val(ui, vi),

where {u1, v1}, . . . , {u(`
2)
, v(`

2)
} are the

(
`
2

)
vertex pairs in V \ P that exhibit the

largest values of val(ui, vi).

Proof. First, we clearly have

m(S) = m(P) + m(S \ P, P) + m(S \ P), (1)

where, for two vertex sets A,B ⊆ V , m(A,B) denotes the number of edges
between A and B in G. To get a new upper bound of the left hand side we now
consider the contribution of each pair of vertices u, v ∈ S \ P to the last two
terms. We first focus on the last term. If there is at least one vertex pair in S \P
(that is, ` ≥ 2), we have

m(S \ P) =
1

2(`− 1)

∑
{u,v}⊆S\P

degS\P (u) (2)

=
1

4(`− 1)

 ∑
{u,v}⊆S\P

degS\P (u) +
∑

{u,v}⊆S\P

degS\P (v)

 (3)

=
1

2(`− 1)

∑
{u,v}⊆S\P

degS\P (u) + degS\P (v) (4)

Note that Eq. (4) is equivalent to

m(S \ P) =

1

2(`− 1)

∑
{u,v}⊆S\P

2|NS\P (u) ∩NS\P (v)|+ |NS\P (u)4NS\P (v)|. (5)

Now we replace parts of the right hand side of this equation by minima of two
terms. This replacement does not affect Eq. (5) but it will have an effect later,
when we replace the (unknown) vertex pairs that the sum ranges over by those
vertex pairs that maximize this sum. Note that |NS\P (u) ∩NS\P (v)| is at most

17

`− 2; hence we may replace this summand with the minimum of the two, which
is exactly I(u, v). Next, observe that

|NS\P (u)4NS\P (v)| = |(NS\P (u)4NS\P (v)) \ {u, v}|+ 2|N(v) ∩ {u}|.

Furthermore,

|(NS\P (u)4NS\P (v)) \ {u, v}| ≤ `− 2− |NS\P (u) ∩NS\P (v)|
≤ max{0, `− 2− |NS\P (u) ∩NS\P (v)|},

and this means that we can replace the left hand side by the minimum of the
two sides above which is exactly D(u, v). Plugging both minima into Eq. (5), we
arrive at

m(S \ P) =
1

2(`− 1)

∑
{u,v}⊆S\P

2I(u, v) +D(u, v) + 2|N(v) ∩ {u}|.

Considering the second to last term in the sum in Eq. (1), notice that, similarly
to Eq. (4), we have

m(S \ P, P) =
1

`− 1

∑
{u,v}⊆S\P

degP (u) + degP (v).

Hence, we can write Eq. (1) as

m(S) = m(P) +

1

`− 1

∑
{u,v}⊆S\P

degP (u) + degP (v) + I(u, v) +D(u, v)/2 + |N(v) ∩ {u}|. (6)

When applying the bound we do not know S, so we replace the pairs u, v by the(
`
2

)
vertex pairs from V that exhibit the largest value of the term in the sum.

The term in the sum is calculated by replacing each occurrence of S with V .
This only increases the right hand side of Eq. (6). ut

The overhead for computing the pairwise P -bound is higher than for the other
P -bounds. Hence, it is crucial to find an efficient implementation. A straight-
forward implementation of the bound iterates over all pairs and computes val
for each pair, yielding a worst-case running time of Ω(n3). Apart from heuristic
improvements in Section 4, one can also improve on the straightforward running
time if the input graph is sparse. The improvement is achieved by considering
only the present edges and their contribution to the val-values as follows.

Lemma 2. The pairwise P -bound can be computed in O(n2 +m · n) time.

Proof (Sketch). First, we construct three arrays A,B,C with
(|V \P |

2

)
entries

each, one for each pair in
(
V \P
2

)
. Eventually, entry A[{u, v}] will hold val(u, v),

B[{u, v}] will hold |NV \P (u) ∩ NV \P (v)| and C[{u, v}] will hold |(NV \P (u) 4

18

NV \P (v)) \ {u, v}|. First, for each vertex v ∈ V \ P we add degP (v) to the
entry A[{u, v}] for each u ∈ V (G) \ P . This takes O(n2) time. After that, it
remains to take care of the remaining three terms in val. The last one is trivial,
so we omit it. Note that the entry A[{u, v}] can be easily computed in O(1) time
once we have B[{u, v}] and C[{u, v}]. To compute the arrays B and C, we
consider each edge {x, y} and do the following. For each w ∈ N(y)\(P ∪{x}) we
increment B[{w, x}], and for each w ∈ (V (G) \ (P ∪N(y) ∪ {x}) we increment
C[{w, x}]; this takes O(n) time. Symmetrically, for each w ∈ N(x)\(P ∪{y}) we
increment B[{w, y}], and for each w ∈ (V (G) \ (P ∪N(x) ∪ {y}) we increment
C[{w, y}]. Note that, after we have done that for all edges in G[V \P], B and C
hold the required values. Finally, it remains to find the

(
`
2

)
pairs with the largest

values in A, which can be done by sorting the array in O(n2) time using bucket
sort. ut

Our final bound is based on Turán graphs.

Theorem 3 ([14]). The n-vertex graph without a clique of order k with the
maximum number of edges is Kn1,n2,...,nk−1

, that is, the complete (k− 1)-partite
graph with part sizes n1, n2, . . . , nk, such that |ni − nj | ≤ 1.

Let T (n, k) denote the number of edges in this graph. In our algorithm, we use
the degeneracy of the graph to upper-bound the maximum clique order in G.

Proposition 6 (Turán bound). Let P ⊆ V be a vertex set in G = (V,E) such
that G[V \P] has degeneracy d. Then for any S ⊇ P with |S|− |P | = `, we have

m(S) ≤ m(P) + T (`, d+ 2) +
∑̀
i=1

degP (vi),

where v1, . . . , v` ∈ V \ P exhibit the largest values of degP (vi).

Proof. Clearly, m(S) ≤ m(P)+m(S \P)+m(S \P, P). By assumption G[V \P]
has degeneracy d. Hence, G[S \ P] has degeneracy d and does not have a clique
of order d+ 2. By Proposition 6, we thus have m(S \P) ≤ T (`, d+ 2). The term
m(S \ P, P) is upper-bounded as in the previous bounds. ut

19

7.4 Additional Tables

Table 4. Graph parameters for the graphs in the test bed. Herein, δ denotes the
minimum degree, ∆ the maximum degree, ρ the density, h the h-index, d the degeneracy
and c the number of connected components.

Graph n m δ ∆ ρ h d c

acker-schmalwand-all 5704 12627 1 438 7.76e-4 43 12 128
acker-schmalwand-pc 1907 2870 1 437 1.57e-3 22 9 84
acker-schmalwand-p 1872 2828 1 437 1.61e-3 22 9 82

Human-all 14771 67297 1 8649 6.16e-4 106 19 51
Human-pc 12385 45159 1 8560 5.88e-4 81 16 42
Human-p 12342 44739 1 8560 5.87e-4 81 16 39
Worm-all 3613 6828 1 524 1.04e-3 35 10 73

brock200 1 200 14834 130 165 0.74 145 134 1
brock200 2 200 9876 78 114 0.49 99 84 1
brock200 4 200 13089 112 147 0.65 128 117 1
brock800 2 800 208166 472 566 0.65 516 486 1
brock800 4 800 207643 481 565 0.64 514 485 1

hamming8-4 256 20864 163 163 0.63 163 163 1
keller4 171 9435 102 124 0.64 106 102 1
keller5 776 225990 560 638 0.75 565 560 1

p hat1500-1 1500 284923 157 614 0.25 456 252 1
p hat1500-2 1500 568960 335 1153 0.50 759 504 1
p hat300-2 300 21928 59 229 0.48 148 98 1
p hat700-1 700 60999 75 286 0.24 207 117 1

ERDOS-97-2 5482 8972 1 257 5.97e-4 48 9 11
ERDOS-98-2 5816 9505 1 273 5.62e-4 49 9 12
ERDOS-99-2 6094 9939 1 276 5.35e-4 50 9 11
email-Enron 36692 183831 1 1383 2.73e-4 195 43 1065

wiki-Vote 7115 100762 1 1065 3.98e-3 186 53 24

r

20

Table 5. Comparison of different upper-bounding configurations with respect to run-
ning times and calls to Recurse for the largest value of k where Algorithm 1 finished
in all configurations.

(O.)-(↑)-(B,N) (O.P.)-(↑)-(B,N) (O.T.)-(↑)-(B,N) (↑)-(B,N)

acker-schmalwand-all.txt
139 139 139 139

(0.055602) (2.821461) (1.148493) (0.039045)

acker-schmalwand-pc.txt
19 19 19 19

(0.002461) (0.015258) (0.028803) (0.001861)

acker-schmalwand-p.txt
19 19 19 19

(0.003124) (0.014814) (0.027822) (0.001765)

Human-all.txt
27957 27957 27957 27957

(24.87847) (604.414709) (1051.471294) (22.956882)

Human-pc.txt
201 201 201 201

(0.237403) (3.680115) (5.486204) (0.132176)

Human-p.txt
168 168 168 168

(0.197254) (3.078197) (4.558326) (0.109572)

Worm-all.txt
39 39 39 39

(0.011335) (0.019999) (0.164047) (0.01096)

GEOM-0.gra
798 798 674 798

(0.180793) (2.014961) (3.853945) (0.171525)

wiki-Vote.txt
6166 6166 6166 6166

(4.407739) (123.791093) (166.930533) (3.415636)

email-Enron.txt
9658 9658 9658 9658

(27.29542) (1009.216216) (908.459545) (25.183931)

keller5
586 586 586 586

(0.364413) (25.365735) (5.590281) (0.360889)

brock200 2
2139 2139 2139 2139

(0.084695) (0.108529) (0.975137) (0.081451)

brock200 4
15529736 15529736 15102171 15529736

(767.480289) (1706.657423) (2611.785801) (715.640794)

brock800 2
133369 133369 133369 133369

(32.954492) (45.014115) (807.83723) (32.028619)

brock800 4
68253 68253 68253 68253

(16.418768) (23.470246) (376.504885) (15.947536)

hamming8-4
478428 478428 478428 478428

(22.677156) (37.239283) (101.640664) (21.585677)

keller4
32842014 32842014 30593684 32842014

(1054.628497) (2172.704948) (3009.737481) (981.066648)

p hat1500-1
9524 9524 9524 9524

(2.756867) (3.287472) (242.492648) (2.901863)

p hat1500-2
384 384 384 384

(0.600911) (12.716766) (16.818033) (0.545022)

p hat300-2
309153 309153 203813 309153

(19.665408) (62.831661) (55.571791) (18.045269)

p hat700-1
2278 2278 2278 2278

(0.257848) (0.303483) (10.455954) (0.250244)

p hat700-2
67532 67532 60602 67532

(17.410172) (94.852461) (149.97654) (16.379092)

ERDOS-97-2.gra
112 112 112 112

(0.037607) (0.049824) (0.66515) (0.022862)

ERDOS-98-2.gra
84 84 84 84

(0.023426) (0.031959) (0.550267) (0.018176)

ERDOS-99-2.gra
250 250 250 250

(0.080471) (0.122949) (1.7124) (0.072934)

21

