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Abstract. We start a systematic parameterized computational complexity study of three NP-hard net-
work design problems on arc-weighted directed graphs: directed Steiner tree, strongly connected Steiner sub-
graph, and directed Steiner network. We investigate their parameterized complexities with respect to the three
parameterizations: “number of terminals,” “an upper bound on the size of the connecting network,” and the
combination of these two. We achieve several parameterized hardness results as well as some fixed-parameter
tractability results, in this way extending previous results of Feldman and Ruhl [SIAM J. Comput., 36 (2006),
pp. 543–561].
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1. Introduction. Steiner-type problems lie at the heart of network design and con-
nectivity problems [26] (see [30] for a broad account on Steiner tree problems). Roughly
speaking, the task in these problems is to find in a given weighted graph a low-cost
subgraph that satisfies prescribed connectivity requirements. Most of the corresponding
optimization problems are NP-hard. Thus, there are numerous results on polynomial-
time approximability [26]. By way of contrast, the study of the parameterized complex-
ity of these problems is much less developed (refer to [3], [12], [21] for fixed-parameter
tractability and to [11] for parameterized hardness results concerning the undirected
case). Our work contributes new algorithmic and computational hardness results con-
cerning the parameterized complexity of three fundamental NP-hard Steiner problems
in arc-weighted directed graphs.

Problem descriptions. For the directed Steiner tree (DST) problem, the task is
to connect a distinguished root vertex by directed paths to a set of given terminals. For
the strongly connected Steiner subgraph (SCSS) problem, the task is to connect all
terminals among each other. Finally, for the directed Steiner network (DSN) problem,
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the task is to connect given terminal vertex pairs. Obviously, DST and SCSS are special
cases of DSN, whereas they are “incomparable” to each other. Note that, following stan-
dard modeling, we always assume the underlying directed graph to be complete; arcs
that do not exist are modeled by assigning them the weight ∞.

Formally, let N be the set of natural numbers, and letW ⊆ N ∪ f0;∞g. If V is a set
of vertices, w∶V × V → W is a weight function,1 and A ⊆ V × V is a set of arcs; then
we define wðAÞ ≔ P

a∈AwðaÞ. We study the following:
Directed Steiner Tree (DST):

Instance: A set of vertices V , a weight function w∶V × V → W , a set T ⊆ V of term-
inals (l ≔ jT j), a root s ∈ V , and a weight bound p ∈ N.

Question: Is there a set of arcs A ⊆ V ×V of weight wðAÞ ≤ p such that in the digraph
D ≔ ðV;AÞ for every t ∈ T there is a directed path from s to t?
Strongly Connected Steiner Subgraph (SCSS):

Instance: A set of vertices V , a weight function w∶V × V → W , a set S ⊆ V of term-
inals (l ≔ jSj), and a weight bound p ∈ N.

Question: Is there a set of arcs A ⊆ V ×V of weight wðAÞ ≤ p such that in the digraph
D ≔ ðV;AÞ for every s, t ∈ S there is a directed path from s to t?
Directed Steiner Network (DSN):

Instance: A set of vertices V , a weight function w∶V × V → W , l pairs of vertices
ðs1; t1Þ; ðs2; t2Þ; : : : ; ðsl; tlÞ, and a weight bound p ∈ N.

Question: Is there a set of arcs A ⊆ V ×V of weight wðAÞ ≤ p such that in the digraph
D ≔ ðV;AÞ for every 1 ≤ i ≤ l there is a directed path from si to ti?
We set minW ≔ minðW \ f0gÞ and maxW ≔ maxðW \ f∞gÞ.
To achieve full modeling flexibility (including the cases where one wants to augment

an already existing digraph), we sometimes also use arcs of weight 0 to represent already
existing connection structure that comes for free. Allowing only arcs of weights 0 and 1 is
known in the literature as the augmentation problem [13], and allowing only arcs of
weights 1 and ∞ models the case that one searches for a minimum-size subgraph,
for example, including the classical unweighted DST problem [12]. We distinguish be-
tween 0-DSN and DSN, indicating whether 0-weights are allowed or not (analogously, 0-
SCSS, SCSS, 0-DST, DST). Moreover, inspired by Papadimitriou and Yannakakis [29],
we consider the ratio r of arc weights to be the quotient of the maximum occurring arc
weight and the minimum occurring arc weight, excluding 0-weights from consideration.
If there are ∞-weight arcs, then we call this the unbounded ratio. Clearly, a bounded
ratio means that in principle every arc is a candidate for being part of the connecting
minimum-cost subgraph. Observe that a higher ratio makes the problemmore general as
well as allowing arcs of weight 0 does. In the spirit of a multivariate algorithmics ap-
proach to computational intractability [17], [28], some meaningful parameterizations of
the considered Steiner problems are

• the parameter l denoting the number of terminals to be connected;
• the weight p of the solution divided by the minimum arc weight minW (again

excluding 0), giving the parameter p∕ minW ;2 and
• the combined parameter ðl; p ∕ minW Þ.

Note that a parameterized hardness result with respect to the combined parameter
clearly means hardness results for each single parameter and, on the contrary, a

1Observe that in this way we implicitly deal with complete digraphs in the sense that only arc weights are
specified.

2This parameter naturally reflects the number of arcs in the spanning subgraph by providing an upper
bound on the number of (nonzero) arcs.

584 JIONG GUO, ROLF NIEDERMEIER, AND ONDŘEJ SUCHÝ

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



fixed-parameter tractability result for a single parameter trivially extends to the com-
bined parameter.

Previous results. We first describe some results on the polynomial-time approx-
imability of Steiner problems in directed graphs, omitting a lot of the rich literature in
this direction. Herein, n denotes the number of vertices and m the number of arcs of
finite weight. In general terms, one may say that the considered problems are hard
to approximate. For instance, it is known that DSN cannot be approximated to within
a factor ofOð2log1−ϵ nÞ for any fixed ϵ > 0, unless NP ⊆ TIMEð2poly logðnÞÞ [9]. The best
known approximation factor is Oðl1∕ 2þϵÞ for any fixed ϵ > 0 [7]. Moreover, 0-DST can-
not be approximated to within a factor of ð1− ϵÞ ln l for any fixed ϵ > 0, unless NP ⊆
DTIMEðnOðlog log nÞÞ [15]. The best known approximation factor for DST isOðlϵÞ for any
fixed ϵ > 0 [6]. For more information, we refer to surveys [14], [25], [26] on the numerous
polynomial-time approximation results for Steiner-type problems.

Much less is known about the parameterized complexity [11], [19], [27] of directed
Steiner problems. The basic Steiner tree problem (find a subtree of an undirected graph
connecting the terminals of minimum size) is known to beW[2]-complete with respect to
the parameter “number of nonterminals in the solution” [11]. On the contrary, it is fixed-
parameter tractable (FPT) with respect to the parameter “number of terminals” [3], [12],
[21]. Both results also transfer to the directed case. In particular, the FPT algorithm can
also be used to solve 0-DST, yielding its fixed-parameter tractability with respect to the
parameter “number of terminals.” Moreover, since the set cover problem is W[2]-
complete [11] and it can also be formulated as a special case of both 0-DST and 0-SCSS
[20], it follows that 0-DST, 0-SCSS, and 0-DSN are W[2]-hard with respect to the para-
meter p∕ minW . Finally, Feldman and Ruhl [16] showed that 0-DSN can be solved in
Oðmn4l−2 þ n4l−1 log nÞ time using their Oðmn2l−3 þ n2l−2 log nÞ-time algorithm for 0-
SCSS as a subprocedure. These algorithmic results directly lead to the question whether
there are polynomial-time algorithms whose polynomial degree is independent of l. In
other words, Feldman and Ruhl asked for the fixed-parameter tractability of (0-)DSN
and (0-)SCSS with respect to the parameter l.

Our results. We extend the above results by initiating a systematic study of the
parameterized complexity of the Steiner problems discussed above (also see Table 1.1).
First, we show W[1]-hardness results even with respect to the combined parameter
ðl; p ∕ minW Þ for all four types of problems (0-DSN, DSN, 0-SCSS, SCSS), answering
Feldman and Ruhl’s question. Interestingly, for arc-weight ratio r for SCSS (0-SCSS)
we obtain W[1]-hardness with respect to the combined parameter only if r ≥ 9 (r ≥ 4),
whereas we obtain fixed-parameter tractability for SCSS when r ≤ 2 and mixed results
for 0-SCSS for r < 4 (see Table 1.1 for details). Notably, also with respect to the com-
bined parameter, 0-SCSS turns out to be FPT for r ¼ 1, whereas 0-DSN isW[1]-hard for
r ¼ 1. As a further intractability result, we show that DST and 0-DST parameterized by
the combined parameter ðl; p ∕ minW Þ have no polynomial-size problem kernels unless
NP ⊆ coNP ∕ poly. This means that, under this complexity-theoretic assumption, there
is no polynomial-time preprocessing algorithm for the problems transforming an input
instance into an equivalent instance of the same problem whose size is bounded by a
polynomial of the parameter. Notably, small problem kernel sizes, that is, polyno-
mial-size problem kernels, are desirable for applications in practice. Fixed-parameter
tractability only implies exponential-size problem kernels, and it is open in general
whether or not polynomial-size problem kernels can be achieved. As indicated in
Table 1.1, our work leaves several challenges for future research, particularly concerning
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the parameterized complexity for small arc-weight ratios.

2. Preliminaries. We use fu; vg to denote the undirected edge between vertices u
and v and use ðu; vÞ to denote the arc directed from u to v. Moreover, in a directed graph
D ¼ ðV;AÞ, the in-degree (out-degree) of a vertex u denotes the number of vertices
which have arcs directed to u (from u). A graph is strongly connected if between each
pair of vertices u and v there is a path from u to v and a path from v to u.

A parameterized problem is a set L ⊆ Σ� × N, where Σ is some finite alphabet. An
instance ðx; kÞ ∈ Σ� × N of a parameterized problem consists of main part x and para-
meter k. A given parameterized problem L is FPT with respect to a parameter k if there
is an algorithm deciding whether the instance ðx; kÞ ∈ Σ� × N belongs to L in
f ðkÞ · jxjOð1Þ time for some computable function f . It is important to realize that the
degree of the polynomial has to be independent of the parameter. A core tool in the
development of fixed-parameter algorithms is polynomial-time preprocessing by data
reduction rules, often yielding a problem kernel [4], [22]. Herein, the goal is, given
any problem instance G with parameter k, to transform it in polynomial time into a
new instance G  0 with parameter k 0 such that the size of G  0 is bounded from above
by some function only depending on k, k 0 ≤ k, and ðG; kÞ is a yes-instance if and only
if ðG  0; k 0Þ is a yes-instance. There is a hierarchy for parameterized complexity, called the
W-hierarchy [11]. At the 0th level of this hierarchy lies the class FPT of fixed-parameter
tractable problems. The class of all problems at the ith level of theW-hierarchy (i > 0) is
denoted by W[i], W[1] being the lowest class of presumably fixed-parameter intractable
problems. A parameterized problem Q is FPT-reducible to a parameterized problem Q  0

if there exists an algorithm of running time fðkÞ · jxjOð1Þ that on an instance ðx; kÞ of Q
produces an instance ðx 0; gðkÞÞ of Q  0 such that ðx; kÞ is a yes-instance of Q if and only if
ðx 0; gðkÞÞ is a yes-instance of Q  0, where the functions f and g depend only on k. A para-
meterized problem Q is W[i]-hard if every problem in W[i] is FPT-reducible to Q. A

TABLE 1.1
Parameterized complexity results for (0-)DST, (0-)SCSS, and (0-)DSN. Herein, r denotes the ratio be-

tween the maximum and the minimum positive arc weights. For r ¼ 1 the problems DST, SCSS, and DSN can
be solved in polynomial time.

Parameter:

Probl.: l p∕ minW combined

DST r ≥ 1: FPT [8], [12] r ≥ 1: FPT [8], [12] r ≥ 1: FPT [8], [12]
r ¼ ∞: no poly. kernel r ¼ ∞: no poly. kernel r ¼ ∞: no poly. kernel

(Thm. 3.4) (Thm. 3.4) (Thm. 3.4)

0-DST r ≥ 1: FPT [8], [12] r ≥ 1: FPT [8], [12]
r ¼ ∞: no poly. kernel r ≥ 1: W[2]-h. [11] r ¼ ∞: no poly. kernel

(Thm. 3.4) (Thm. 3.4)

SCSS r ≥ 9: W[1]-h. (Thm. 3.1) r ≥ 9: W[1]-h. (Thm. 3.1) r ≥ 9: W[1]-h. (Thm. 3.1)
2 < r < 9: open 2 < r < 9: open 2 < r < 9: open

r ≤ 2: FPT (Thm. 4.1) r ≤ 2: FPT (Thm. 4.1) r ≤ 2: FPT (Thm. 4.1)

0-SCSS r ≥ 4: W[1]-h. (Thm. 3.2) r ≥ 4: W[1]-h. (Thm. 3.2)
1 < r < 4: open r ≥ 1: W[2]-h. [11], [20] 1 < r < 4: open

r ¼ 1: FPT (Thm. 4.2) r ¼ 1: FPT (Thm. 4.2)

DSN r ≥ 9: W[1]-h. (Thm. 3.1) r ≥ 9: W[1]-h. (Thm. 3.1) r ≥ 9: W[1]-h. (Thm. 3.1)
1 < r < 9: open 1 < r < 9: open 1 < r < 9: open

0-DSN r ≥ 1: W[1]-h. (Thm. 3.3) r ≥ 1: W[2]-h. [11], [20] r ≥ 1: W[1]-h. (Thm. 3.3)
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parameterized problem shown to be W[1]-hard gives a strong indication for fixed-
parameter intractability [11], [19], [27].

In the context of lower bounds for problem kernel sizes we need the concept of com-
position algorithms [5]. A composition algorithm for a parameterized problem L ⊆ Σ� ×
N is an algorithm that receives as input a sequence ððx1; kÞ; : : : ; ðxt; kÞÞ with
ðxi; kÞ ∈ Σ� × N for each 1 ≤ i ≤ t, uses time polynomial in

P
t
i¼1 jxij þ k, and outputs

ðy; k 0Þ ∈ Σ� × N with
1. ðy; k 0Þ ∈ L ⇔ ðxi; kÞ ∈ L for some 1 ≤ i ≤ t, and
2. k 0 being polynomial in k.

3. Parameterized hardness results. In this section, we present new parameter-
ized hardness results for DST, SCSS, and DSN. We start with SCSS. We provide an
FPT-reduction from the W[1]-complete multicolored clique (MCC) problem [18]. In
MCC we are given an undirected graph that is properly colored3 by k colors, and
the question is whether there is a k-vertex clique in it taking exactly one vertex from
each color class. The parameter is k.

THEOREM 3.1. SCSS with arc-weight ratio at least 9 is W ½1�-hard with respect to the
combined parameter ðl; p ∕ minW Þ.

Proof. Let an undirected graphG ¼ ðV;EÞ, an integer k ≥ 1, and a proper coloring
c∶V → f1; : : : ; kg form an instance of MCC. In what follows, we construct an instance
ðV  0; w; S; pÞ of SCSS that corresponds to the given instance of MCC in the sense that it
is a yes-instance of SCSS if and only if ðG; c; kÞ is a yes-instance of MCC. Since the
instance will be constructible in polynomial time and its parameters l and p∕ minW will
be bounded by a function of the original parameter k, the construction provides a para-
meterized reduction between the problems, showing the W[1]-hardness of SCSS with
respect to the combined parameter. The three parts of the high-level idea of the con-
struction of the corresponding SCSS instance are as follows.

First, for every fixed arc-weight ratio r ≥ 9, we will use only two weights for the arcs
between the vertices in V  0, the cheap arcs having weight minW and the expensive arcs
having weight maxW (∞ if the ratio is unbounded) with r ¼ maxW ∕ minW . It will be
shown that there is a path consisting of at most 9 cheap arcs between any pair of ver-
tices, and hence there is always a solution using only cheap arcs. Thus, we consider in the
following only such solutions.

Second, for each color i there will be one terminal bi that has cheap arcs only to and
from vertex gadgets (which will be described later) representing the vertices in the MCC
graph G of this color. Thus, the paths between bi and other terminals, which consist of
cheap arcs, have to pass through some arcs in some of these vertex gadgets. This cor-
responds to taking some vertex from this color class into the solution for the MCC in-
stance. A similar gadget will also be used for every pair of distinct colors, representing
the choice of the edge connecting the vertices of the appropriate colors.

Third, the vertex gadget for a vertex v ofG will consist of two vertices cv and c  0v and a
cheap arc ðcv; c 0vÞ. This arc will be the only cheap one leaving cv and will also be the only
cheap arc entering c 0v. Taking this uniquely defined arc in solutions for the SCSS instance
represents the selection of the corresponding vertex into the solution for the MCC in-
stance. The edges of G will be encoded in a similar way. Note, however, that every edge
will be encoded twice. Finally, the vertex and edge gadgets will be connected by cheap arcs
according to the incidence so that the selected edges are between the selected vertices.

3That is, each vertex is assigned one color such that no two neighboring vertices receive the same color.
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After this informal high-level description of the parameterized reduction from MCC
to SCSS, we now come to the mathematical details. We construct our instance
ðV  0; w; S; pÞ of SCSS as follows. The set of vertices V  0 consists of the following six vertex
subsets (also see Figure 3.1 for an illustrative example):

B ≔ fbij1 ≤ i ≤ kg; D ≔ fdu;v; dv;ujfu; vg ∈ Eg;
C ≔ fcvjv ∈ Vg; D  0 ≔ fd 0u;v; d 0v;ujfu; vg ∈ Eg;
C  0 ≔ fc 0vjv ∈ Vg; F ≔ ff ijj1 ≤ i; j ≤ k; i ≠ jg:

The following arcs are given the weight minW ; that is, they are cheap arcs (see
Figure 3.1):

A ≔ fαv ≔ ðbcðvÞ; cvÞjv ∈ Vg;
A 0 ≔ fα  0

v ≔ ðc 0v; bcðvÞÞjv ∈ Vg;
B ≔ fβv ≔ ðcv; c 0vÞjv ∈ Vg;
Γ ≔ fγu;v ≔ ðc 0u; cvÞju; v ∈ Vg;
D ≔ fδu;v ≔ ðc 0u; du;vÞ; δv;u ≔ ðc 0v; dv;uÞjfu; vg ∈ Eg;
D 0 ≔ fδ 0

u;v ≔ ðd 0u;v; cvÞ; δ  0
v;u ≔ ðd 0v;u; cuÞjfu; vg ∈ Eg;

H ≔ fϵu;v ≔ ðdu;v; d 0u;vÞ; ϵv;u ≔ ðdv;u; d 0v;uÞjfu; vg ∈ Eg;
Z ≔ fζu;v ≔ ðf cðuÞ;cðvÞ; du;vÞ; ζv;u ≔ ðfcðvÞ;cðuÞ; dv;uÞjfu; vg ∈ Eg;
Z  0 ≔ fζ  0u;v ≔ ðd 0u;v; f cðuÞ;cðvÞÞ; ζ  0v;u ≔ ðd 0v;u; f cðvÞ;cðuÞÞjfu; vg ∈ Eg;
Y ≔ A ∪ A 0 ∪ B ∪ Γ ∪ D ∪ D 0 ∪ H ∪ Z ∪ Z  0:

All remaining arcs are set to be expensive arcs; that is, for ðx; yÞ ∈ ððV × V Þ \ YÞ,
wððx; yÞÞ ≔ maxW (∞ if the ratio is unbounded). The terminal set S is B ∪ F and hence
l ¼ jS j ¼ jBj þ jF j ¼ kþ kðk− 1Þ ¼ k2. Finally, set p ≔ ð3kþ 5kðk− 1ÞÞ · minW . It is
clear that the instance is constructible in polynomial time and that both l and p∕ minW

fij

bi bj

cv

c′v cw
c′w cu c′u

fji

dv↪u

d′v↪u

dw↪u
d′w↪u du↪v

d′u↪v

du↪w
d′u↪w

αv

α′
v αw

α′
w

αu
α′

u

βv βw βu

δv↪u

δ′v↪u

δ′u↪v

δw↪u

δ′u↪w

δ′w↪u δu↪v

δu↪w

εv↪u εw↪u

εu↪v εu↪w

ζv↪u

ζ′v↪u ζw↪u

ζ′w↪u ζu↪v
ζ′u↪v ζu↪w

ζ′u↪w

v

w

u

FIG. 3.1. Part of the construction from Theorem 3.1 with three vertices—v and w of color i and u of color
j—and two edges fu; vg and fu;wg. The original graph is drawn on the right. Only the arcs of Y \ Γ are drawn
for simplicity. The gadget representing the choice of a vertex of color i is in the bottom left corner; the one for a
vertex of color j is in the bottom right. The edge selection is represented as a selection of an arc from color-i
vertices to color-j vertices in the top left and as a selection of an arc from color-j vertices to color-i vertices in
the top right. The gadgets are interconnected according to the incidence of the vertices and the edges.
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only depend on the parameter k. Next, we show that every k-vertex clique of the MCC
instance one-to-one corresponds to a weight-p solution of the SCSS instance.

“⇒”: If K is a multicolored clique in G, then one obtains a set A of arcs that form a
solution to the SCSS instance as follows:

A ≔ fαv;α
 0
v;βvjv ∈ Kg ∪ fδu;v;δ

 0
u;v; ϵu;v; ζu;v; ζ

 0
u;vju; v ∈ K; u ≠ vg:

To show that the vertices of S are mutually connected in the digraph ðV  0; AÞ, assume
that vh ∈ K is the vertex of color h. Now, for every two terminals bi and bj, the arcs αvi ,
βvi , δvi;vj , ϵvi;vj , δ

 0
vi;vj , βvj , α

 0
vj form a path from bi to bj. The arcs αvi , βvi , δvi;vj , ϵvi;vj , ζ

 0
vi;vj

form a path from bi to f i;j, and the arcs ζvi;vj , ϵvi;vj , δ
 0
vi;vj , βvj , α

 0
vj form a path from f i;j to

bj. Hence, the set S is strongly connected, and with an easy calculation one
shows wðAÞ ¼ p.

“⇐”: To show that a weight-p solution of the SCSS instance implies a k-vertex clique
of the MCC instance, we need the following claim.

Claim. For every set of arcsA ⊆ V  0 × V  0, there is a set of arcsA 0 ⊆ Y withwðA  0Þ ≤
wðAÞ such that, for every two vertices x; y ∈ V  0, if there is a path from x to y in ðV  0; AÞ,
then there is a length-9 path from x to y in ðV  0; A 0Þ.

Proof of Claim. We construct a set A 0 by replacing each arc from A \ Y by a set of
arcs in Y and show that, for every ðx; yÞ ∈ A, there is a path from x to y in ðV;A 0Þ. Since
the weight of the replaced arc is maxW whereas the weight of each replacement arc is
minW , if we introduce at most r replacement arcs for each replaced arc, then wðA  0Þ ≤
wðAÞ and the claim follows.

To define the set A 0
e of the replacement arcs for a replaced arc e ¼ ðx; yÞ ∈ A \ Y, we

distinguish several cases depending on whether the endpoints represent a color, a pair of
colors, a vertex, or an edge. Moreover, in order to decrease the number of cases in the
analysis, we build A  0

e in three steps: first the replacement arcs forming a path from x to
some vertex x 0 ∈ C  0, then the replacement arcs forming a path from some vertex y 0 ∈ C
to y, and, finally, the replacement arc connecting x 0 to y 0. In the first step, we consider
the following cases for x:

• If x ¼ bi for some 1 ≤ i ≤ k, then consider an arbitrary vertex v of color
cðvÞ ¼ i, add the arcs αv and βv to A 0

e, and set x 0 ≔ c 0v.
• If x ¼ cv for some v ∈ V , then add the arc βv to A 0

e, and set x 0 ≔ c 0v.
• If x ¼ c 0v for some v ∈ V , then add no arc to A 0

e, and set x 0 ≔ x.
• If x ¼ du;v for some u; v ∈ V , then add the arcs ϵu;v,δ 0

u;v,βv to A 0
e, and

set x 0 ≔ c 0v.
• If x ¼ d 0u;v for some u; v ∈ V , then add the arcs δ  0

u;v;βv to A  0
e, and set x 0 ≔ c 0v.

• If x ¼ f i;j for some 1 ≤ i,j ≤ k then consider an arbitrary edge fu; vg ∈ E such
that cðuÞ ¼ i and cðvÞ ¼ j, add arcs ζu;v,ϵu;v,δ 0

u;v,βv to A  0
e, and set x 0 ≔ c 0v.

In the second step, we consider y:
• If y ¼ bi for some 1 ≤ i ≤ k, then consider an arbitrary vertex v with cðvÞ ¼ i,

add the arcs βv and α 0
v to A  0

e, and set y 0 ≔ cv.
• If y ¼ cv for some v ∈ V , then add no arc to A 0

e, and set y 0 ≔ y.
• If y ¼ c  0v for some v ∈ V , then add the arc βv to A 0

e, and set y 0 ≔ cv.
• If y ¼ du;v for some u; v ∈ V , then add the arcs βu and δu;v to A 0

e, and
set y 0 ≔ cu.

• If y ¼ d  0u;v for some u; v ∈ V , then add arcs βu,δu;v,ϵu;v, to A 0
e, and set y 0 ≔ cu.

• If y ¼ f i;j for some 1 ≤ i, j ≤ k, then consider an arbitrary edge fu; vg ∈ E such
that cðuÞ ¼ i and cðvÞ ¼ j, add arcs βu,δu;v, ϵu;v, ζ  0u;v to A  0

e, and set y 0 ≔ cu.
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In the third step, we add the arc ðx 0; y 0Þ toA  0
e. This arc exists since x 0 ∈ C  0, y 0 ∈ C , and Γ

has an arc from u to v for every pair of vertices u and v with u ∈ C  0 and v ∈ C . Alto-
gether, we add at most four arcs in the first step, at most four in the second step, and the
arc ðx 0; y 0Þ in the third step to A 0

e. That is, we add at most nine replacement arcs for each
arc fromA \ Y. Moreover, it is not hard to check that the replacement arcs form a length-
9 path from x to y. This finishes the proof of the claim. ▯

Given a solution A to the SCSS instance, we can assume, due to the above claim,
thatA ⊆ Y. We take an arbitrary vertex f i;j ∈ F . All the paths to and from f i;j in Y pass
through some vertex in D ∪ D  0. In order to connect f i;j to other terminals, A must con-
tain at least one arc from each of the sets Z,Z  0,H,D,D 0, each of them having indices u
and v such that cðuÞ ¼ i and cðvÞ ¼ j (if more than five arcs are used, then the indices u
and v do not have to be the same for all the arcs). This means that A contains a disjoint
union of sets of at least five arcs, each of the sets one-to-one corresponding to an f i;j. Now
take an arbitrary vertex bi ∈ B. Clearly, Amust contain two arcs αu and α 0

u with cðuÞ ¼
i which connect bi to all other terminals (again possibly the indices can be different).
Moreover, since the vertices in C are sinks and the vertices in C  0 are sources in the di-
graph induced by Y \ B, there is at least one βu with cðuÞ ¼ i in A. This means that A
also contains a disjoint union of sets of at least three arcs, each of these sets one-to-one
corresponding to a bi. Since the above mentioned arcs together already give weight
ð5 · jF j þ 3 · jBjÞ · minW ¼ p, there is no other arc in A. Let K ≔ fv ∈ V ∣ βv ∈ Ag.
We show that K is a multicolored clique in G.

For each color i there is exactly one vertex of color i in K , since there is exactly one
βu inA among those with cðuÞ ¼ i, as we have shown above. It remains to show that, for
two arbitrary vertices u0 and v0 in K , there is an edge between u0 and v0 in E. As we
have shown, there are exactly one δu;v, exactly one δ 0

u;v, exactly one ϵu;v, exactly one ζu;v,
and exactly one ζ  0u;v in A with cðuÞ ¼ cðu0Þ, cðvÞ ¼ cðv0Þ, and fu; vg ∈ E. It is not hard
to see that the indices u; vmust be the same for these five arcs. Now, if u ≠ u0, then βu is
not inA and c 0u is a source in ðV  0; AÞ. Thus, there is a path to f cðu0Þ;cðv0Þ only from c 0u, du;v,
and d 0u;v but from no vertex in S . This is a contradiction, since A is a solution. Hence,
u ¼ u0. Similarly, v ¼ v0, and thus fu0; v0g is an edge of G. ▯

A similar reduction as above also works for 0-SCSS; however, we can prove hardness
already for a smaller arc-weight ratio.

THEOREM 3.2. 0-SCSS with ratio at least 4 isW ½1�-hard with respect to the combined
parameter ðl; p∕ minW Þ.

Proof. Giving a parameterized reduction from MCC to 0-SCSS, we use the same
construction as for the proof of Theorem 3.1 and only replace the weight function w by a
function w 0 that is defined as follows. For any x; y ∈ V  0, we set w 0ððx; yÞÞ ≔ minW if
ðx; yÞ ∈ B ∪ H, w 0ððx; yÞÞ ≔ 0 if ðx; yÞ ∈ Y \ ðB ∪ HÞ, and w 0ððx; yÞÞ ≔ maxW other-
wise. We set p ≔ k2 · minW . Again, S ≔ B ∪ F and l ¼ k2.

It is not hard to check that if K is a multicolored clique in G, then

A ≔ fαv;α
 0
v;βvjv ∈ Kg ∪ fδu;v;δ

 0
u;v; ϵu;v; ζu;v; ζ

 0
u;vju; v ∈ K; u ≠ vg

is again a solution to the instance ðV  0; w 0; S; pÞ of 0-SCSS. It is also not hard to check
that an analogue of the claim shown in the proof of Theorem 3.1 holds in this case. It
suffices to take the same replacement and then check that the replacement arcs have
weight at most 4 · minW , whereas the replaced arc has weight maxW which is at least
4 · minW since the ratio is at least 4.

It remains to show that if there is a solution A such that A ⊆ Y, then there is a
multicolored clique in G. To this end, first observe that in ðV  0;Y \ ðB ∪ HÞÞ the vertices
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in C and D are sinks, while the vertices in C  0 and D  0 are sources. Thus, to connect the
vertex bi to the other terminals, there must be at least one βv in A with cðvÞ ¼ i. Si-
milarly, to connect f i;j to the other terminals it requires at least one ϵu;v inAwith cðuÞ ¼
i and cðvÞ ¼ j. Summing these up, we know that there is exactly one such arc in each of
these subsets of Y and, by similar reasons as in the proof of Theorem 3.1, the set K ≔
fv ∣ βv ∈ Ag forms a multicolored clique in G. ▯

Theorem 3.2 clearly extends to the more general 0-DSN problem. In what follows,
however, we strengthen the W[1]-hardness result by showing that, in case of 0-DSN, it
already holds for arc-weight ratio r ¼ 1. The reduction for 0-DSN with ratio 1 again is
from MCC. However, with now only one value of nonzero weight allowed, a completely
different construction is used.

THEOREM 3.3. 0-DSN with arc-weight ratio at least 1 isW ½1�-hard with respect to the
combined parameter ðl; p ∕ minW Þ.

Proof. We reduce from MCC. For each edge and each vertex color there is a pair of
vertices that can be connected either directly or by one of several paths formed by two
arcs each, exactly one of them of weight zero. The middle vertex of the chosen path
represents the choice of the appropriate edge/vertex. Formally, let G ¼ ðV;EÞ, k,
and c∶V → f1; : : : ; kg be an instance of MCC. We construct our instance of 0-DSN
as follows. The set of vertices V  0 consists of the following six vertex subsets (see
Figure 3.2):

B ≔ fbij1 ≤ i ≤ kg;
B  0 ≔ fb 0ij1 ≤ i ≤ kg;
F ≔ ff ijj1 ≤ i < j ≤ kg;
F  0 ≔ ff  0ijj1 ≤ i < j ≤ kg;
C ≔∪k

i¼1 Ci; where

Ci ≔ fcvjv ∈ V; cðvÞ ¼ ig;
D ≔∪1≤i<j≤k Dij; where

Dij ≔ fdu;vjfu; vg ∈ E; cðuÞ ¼ i; cðvÞ ¼ jg:

The following arc sets are important for the construction (see Figure 3.2):

A ≔ fαv ≔ ðbcðvÞ; cvÞjv ∈ Vg;
A 0 ≔ fα 0

v ≔ ðcv; b 0cðvÞÞjv ∈ Vg;
B ≔ fβu;v ≔ ðcu; du;vÞ; βv;u ≔ ðcv; du;vÞjfu; vg ∈ E; cðuÞ < cðvÞg;
C ≔ fγu;v ≔ ðfcðuÞ;cðvÞ; du;vÞjfu; vg ∈ E; cðuÞ < cðvÞg;
C  0 ≔ fγ  0

u;v ≔ ðdu;v; f  0cðuÞ;cðvÞÞjfu; vg ∈ E; cðuÞ < cðvÞg:

Now letwððx; yÞÞ ≔ 0 if ðx; yÞ ∈ A 0 ∪ B ∪ C, andwððx; yÞÞ ≔ maxW ¼ minW other-
wise. The solution is required to connect for every 1 ≤ i ≤ k the vertex bi to vertex b 0i
and for every 1 ≤ i < j ≤ k the vertices bi,bj and f i;j to f  0i;j. Hence l ¼ kþ 3kðk− 1Þ ∕ 2.
Let the bound on the weight of arcs which are in the solution be p ¼ ðkþ
kðk− 1Þ ∕ 2Þ · minW .
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It is clear that the instance is constructible in polynomial time and that both l and
p∕ minW only depend on the parameter k. It remains to show that there is a k-vertex
MCC in G if and only if there is a weight-p solution to the constructed 0-DSN instance.

If K is a multicolored clique in G, then we get a set A of arcs that form a solution to
the constructed 0-DSN instance by setting

A ≔ fαv;α
 0
vjv ∈ Kg ∪ fβu;v;βv;u; γu;v; γ

 0
u;vju; v ∈ K; cðuÞ < cðvÞg:

Indeed, if we assume that vi ∈ K is the vertex of color i, then for each i < j the arcs αvi

and α 0
vi form a directed path from bi to b 0i, whereas the arcs αvi ,βvi;vj , γ

 0
vi;vj the arcs

αvj ,βvj;vi ,γ
 0
vi;vj and the arcs γvi;vj ,γ

 0
vi;vj form the directed paths to f  0i;j from bi,bj and

f i;j, respectively.
For the reverse direction, we make use of the following claim.
Claim. Every solution A ⊆ V  0 ×V  0 to the constructed 0-DSN instance uses only

arcs in A ∪ A 0 ∪ B ∪ C ∪ C  0. Moreover, for each vertex in B ∪ F  0, there is exactly
one arc in A incident with it.

Proof of Claim. We concentrate on the arcs in X ≔ ðV  0 × V  0Þ \ ðA 0 ∪ B ∪ CÞ, that
is, the arcs of nonzero weight. The solution A contains at most p∕ minW of them. Each
vertex in B has out-degree at least 1 with respect to A ∩ X since it is connected to a
vertex from B  0 in ðV  0; AÞ. For each 1 ≤ i < j ≤ k, at least one of the vertices in Dij ∪
ff ijg has out-degree at least 1 in A ∩ X since the vertex f ij is connected to f  0ij. But this
already gives kþ ð1 ∕ 2kðk− 1Þ ¼ p ∕ minW arcs. Hence, no vertex in C ∪ B  0 ∪ F  0 has
nonzero out-degree in A ∩ X , the vertices in B have out-degree exactly one, and for each
1 ≤ i < j ≤ k exactly one vertex from Dij ∪ ff ijg has out-degree exactly one. By similar
reasons the vertices in F  0 have in-degree exactly one, for each 1 ≤ i ≤ k there is exactly
one vertex in Ci ∪ fb 0igwith in-degree one, and all the other vertices have in-degree zero.

Now suppose that for some i the solution contains an arc ðbi; xÞ, where
x ∈= Ci ∪ fb 0ig. Then, however, either x ∈ F  0 ∪ B  0 \ fb 0ig, which is not possible since this
would mean that x has out-degree 0 in A and bi is not connected to b 0i, or x ∈ C . In this
case there must be an arc from some vertex in D to some vertex in Ci or to b 0i in A in
order to connect bi to b 0i. Note that, by what we have already proved, the number of
nonzero arcs of the solution that start in B equals the number of arcs that end in C ∪ B  0

and similarly for F ∪ D and F  0. Hence, if a solution contains an arc from a vertex ofD to
a vertex of C ∪ B  0, it must also contain an arc from some vertex in B to some vertex in

bi

b′i

bj

b′j

fij

f ′
ij

cv cw
cu

dv↪u dw↪u

αv αw αu

α′
v

α′
w

αu

γ′
w↪uγ′

v↪u

γw↪u
γv↪u

βv↪u

βw↪u

βu↪v

βu↪w

v

w

u

FIG. 3.2. Part of the construction from Theorem 3.3 with three vertices—v andw of color i and u of color
j—and two edges fu; vg and fu;wg. The original graph is drawn on the right. The 0-weight arcs of A 0 ∪ B ∪ C
are drawn as solid, the arcs of A ∪ C  0 with weight maxW as dashed lines.
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F  0, which is impossible as we have already shown. Similarly, we can show that the arc
ending in f  0ij starts in some vertex of Dij ∪ ff ijg.

Finally, if for some i the arc ðbi; b 0iÞ was present in the solution, then there would be
no chance to get from bi to f ij for any j, as we have proved that b 0i is a sink in the solution
and there is only one arc starting in bi in any solution. Similarly for the arcs ðf ij; f  0ijÞ.
This proves the claim. ▯

Given a solutionA to the DSN instance, we can assume, due to the above claim, that
A ⊆ A ∪ A 0 ∪ B ∪ C ∪ C  0. For each i denote with vi the uniquely determined vertex
such that the arc ðbi; cviÞ is in A. We claim that K ≔ fvi ∣ 1 ≤ i ≤ kg is a multicolored
clique in G. It is clearly multicolored since the vertex vi must have color i. Now, due to
the claim, for each 1 ≤ i < j ≤ k there is exactly one edge fv 0i; v 0jg in E such that cðv 0iÞ ¼
i, cðv 0jÞ ¼ j, and γ  0

v 0i;v
 0
j
∈ A. Hence, if v 0i ≠ vi, then there is no path inA from bi to f ij since

there is no arc from cvi to dv 0i;v 0j in B. Thus, v 0i ¼ vi. By the same reasoning v 0j ¼ vj and
fvi; vjg is an edge. This implies that K is a clique in G, completing the proof. ▯

So far, we neglected studying (0-)DST. It is already known from the literature that
DST is FPT for both single parameterizations by l and p∕ minW [8], [12], while 0-DST is
FPT with respect to l [8], [12] and it is W[2]-hard with respect to p∕ minW [11]. We can
add to these results a proof for the presumable nonexistence of a polynomial-size pro-
blem kernel for DST parameterized by the combined parameter ðl; p∕ minW Þ. Recall
that this implies the nonexistence of polynomial-size problem kernels for the more gen-
eral 0-DST case as well as for the single parameter cases. To this end, we use a technique
introduced by Bodlaender et al. [5]. A similar result for the undirected unweighted Stei-
ner tree problem was proved by Dom, Lokshtanov, and Saurabh [10] as a byproduct of a
more complicated proof of presumable nonexistence of a polynomial-size problem kernel
for a different problem.

THEOREM 3.4. There is no polynomial-size problem kernel for DST with unbounded
ratio with respect to the combined parameter ðl; p∕ minW Þ unless NP ⊆ coNP ∕ poly.

Proof. We show the claim by applying the lower bound technique of Bodlaender
et al. [5] to DST. More specifically, we show that there exists a composition algorithm
for DST, which implies, according to Lemmas 1 and 2 of [5], that a polynomial problem
kernel for DST with respect to the combined parameter would lead to NP ⊆
coNP ∕ poly.

Let ðI 1; l; dÞ; : : : ; ðI r; l; dÞ be a set of DST instances where, for 1 ≤ i ≤ r, I i consists
of a vertex set Vi, a weight function wi∶Vi ×Vi → Wi, a set Ti ⊆ Vi of terminals, a
root si ∈ Vi, and a weight bound pi ∈ N. Moreover, l ¼ jT 1j ¼ · · ·¼ jTrj and
d ¼ p1 ∕ minfW 1 \ f0gg ¼ · · ·¼ pr ∕ minfWr \ f0gg. By rescaling, we can assume that
minfW 1 \ f0gg ¼ · · ·¼ minfWr \ f0gg and, thus p1 ¼ · · ·¼ pr. Note that this can be
done without loss of generality, as the minimum obtained this way is upper-bounded
by a product of the original minima, and thus the length of its encoding is upper-
bounded by the sum of lengths of encodings of the original minima. Also the length
of encoding of each other number involved in the instances is this way increased only
by an additive factor upper-bounded by the length of encoding of the new minimum.
Hence, this operation can be clearly done within polynomial time and does not change
the value of the parameter.

Now we show how a composition algorithm constructs a DST instance ðI ; l; 2dþ 2lÞ
which is a yes-instance if and only if there is one i such that ðI i; l; dÞ is a yes-instance.
First, the algorithm adds a setU of lþ 1 new vertices toV ≔∪1≤i≤r V i. Herein, one new
vertex s is the new root, and the remaining l new vertices form the new terminal set
T ≔ ft1; : : : ; tlg. The setW of weights of the new instance contains all possible weights

PAR. COMPLEXITY OF DIRECTED STEINER PROBLEMS 593

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



of the old instances. We set minW ≔ minfW 1 \ f0gg and p ≔ 2p1 þ 2l · minW . Let
Ti ≔ fti1; : : : ; tilg denote the respective terminal sets of the given instances. The new
weight function w is defined as follows:

• wððu; vÞÞ ≔ wiððu; vÞÞ if both u and v are from Vi;
• wððu; vÞÞ ≔ ∞ if u and v are from different instances;
• wððu; sÞÞ ≔ ∞;
• wððs; uÞÞ ≔ pi þ l · minW if u ¼ si for some 1 ≤ i ≤ r; otherwise, wððs; uÞÞ ≔

∞;
• wððti; uÞÞ ≔ ∞ for all 1 ≤ i ≤ l;
• wððu; tiÞÞ ≔ minW if u ¼ tji for some 1 ≤ j ≤ r; otherwise, wððu; tiÞÞ ≔ ∞.

Clearly, the above algorithm runs in polynomial time. To show that ðI ; l; 2dþ 2lÞ is
a yes-instance if and only if one of ðI i; l; dÞ is a yes-instance, observe that from the new
root swe can only use the arcs between s and the old roots si. By the weight upper bound
p, we know that we cannot afford to use more than one of such arcs. Therefore, con-
necting s to T can be reduced to connecting one of the old roots to its corresponding
terminals. This completes the proof. ▯

4. Algorithmic results. In this section, we present two fixed-parameter algo-
rithms for two variants of SCSS and 0-SCSS that restrict the allowed arc-weight ratio.
Recall that, for the combined parameters, in Theorems 3.1 and 3.2 we have shownW[1]-
hardness of SCSS for arc-weight ratio r ≥ 9 and of 0-SCSS for r ≥ 4. Now, we comple-
ment this with fixed-parameter tractability results for r ≤ 2 and r ¼ 1, respectively,
leaving a small gap of unsettled cases. In addition, we show that these algorithms di-
rectly imply a significant running time improvement of the algorithm by Feldman and
Ruhl [16] for these relevant cases.

THEOREM 4.1. SCSS with arc-weight ratio at most 2 is solvable in Oð2l · l2 þ n2Þ and
Oð2ðp ∕ minW Þ · ðp ∕ minW Þ2 þ n2Þ time.

Proof. We consider only the case that p∕ ð2minwÞ < l ≤ p∕ minW since a Hamilto-
nian cycle over the terminals gives a total weight at least l · minW and at most
2l · minW . This means that to strongly connect the terminals in S we need an arc
set with a minimum weight at least l · minw and a maximum weight at most l · maxW ≤
2l · minW . Thus, p ≥ 2l · minW always gives yes-instances, while p < l · minW gives no-
instances. Therefore, the parameters l and p∕ minW are linearly related to each other. In
particular, it suffices to show that the problem is solvable in Oð2l · l2 þ n2Þ time. To this
end, we claim that there is always a Hamiltonian cycle on S having the minimum total
weight among all arc sets strongly connecting S . Since a minimum-weight Hamiltonian
cycle on S can be found in Oð2l · l2Þ time [24], the theorem follows. We allow Oðn2Þ time
to read the entire input.

Claim. Among all arc sets strongly connecting the terminals in S, there is always
one arc set A with a minimum total weight such that A induces a Hamiltonian cycle
on S.

Proof. Let A denote an arc set strongly connecting S with a minimum total weight.
If A induces a Hamiltonian cycle on S, then we are done; otherwise, we construct a new
arc set A 0 from A such that A 0 induces a Hamiltonian cycle on S and wðA 0Þ ≤ wðAÞ.

Consider a maximal arc set P ⊆ A ∩ ðS × SÞ that forms vertex-disjoint paths on S.
Let np be the number of such paths. There have to be np arcs in A that enter the start-
vertices of paths in P and np arcs that leave the end-vertices. If there is only one arc a
leaving the end-vertex of some path and this arc enters the start-vertex of this path, then
the path together with the arc a form a cycle. As this cycle does not contain all terminals
(due to our assumptions), there is an arc ðx; yÞ in A leaving this cycle. We modify P by
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removing the arc of P leaving x and adding a. If there is an arc from x to a starting point
of some other path, we add it also. Further, we add an arc leaving the end-vertex of some
other path and entering the start-vertex of this path, as long as this does not create a
cycle. Then P is again a maximal set of arcs that forms vertex-disjoint paths on S . We
apply the above strategy until every path has an arc leaving its end-vertex and not en-
tering its start-vertex. This is possible as each application reduces the number of paths
that do not satisfy the condition. We let np still be the number of paths of P. Now there
are np arcs that leave the end-vertices of the paths and do not enter the start-vertex of
the same path. Note that these arcs are distinct from the np arcs entering the start-
vertices of the paths: if an arc leaving a path p1 was equal to an arc entering a path
p2, for some paths p1 ≠ p2 of P, then we could add this arc to P and still have a set
of paths, contradicting the fact that P is maximal.

We connect the paths of P directly using arcs between their endpoints to construct a
Hamiltonian cycle over the terminals. Let A  0 be the arc set of this Hamiltonian cycle. To
connect the paths into a Hamiltonian cycle, we need at most np arcs of total weight at
most 2np · minW , while the arcs of A \ P mentioned in the previous step have weight at
least 2np · minW . Thus, wðA 0Þ ≤ wðAÞ. ▯ ▯

Next, we consider the “augmentation case” of 0-SCSS, namely, the case that there
are only two weights and one of them is zero. In contrast to the W[1]-hardness of the
augmentation case of 0-DSN (cf. Theorem 3.3), for 0-SCSS we achieve fixed-parameter
tractability with respect to the number of terminals l.

THEOREM 4.2. 0-SCSS with arc-weight ratio 1 is solvable in Oð4l2−l þ n3Þ time.
Proof. First note that in this case we have only two weights 0 and minW ¼ maxW .

Suppose that we are given an input instance of 0-SCSS consisting of V , w, S (where
jSj ¼ l), and p. If p∕ minW ≥ l, then the answer is always yes, since we can connect
all terminals to a cycle that costs at most l · minW . So, for the rest of the proof we will
assume that p∕ minW < l.

We provide four polynomial-time executable data reduction rules that lead to a
problem kernel with at most 2 · 2l þ l vertices. Let A0 ≔ fa ∈ V ×V ∣ wðaÞ ¼ 0g.
To simplify the presentation, the rules are described as modifications of the digraph
H ≔ ðV;A0Þ. The vertices of V \ S are called nonterminals. In the following, we use
Nþ

AðvÞ and N−
AðvÞ to denote the sets of vertices which have arcs in a set A directed from

and to v, respectively. If clear from the context, then we omit the index A. The rules are
ordered, and the next rule is always applied after the previous one cannot be applied any
more. Later rules never produce a situation where an earlier rule could again be applied.
The correctness of the rules follows from the proven fact that an instance produced by a
rule is a yes-instance if and only if the original instance is a yes-instance.

Rule 1. Contract strongly connected components of H into a single vertex.
Since the arcs inA0 can be added to any solution, Rule 1 is clearly correct. Moreover

it can be exhaustively applied in Oðn2Þ time.
Rule 2. For any nonterminal v ∈ V \ S with both N−ðvÞ ≠ ∅ and NþðvÞ ≠ ∅ delete

v and connect its neighbors appropriately; that is, continue with the digraph H  0 ≔
ðV \ fvg; A0 \ ððfvg× NþðvÞÞ ∪ ðN−ðvÞ× fvgÞÞ ∪ ðN−ðvÞ× NþðvÞÞÞ.

After this rule is exhaustively applied, there remain only sources, terminals, and
sinks in the digraph, and the connections between them are preserved. Hence, the re-
sulting digraph does not depend on the order in which the vertices are considered. To see
the correctness of the rule, it is enough to realize that any arc a ∈= A0 of the solution
starting in v can be replaced by an arc starting in some sink reachable from v in H .
Similarly, any arc a ∈= A0 ending in v can be replaced by an arc ending in some source
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from which v can be reached in H . This rule can be exhaustively applied in Oðn3Þ time,
since there are n vertices and to apply the rule to one vertex takes Oðn2Þ time.

Rule 3. Delete all weight-0 arcs between two nonterminals.
The rule can be applied in Oðn2Þ time. The following claim shows its correctness.
Claim. If neither Rule 1 nor Rule 2 can be applied anymore, then there is an optimal

solution that uses no arc of weight 0 between two nonterminals.
Proof of claim. Suppose, on the contrary, that each optimal solution uses some arc

in A0 ∩ ððV \ SÞ× ðV \ SÞÞ. Let A be an optimal solution with the minimum number of
such arcs, and let a ≔ ðx; yÞ ∈ A ∩ A0 be such an arc; that is, x; y ∈ V \ S . Clearly, x is a
source and y is a sink inH ¼ ðV;A0Þ; otherwise we could apply Rule 2. There is some arc
(of nonzero weight) inA ending in x and some nonzero arc inA starting in y sinceA \ fag
is not a solution. We can assume that there is only one arc ending in x in A for the
following reason. If jN−

AðxÞj ≥ 2, then select an arbitrary x 0 ∈ N−
AðxÞ, and replace the

arcs ending in x (except ðx 0; xÞ) by arcs ending in x 0, and get another optimal solution
that satisfies this assumption (each replaced arc was nonzero, as x is a sink in H). Let us
call this unique arc ðx 0; xÞ. Similarly, we assume that there is a unique arc starting in y,
and we call it ðy; y 0Þ.

Let V 0 denote the minimal set S ⊆ V 0 ⊆ V such that A ⊆ V 0 ×V 0, and also as-
sume that A is minimal in the sense that ðV 0; AÞ is a strongly connected digraph. Now
distinguish the following sets of vertices (see Figure 4.1):

P ≔ fv ∈ V 0 \ fygj∃ a path in ðV 0; A \ fagÞ from v to yg;
N ≔ fv ∈ V 0 \ fxgj∃ a path in ðV 0; A \ fagÞ from x to vg;
O ≔ V 0 \ ðP ∪ N ∪ fx; ygÞ:

Observe that in A \ fag there is no path from any vertex in N to any vertex in P (in
particular, N ∩ P ¼ ∅), since otherwise there would be a path from x to y different from
ðx; yÞ, and thus A \ fag would be a solution. There is also no path from O to P and from
N to O according to the definition of N , P, and O. If N is empty, then A 0 ≔
ðA \ fðx 0; xÞ; agÞ ∪ fðx 0; yÞg is a better solution, since ðV 0 \ fxg; A  0Þ is strongly con-
nected, x is a nonterminal, and wððx 0; xÞÞ ≥ wððx 0; yÞÞ. Hence, N is nonempty. Similarly,
P is nonempty since otherwise ðA \ fa; ðy; y 0ÞgÞ ∪ fðx; y 0Þg would be a better solution.

SinceN is nonempty and ðV 0; AÞ is strongly connected, there must be some arc from
some vertex in N to some vertex outside N . But, as we have shown, it can end neither in

N
P

x

y

x′
y′

O

FIG. 4.1. Illustration to the proof of the claim in Theorem 4.2. Solid lines represent the sure connections in
A \ fðx; yÞg. No other connections are possible in A \ fðx; yÞg, except for those drawn by dotted lines. Dashed
lines represent the arcs in A 0 \ A.
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O nor in P nor in y. Hence, it ends in x, and thus x 0 ∈ N . Similarly, y 0 ∈ P. Now let
A 0 ≔ ðA \ fa; ðx 0; xÞ; ðy; y 0ÞgÞ ∪ fðx 0; y 0Þ; ðy; xÞg. To check that H  0 ≔ ðV 0; A

 0Þ is again
strongly connected, observe that there is a path from x to y in H  0 formed by a path
from x to x 0 (x 0 ∈ N ), the arc ðx 0; y 0Þ, and a path from y 0 to y (y 0 ∈ P). The path from
x 0 to x is formed by the arc ðx 0; y 0Þ, a path from y 0 to y, and the arc ðy; xÞ, and finally the
path from y to y 0 is formed by the arc ðy; xÞ, a path from x to x 0, and the arc ðx 0; y 0Þ. Since
wððx 0; xÞÞ þwðy; y 0ÞÞ ¼ 2minW ≥ wððx 0; y 0ÞÞ, we have wðA  0Þ ≤ wðAÞ. Also, due to op-
timality of A we have wðA  0Þ ≤ wðAÞ and wððx 0; y 0ÞÞ ¼ wððy; xÞÞ ¼ minW . Thus A  0 is
an optimal solution which uses fewer arcs of weight 0 between two nonterminals—a
contradiction. ▯

Rule 4. If there are several nonterminals with the same neighborhood in H , then
delete all of them except for one.

Rule 4 can be exhaustively applied in Oðn · l · log nÞ time by first encoding the
neighborhood of each vertex as an l-bit string, then sorting these strings in
Oðn · l · log nÞ-time and comparing the strings for each of OðnÞ pairs of vertices con-
secutive in the order; each comparison takesOðlÞ time, and if they are the same, deleting
one of them can be done in OðnÞ time. To see the correctness, observe that we can re-
connect the solution arcs with nonzero weight incident with deleted vertices to make
them incident with the appropriate remaining vertex without affecting any connection
between terminals.

Claim. If Rule 4 cannot be applied, then the digraph has at most 2 · 2l þ l vertices.
Proof of claim. The neighborhood of a nonterminal is formed only by terminal ver-

tices. Moreover a nonterminal is always either a source or a sink. Hence, there are at
most 2 · 2l different neighborhoods and thus by Rule 4 at most 2 · 2l nonterminals. To-
gether with l terminals this gives the claimed bound on the number of the vertices. ▯

By the above claim, we have at most 2 · 2l nonterminals in the reduced instance. To
solve 0-SCSS on the reduced instance, try all possibilities to connect at most p∕ minW
sinks out of 2l many to at most p∕ minW sources out of 2l many, and check whether in
the resulting digraph the terminals are mutually interconnected. We have ð 2l

l−1Þ ways to
choose the sinks, ð 2l

l−1Þ ways to choose the sources, and ðl− 1Þ! ways to interconnect
them. Since at most 3l− 2 vertices are involved in such a solution, its strong connec-
tivity can be checked in Oðl2Þ time. This yields time Oðð 2l

l−1Þ · ð 2l

l−1Þ · ðl− 1Þ! · l2Þ ¼
Oð4l2−lÞ for this part of the algorithm. Thus, 0-SCSS with ratio 1 can be solved in
Oð4l2−l þ n3Þ time. ▯

The (0-)DSN algorithm developed by Feldman and Ruhl [16] uses an algorithm for
(0-)SCSS as a subprocedure. Using the algorithms developed in the proofs of Theo-
rems 4.1 and 4.2 in case of arc-weight ratios 2 and 1, respectively, as the subprocedure,
the running time of the overall algorithm of Feldman and Ruhl can be significantly im-
proved by roughly halving the degree of its running time polynomial for the relevant case
of these small arc-weight ratios.

COROLLARY 4.3. DSN with arc-weight ratio 2 and 0-DSN with arc-weight ratio 1 can
be solved in Oð22l · l2 · n2lÞ time and Oð1282l2−ln2l þ n2lþ3Þ time, respectively.

Proof. The (0-)DSN algorithm of Feldman and Ruhl [16] is based on a simulation of
a game in which one moves some tokens along the arcs of the input digraph, the price of
the move being the total weight of the arcs used. To this end, they construct a so-called
“game graph,” with vertices representing the possible token positions and arcs represent-
ing the legal moves. For (0-)DSN with l terminal pairs a game graph for l tokens is
constructed, and the solution is then determined by a single shortest path computation
in this graph. One type of legal move is moving some k ≤ l tokens along some strongly
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connected subgraph to their new positions. The price of such a move can be determined
by solving an instance of (0-)SCSS with up to 2l terminals corresponding to old and new
positions of the tokens. For this computation our algorithms can be used. Since there are
at most n2l such moves and the time needed to perform the corresponding computations
overshadows all other steps of the algorithm (see section 6.2 of [16] for the details on the
time complexity of the original algorithm), the result follows. ▯

While DSN with arc-weight ratio 2 only allows for a running time exponentially
depending on the number l of terminal pairs, in case of arc-weight ratio 1 a simple
argument suffices to achieve polynomial-time solvability independent of the value of l.

PROPOSITION 4.4. DSN with arc-weight ratio 1 is solvable in polynomial time.
Proof. First observe that we can focus attention to arcs between terminals. If a

nonterminal was part of an optimal solution, then we could reroute the arcs incident
with it to some terminal without increasing the weight of the solution. Let
ðV; ðs1; t1Þ; : : : ; ðsl; tlÞÞ and p form an instance of DSN with ratio 1 (a weight function
is not necessary in this case). Consider the digraph D ¼ ðVt;AtÞ, where Vt ≔
∪l
i¼1 fsi; tig is the set of terminals and At ≔ fðs1; t1Þ; : : : ; ðsl; tlÞg.

It is easy to see that each (weakly) connected component can be treated separately.
If such a component C is acyclic (that is, it does not contain a directed cycle), then we
can compute a topological order of the vertices of C and then connect them according to
this order by a simple path, from the first one to the last one. This can be done in poly-
nomial time by standard techniques, and it is easy to see that in this way we obtain a
solution of weight ðjC j− 1Þ · minW . As any solution must use at least jC j− 1 arcs to
make this component connected, the solution is optimal.

If the considered component C contains a cycle, then at least jC j arcs are needed,
and any cycle over the vertices of C constitutes an optimal solution. ▯

5. Conclusion. We extended previous work on directed Steiner problems [16]. In
particular, we examined the impact of the ratio of the arc weights on the parameterized
complexity of three Steiner problems with respect to the considered parameterizations.
Table 1.1 in the introduction summarizes known and new results and indicates
open questions. Specifically, the parameterized complexity of (0-)SCSS and DSN is un-
settled for some small values of the arc-weight ratio. Given the vast literature on poly-
nomial-time approximation algorithms, one may encounter many more questions to
study concerning the parameterized complexity of network design problems in gener-
al—for instance, the connectivity augmentation problems with arc reversal and comple-
ment operations [1]. Moreover, it would also be interesting to investigate whether some
restrictions on the graph structure, such as planarity, could lead to fixed-parameter
tractability results of Steiner-type problems (see Bateni, Hajiaghayi, and Marx [2]
for some approximation results). Finally, we contributed to parameterized complexity
results for NP-hard problems on directed graphs, still a comparatively little-
developed field within parameterized algorithmic graph theory (cf. [23]).

Acknowledgments. We are grateful to three anonymous referees for helpful re-
marks that improved the presentation of this paper. In particular, one of the referees
helped to significantly simplify the proof of Theorem 4.1.
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