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Abstract
We consider the problem of selecting a fixed-size committee
based on approval ballots. It is desirable to have a committee
in which all voters are fairly represented. Aziz et al. (2015a;
2017) proposed an axiom called extended justified represen-
tation (EJR), which aims to capture this intuition; subse-
quently, Sánchez-Fernández et al. (2017) proposed a weaker
variant of this axiom called proportional justified representa-
tion (PJR). It was shown that it is coNP-complete to check
whether a given committee provides EJR, and it was conjec-
tured that it is hard to find a committee that provides EJR. In
contrast, there are polynomial-time computable voting rules
that output committees providing PJR, but the complexity
of checking whether a given committee provides PJR was
an open problem. In this paper, we answer open questions
from prior work by showing that EJR and PJR have the same
worst-case complexity: we provide two polynomial-time al-
gorithms that output committees providing EJR, yet we show
that it is coNP-complete to decide whether a given commit-
tee provides PJR. We complement the latter result by fixed-
parameter tractability results.

Introduction
Consider an election where voters have simple preferences:
each voter approves some of the candidates and disapproves
the remaining candidates; she is indifferent among the can-
didates in each group. Suppose that the goal is to select
a fixed-size set of winners, or committee. This model cap-
tures a number of applications: the candidates could be po-
tential members of a governing body, items to be shown
on a seller’s homepage, or tunes to be played at a wed-
ding. Accordingly, there is a number of natural voting rules
that take approval ballots as their input and output a set of
committees that are tied for winning (Kilgour 2010; Brams
and Fishburn 2007; LeGrand, Markakis, and Mehta 2007;
Aziz et al. 2015; Skowron, Faliszewski, and Lang 2016;
Sánchez-Fernández, Fernández, and Fisteus 2016; Brill et al.
2017). Many of these voting rules attempt to ensure that all
groups of voters are fairly represented in the selected com-
mittee. However, it has been far from clear how to best cap-
ture the representation requirements.

Aziz et al. (2017) proposed a compelling representa-
tion axiom called justified representation (JR), as well as a
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stronger version of this axiom called extended justified rep-
resentation (EJR). Intuitively, the JR axiom says that every
sufficiently large group of voters who jointly approve at least
one candidate should be represented in a committee; EJR
additionally requires that very large groups whose prefer-
ences exhibit significant agreement should be allocated sev-
eral representatives. While EJR is a rather demanding ax-
iom, every election admits a committee that provides EJR.

Aziz et al. (2017) show that it is easy to check if a
given committee provides JR, and to find a committee with
this property; indeed, many common approval-based voting
rules are guaranteed to output committees that provide JR.
The EJR axiom is considerably more challenging from a
computational perspective: among the voting rules consid-
ered in the literature, there is only one rule, namely, Pro-
portional Approval Voting (PAV) that satisfies EJR (in the
sense that every committee output by PAV provides EJR),
and computing the winners under this rule is NP-hard (Aziz
et al. 2015). Moreover, Aziz et al. (2017) show that it is
coNP-complete to check if a given committee provides EJR.

Sánchez-Fernández et al. (2017) put forward an interme-
diate property called proportional justified representation
(PJR): every committee that provides EJR also provides
PJR, and every committee that provides PJR also provides
JR, but converse implications are not true. An attractive
property of PJR is that it is compatible with another impor-
tant axiom called perfect representation, while for EJR this
is not the case. Sánchez-Fernández et al. (2017) argued that
two well-studied approval-based committee selection rules
satisfy PJR when the target committee size k divides the
number of voters n; one of these rules is polynomial-time
computable. Other authors identified two polynomial-time
computable rules that satisfy PJR for all values of k and n
(Brill et al. 2017; Sánchez-Fernández, Fernández, and Fis-
teus 2016). However, the complexity of checking whether a
given committee provides PJR remained open. Thus, the ex-
isting results seemed to suggest that, from a computational
perspective, PJR is more tractable than EJR.

Contributions In this paper, we resolve two main open
problems regarding the computational complexity of EJR
and PJR.

First, we present two polynomial-time algorithms that
output committees satisfying EJR. Our first algorithm is a



simple local search algorithm that looks for committees with
approximately optimal PAV scores (recall that PAV is the
only voting rule that was known to satisfy EJR prior to
our work). It exploits an interesting connection between ex-
tended justified representation and another important con-
cept called average satisfaction (Sánchez-Fernández et al.
2017). Our second algorithm can be viewed as a variant
of Single Transferable Vote with fractional vote transfers,
adapted to the setting of approval ballots. This algorithm
proceeds iteratively, adding candidates to the committee one
by one and adjusting the voters’ weights according to how
well they are represented by the already selected candidates.

Second, we settle the complexity of testing PJR: we prove
that checking whether a given committee provides PJR is
coNP-complete. We complement this complexity result by
showing that PJR and EJR can be tested efficiently if any of
the following parameters are small: (1) n (number of voters)
(2) m (number of candidates) (3) a (maximum number of
candidates approved by a voter) (4) d (maximum number of
voters approving a given candidate). More specifically, we
provide FPT results for n and m, and XP results for a and d.

Preliminaries
An election is a pair E = (N,C), where N = {1, . . . , n} is
a set of voters and C = {c1, . . . , cm} is a set of candidates.
Each voter i ∈ N is associated with an approval ballotAi ⊆
C: this is the set of candidates approved by i. For each c ∈
C, we write Nc = {i ∈ N | c ∈ Ai}. We are interested in
procedures that, given an election E and a positive integer
k, 1 ≤ k ≤ |C|, output a non-empty collection of size-k
subsets of candidates; such procedures are called committee
selection rules.

Given an election E = (N,C), we define the PAV-score
of a committee W ⊆ C as

pav-sc(W ) =

n∑
i=1

|Ai∩W |∑
j=1

1

j
.

Proportional Approval Voting (PAV) is the committee se-
lection rule that, given an election E and a committee
size k, outputs all size-k committees with the highest PAV-
score; finding a committee in the output of this rule is NP-
hard (Aziz et al. 2015; Skowron, Faliszewski, and Lang
2016).

In what follows, we consider an election E = (N,C) and
a target committee size k, 1 ≤ k ≤ |C|. We say that a group
of voters V ⊆ N is `-large if |V | ≥ ` · nk ; V is `-cohesive if
|
⋂
i∈V Ai| ≥ `. The following representation axioms have

been considered in the literature (Aziz et al. 2017; Sánchez-
Fernández et al. 2017):
Justified representation (JR). A committee W provides

justified representation (JR) if for every 1-large, 1-
cohesive group of voters V there exists a voter i ∈ V
who approves a member of W , i.e., |Ai ∩W | ≥ 1.
The rationale behind this definition is that if k candidates
are to be selected, then, intuitively, each group of nk voters
“deserves” a representative. Therefore, a set of n

k voters
that have at least one candidate in common should not be
completely unrepresented.

Extended justified representation (EJR). A committee
W provides extended justified representation (EJR) if
for every ` ∈ [k] and every `-large, `-cohesive group of
voters V there exists a voter i ∈ V who approves at least
` members of W , i.e., |Ai ∩W | ≥ `.

Proportional Justified Representation (PJR). A commit-
tee W provides proportional justified representation
(PJR) if for every ` ∈ [k] and every `-large, `-cohesive
group of voters V there are at least ` members of W who
are approved by a voter from V, i.e., |W∩ (∪i∈VAi)| ≥ `.
The difference between EJR and PJR is that the former

requires that some voter in an `-large, `-cohesive group has `
representatives in the committee, whereas the latter requires
that voters in that group collectively approve of ` committee
members. It is immediate that EJR implies PJR, and PJR
implies JR.

We have defined different variants of justified representa-
tion as properties of committees. We extend these definitions
to committee selection rules by saying that a committee se-
lection rule R satisfies a property P if for every election
E = (N,C) and every k with 1 ≤ k ≤ |C| all committees
in the output of R(E, k) provide P .

Further, Sánchez-Fernández et al. (2017) defined the no-
tion of average satisfaction, which relates to the concepts of
justified representation.
Definition 1 (Average satisfaction.). Given a committee W ,
the average satisfaction of a group of voters V ⊆ N with
respect to W is defined as

avsW (V ) =
1

|V |
∑
i∈V
|Ai ∩W |.

Sánchez-Fernández et al. (2017) showed that if a commit-
tee W provides EJR then for every ` > 0 and every `-large,
`-cohesive group of voters V it holds that the average satis-
faction of V with respect to W is at least `−12 . We observe
that, conversely, if a committee offers very high average sat-
isfaction to all large cohesive groups then it provides EJR.
Lemma 1. Consider an election E = (N,C) and a com-
mittee W . If for every `-large, `-cohesive group of voters
it holds that its average satisfaction with respect to W is
strictly greater than `− 1, then W provides EJR.

Proof. Let V be an `-large, `-cohesive group. Since the av-
erage satisfaction of voters in V is greater than ` − 1, there
is at least one voter i ∈ V with |Ai ∩W | ≥ `.

Optimal Average Satisfaction and a Local
Search Algorithm

In this section, we show that a committee providing EJR
can be computed in polynomial time. We define a new rule,
LS-PAV, which is an approximate local search algorithm
for PAV (see Algorithm 1).
Theorem 1. Consider an election E = (N,C) and a posi-
tive integer k, 1 ≤ k ≤ |C|. Let W be a winning committee
chosen by LS-PAV on (E, k). Then for every ` > 0 and
every `-large, `-cohesive group V it holds that avsW (V ) >
`− 1.



Algorithm 1: LS-PAV: a local search algorithm for PAV
W ← k arbitrary candidates from C
while there exist c ∈W and c′ ∈ C \W such that

pav-sc
(
(W \ {c}) ∪ {c′}

)
≥ pav-sc(W ) + n

k2

do
W ← (W \ {c}) ∪ {c′}

return W

Proof. Assume for the sake of contradiction that for some
(E, k) LS-PAV outputs a committee W such that there ex-
ists an `-large, `-cohesive group V with avsW (V ) ≤ ` − 1.
Let wi = |W ∩Ai|.

As V is `-cohesive, there exist ` candidates approved by
all voters in V . At least one such candidate does not appear
in W , since otherwise we would have avsW (V ) ≥ `. Let c
be some such candidate. Now consider a candidate c′ ∈ W .
If we remove c′ from the committee and add c instead, we
increase the PAV-score of W by

∆(c, c′) ≥
∑

i∈V :c′ /∈Ai

1

wi + 1︸ ︷︷ ︸
adding c

−
∑

i∈N\V : c′∈Ai

1

wi︸ ︷︷ ︸
removing c′

=
∑
i∈V

1

wi + 1
−

∑
i∈N : c′∈Ai

1

wi

+
∑

i∈V : c′∈Ai

(
1

wi
− 1

wi + 1

)
.

Note that ∆(c, c′) may be negative for some c′ ∈ W . By
the inequality between arithmetic and harmonic means we
obtain∑

i∈V

1

wi + 1
≥ |V |2∑

i∈V (wi + 1)
=

|V |∑
i∈V wi

|V | + 1

=
|V |

avsW (V ) + 1
≥ |V |

`
.

(1)

Now, observe that∑
c′∈W

∆(c, c′) ≥
∑
c′∈W

(∑
i∈V

1

wi + 1
−

∑
i∈N : c′∈Ai

1

wi

+
∑

i∈V : c′∈Ai

(
1

wi
− 1

wi + 1

))

= k
∑
i∈V

1

wi + 1
−
∑
c′∈W

∑
i∈N : c′∈Ai

1

wi

+
∑
c′∈W

∑
i∈V : c′∈Ai

(
1

wi
− 1

wi + 1

)
= k

∑
i∈V

1

wi + 1
−
∑
i∈N

∑
c′∈W∩Ai

1

wi

+
∑
i∈V

∑
c′∈W∩Ai

(
1

wi
− 1

wi + 1

)

≥ k
∑
i∈V

1

wi + 1
− n+ |V | −

∑
i∈V

wi
wi + 1

= k
∑
i∈V

1

wi + 1
− n+ |V | −

∑
i∈V

(
1− 1

wi + 1

)
= (k + 1)

∑
i∈V

1

wi + 1
− n.

Further, by Equation (1) we obtain

k
∑
i∈V

1

wi + 1
− n ≥ k|V |

`
− n ≥

⌈
`n

k

⌉
· k
`
− n ≥ 0,

and hence∑
c′∈W

∆(c, c′) ≥ (k + 1)
∑
i∈V

1

wi + 1
− n

≥
∑
i∈V

1

wi + 1
≥ |V |

`
≥ n

k
.

From the pigeonhole principle it follows that there exists
a candidate c′ ∈ W such that ∆(c, c′) ≥ n

k2 , which means
that W could not have been returned by our local search
algorithm. This completes the proof.

Note that Theorem 1 applies not only to LS-PAV but also
to PAV, since PAV selects a committee with maximum PAV-
score.

Corollary 1. For every committee in the output of PAV the
average satisfaction of every `-large `-cohesive group of vot-
ers is strictly greater than `− 1.

Corollary 2. LS-PAV satisfies extended justified represen-
tation.

Proof. Let E = (N,C) be an election, let k be a positive
integer with 1 ≤ k ≤ |C| and letW be a winning committee
chosen by LS-PAV. Further, let V be an `-large, `-cohesive
group. Then, by Theorem 1 it holds that avsW (V ) > `− 1.
Consequently, by Lemma 1, W provides EJR.

Proposition 1. LS-PAV runs in polynomial time.

Proof. A single improving swap can be found and executed
in polynomial time. Now, let us assess how many improve-
ments the local search algorithm may perform. Each im-
provement increases the total PAV-score of a committee by
at least n

k2 . The maximum PAV-score of a size-k committee
is n · (1 + 1/2 + · · · + 1/k) = O(n ln k). Thus, there can be
at most O(k2 ln k) improving swaps.

Observe that Proposition 1 relies on having a threshold of
n
k2 in the definition of the local search algorithm. If we per-
form a swap each time when pav-sc

(
(W \ {c}) ∪ {c′}

)
>

pav-sc(W ), this could potentially lead to a superpolynomial
running time, as the improvement in score could be expo-
nentially small in k.



(a) Example for k = 3 (b) Example for k = 4

Figure 1: A visualization of the profiles used in Example 1.
Dots represent voters and boxes represent candidates; can-
didates are approved by voters contained in the respective
boxes.

Average Satisfaction Guarantees
In many scenarios it is desirable to have committees that pro-
vide high average satisfaction. One may then wonder if the
guarantee provided by Theorem 1 can be further improved.
We will now argue that this guarantee is, in fact, optimal.

Example 1. Consider an election with the following ap-
proval ballots.

1 voter: {d, a} 2 voters: {a}
1 voter: {a, b} 2 voters: {b}
1 voter: {b, c} 2 voters: {c}
1 voter: {c, d} 2 voters: {d}

This profile is schematically shown in Figure 1a. For
k = 3, we have n

k = 4 and consequently for each candi-
date c all voters in Nc form a 1-large, 1-cohesive group. The
profile is symmetric with respect to candidates so without
loss of generality assume that committee {a, b, c} is chosen.
There are four voters who approve d: one voter with ballot
{d, a}, two voters with ballot {d}, and one voter with ballot
{c, d}. The average satisfaction of this group is 1/2. Thus, it
is impossible to guarantee an average satisfaction to 1-large,
1-cohesive groups that is better than 1

2 .
To extend this example to k = 4, we move from a square

shape to a pentagon (see Figure 1b).

1 voter: {e, a} 3 voters: {a}
1 voter: {a, b} 3 voters: {b}
1 voter: {b, c} 3 voters: {c}
1 voter: {c, d} 3 voters: {d}
1 voter: {d, e} 3 voters: {e}

By the same argument as before, we can assume without
loss of generality that the winning committee does not con-
tain e. The average satisfaction of the voters who approve e
is 2

5 . In general, for each k ≥ 3 we can construct an election
Ek with n = k(k+1) voters and k+1 candidates where for
every committee the average satisfaction of some 1-large, 1-
cohesive groups is 2

k+1 . Hence, there is no positive constant
γ such that we can guarantee an average satisfaction of γ to
1-large, 1-cohesive groups for all values of k.

The construction in Example 1 shows that Theorem 1 is
tight for ` = 1. We can extend this result to all values of `.
Proposition 2. Let ` be a positive integer and let γ be a
positive constant. There exists k > 0 and an election (N,C)
such that no committee W ⊂ C with |W | = k provides
average satisfaction of ` − 1 + γ to all `-large, `-cohesive
groups of voters in V .

Proof. By considering the sequence of electionsE3, E4, . . .
from Example 1 and choosing k > 2

γ , we obtain our claim
for ` = 1. This argument extends to other values of ` as
follows. Given an election Ek from our sequence, we set
k′ = k · `, replace each candidate with ` copies, and modify
the voters’ preferences so that each voter who approved of c
in Ek = (Nk, Ck) now approves of all ` copies of c; denote
the new election by E′k. By construction, for each c ∈ Ck
we have |Nc| = n

k = `n
k′ . As all voters in Nc approve all `

copies of c in E′k, this group is `-large and `-cohesive in E′k.
Now, pick a committee W of size k′ in E′k. There is some
candidate c ∈ Ck such that at most ` − 1 copies of c are
included in W , so in E′k there are `n

k′ − 2 voters in Nc who
approve at most `−1 members ofW , and the remaining two
voters in Nc approve at most 2` − 1 members of W . Thus,
the average satisfaction of the voters in Nc in E′k is at most

2(2`− 1) + ( `nk′ − 2)(`− 1)
`n
k′

= `− 1 +
k′(4`− 2− 2`+ 2)

`n
= `− 1 +

2k`

n
.

As in Ek we have n = k(k + 1), this means that for k >
2`
γ the average satisfaction of this group in E′k is less than
`− 1 + γ, as claimed.

An Iterative Algorithm
In this section, we describe a family of iterative voting rules,
which we call EJR-Exact, and argue that all rules in this
family provide EJR. Throughout this section, we fix an elec-
tion (N,C) with |N | = n, |C| = m, and assume that the
target committee size is k. For readability, we first present a
proof outline, followed by technical proofs.

Briefly, each EJR-Exact rule starts with an empty com-
mittee W = ∅ and adds candidates to W one by one, until
|W | = k or none of the remaining candidates is ‘safe’, in
a precise sense to be formalized below; if |W | < k at that
point, some k− |W | candidates are added to W . Each voter
is associated with a weight, which is initially set to 1; when-
ever a ‘safe’ candidate c is added toW , the total weight of all
voters in Nc is reduced by n

k , following certain rules (this is
why we call such rules EJR-Exact: at each step the removed
weight is exactly the quota n

k ). These rules ensure that voters
who are not yet adequately represented in the committee get
to keep some of their weight, to wield some power in future
iterations. A necessary (but not sufficient!) condition for a
candidate to be ‘safe’ is that the total weight of voters who
approve him is at least nk .

In more detail, for each j ∈ [k] ∪ {0} and each i ∈ N ,
let f ji denote the weight of voter i after the j-th iteration,



and let Wj denote the set of elected candidates after the j-th
iteration; we set f0i = 1 for all i ∈ N and W0 = ∅.

To explain what it means for a candidate to be safe at iter-
ation j, we need some preliminary definitions.
Definition 2. Given a set of candidatesW ⊆ C and ` ∈ [k],
we say that a candidate c ∈ C\W is `-plausible with respect
toW if there is a set of votersN ′ ⊆ Nc such that |N ′| ≥ `·nk
and |Ai ∩W | < ` for each i ∈ N ′. The plausibility level of
a candidate c ∈ C \W with respect to W is

pl(c,W ) = max{` | c is `-plausible with respect to W},
with the convention that max ∅ = 0.

The entitlement of a voter i ∈ N with respect to W is

en(i,W ) = max
c∈Ai\W

pl(c,W ).

In words, if a candidate c is `-plausible with respect toW ,
there exists an `-large set of votersN ′ who all approve c, but
have fewer than ` representatives in W ; while N ′ may fail
to be `-cohesive, it is necessarily 1-cohesive, as all voters
in it approve c. Thus, the plausibility level of a candidate
provides some indication of how dangerous he is, in terms
of causing violations of EJR. The concept of entitlement is
motivated by similar reasoning: if en(i,W ) is small, we do
not have to worry about EJR violations involving i.

Specifically, it can be shown that if en(i,Wj) ≤ |Ai∩Wj |
at some iteration j, voter i cannot be in a group witness-
ing a violation of EJR (we omit the proof). In contrast, if
en(i,Wj) > |Ai ∩Wj |, voter i should retain some weight
after iteration j. To this end, for each j ∈ [k − 1] ∪ {0},
each c 6∈ Wj , and each i ∈ Nc with en(i,Wj ∪ {c}) >
|Ai ∩ (Wj ∪ {c})|, we set

gj+1
i (c) = 1− |Ai ∩ (Wj ∪ {c})|

en(i,Wj ∪ {c})
;

if en(i,Wj ∪{c}) ≤ |Ai∩ (Wj ∪{c})|, we set gj+1
i (c) = 0.

Intuitively, gj+1
i (c) is a lower bound on the weight that i

should retain if c is added at iteration j + 1.
We are now ready to classify candidates according to the

amount of support they have after each iteration.
Definition 3. Given a j ∈ [k − 1] ∪ {0}, we say that after
iteration j a candidate c ∈ C \Wj is

• weak if
∑
i∈Nc

f ji <
n
k ;

• risky if nk ≤
∑
i∈Nc

f ji <
n
k +

∑
i∈Nc

gj+1
i (c), and

• safe if nk +
∑
i∈Nc

gj+1
i (c) ≤

∑
i∈Nc

f ji .
Note that we can compute the plausibility level of each

candidate and hence the voters’ entitlements at the end of
each iteration in polynomial time; consequently, we can de-
cide in polynomial time which category a given candidate
belongs to at the end of a given iteration.

With these definitions in hand, we can describe EJR-
Exact rules more precisely. We perform at most k iterations.
After each iteration j, j = 0, . . . , k − 1, we identify all
safe candidates. If this set is non-empty, then during itera-
tion j + 1 we add some safe candidate c to the committee
(i.e., we set Wj+1 = Wj ∪ {c}), and update the voters’
weights so that

(a)
∑
i∈N f

j+1
i =

∑
i∈N f

j
i − n

k ,

(b) f j+1
i ≥ gj+1

i (c) for each i ∈ Nc, and

(c) f j+1
i = f ji for each i 6∈ Nc.

Note that conditions (a)–(c) can be satisfied simultaneously
exactly because c is safe. If at the end of iteration j none of
the candidates in C \Wj is safe, we stop and return some
committee of size k that contains Wj .

This completes the formal description of EJR-Exact
rules. The rules in this family may differ in (i) how they
choose a safe candidate; (ii) how they update the voters’
weights subject to conditions (a)–(c), and (iii) how they pick
additional k − |Wj | candidates when no safe candidates are
available. Importantly, it is possible to make these choices
so as to obtain a rule that is polynomial-time computable.

To establish that every EJR-Exact rule always returns a
committee that satisfies EJR, we prove the following claims.

Proposition 3. If after iteration j no candidate in C \Wj is
safe, then all candidates in C \Wj are weak.

Proposition 4. Suppose that in each of the first j iterations,
j ∈ [k], we added a safe candidate to the committee, but
after iteration j all remaining candidates are weak. Then
every size-k committee that contains Wj provides EJR.

Propositions 3 and 4 imply that all EJR-Exact rules sat-
isfy EJR. Indeed, if we have performed k iterations, adding
a candidate to the committee at each step, then we have re-
moved k · nk = n units of vote weight, and hence all remain-
ing candidates are weak. On the other hand, if we stopped
earlier because no candidate was safe, then by Proposition 3
all remaining candidates are weak. In either case Proposi-
tion 4 directly implies that the output committee provides
EJR. Thus, we obtain the following theorem.

Theorem 2. Every rule in the EJR-Exact family pro-
vides EJR. Moreover, this family contains rules that are
polynomial-time computable.

Proofs
In this section we provide proofs of Propositions 3 and 4.
We first present three auxiliary lemmas.

Our first lemma provides lower bounds on voters’ weights
after iteration j.

Lemma 2. Suppose that during each of the first j iterations,
a safe candidate has been added to the committee. Then for
each voter i ∈ N with en(i,Wj) > |Ai ∩Wj | we have

f ji ≥ 1− |Ai ∩Wj |
en(i,Wj)

.

Proof. Fix a voter i ∈ N such that en(i,Wj) > |Ai ∩Wj |.
If Ai ∩Wj = ∅, then f ji = 1 and we are done. Otherwise,
let r be the last iteration when a candidate c ∈ Ai was added
to the committee. Note that Wr ⊆ Wj implies en(i,Wr) ≥
en(i,Wj) and hence en(i,Wr) > |Ai ∩Wj | = |Ai ∩Wr|.
As Wr = Wr−1 ∪ {c}, we have

f ji = fri ≥ gri (c) = 1− |Ai ∩Wr|
en(i,Wr)

.



As |Ai ∩Wr| = |Ai ∩Wj | and en(i,Wr) ≥ en(i,Wj), the
claim follows.

Our next lemma shows that the current weight of each
voter approving a candidate c ∈ C \Wj is at least as large
as what it would have to be after adding c to the committee.
Lemma 3. Suppose that during each of the first j iterations,
a safe candidate has been added to the committee, and con-
sider a candidate c ∈ C \Wj and a voter i ∈ Nc. Then

f ji ≥ g
j+1
i (c).

Proof. If en(i,Wj ∪ {c}) ≤ |Ai ∩ (Wj ∪ {c})|, the claim
is trivially true, because gj+1

i (c) = 0 in this case, and our
weight transfer procedure guarantees that all weights remain
non-negative.

Thus, suppose that en(i,Wj ∪ {c}) > |Ai ∩ (Wj ∪ {c})|.
Then we have |Ai ∩ Wj | < |Ai ∩ (Wj ∪ {c})| and
en(i,Wj) ≥ en(i,Wj ∪ {c}), so

1− |Ai ∩Wj |
en(i,Wj)

≥ 1− |Ai ∩ (Wj ∪ {c})|
en(i,Wj ∪ {c})

= gj+1
i (c),

and our claim follows from Lemma 2.

Our next lemma is used in the proof of Proposition 4.
Lemma 4. Suppose that during each of the first j iterations,
a safe candidate has been added to the committee. Consider
a candidate c ∈ C \Wj with pl(c,Wj) ≥ 1 and define

Sc = {i ∈ Nc : |Ai ∩Wj | < pl(c,Wj)}.

Then it holds that∑
i∈Sc

(
f ji −

pl(c,Wj)− |Ai ∩Wj | − 1

pl(c,Wj)

)
≥ n

k
.

Proof. For each voter i ∈ Nc we have c ∈ Ai \ Wj and
hence en(i,Wj) ≥ pl(c,Wj). As Sc ⊆ Nc, this means that
for each voter i ∈ Sc it holds that |Ai ∩Wj | < en(i,Wj).
Further, for every voter i ∈ Nc with |Ai ∩Wj | < en(i,Wj)
we have

f ji ≥ 1− |Ai ∩Wj |
en(i,Wj)

≥ 1− |Ai ∩Wj |
pl(c,Wj)

, (2)

where the first inequality holds by Lemma 2 and the second
inequality holds because en(i,Wj) ≥ pl(c,Wj). Using (2),
we obtain∑

i∈Sc

(
f ji −

pl(c,Wj)− |Ai ∩Wj | − 1

pl(c,Wj)

)
≥
∑
i∈Sc

(
1− |Ai ∩Wj |

pl(c,Wj)
− pl(c,Wj)− |Ai ∩Wj | − 1

pl(c,Wj)

)
= |Sc| ·

1

pl(c,Wj)
. (3)

By definition of pl(c,Wj), there are at least n
k · pl(c,Wj)

voters in Nc who have fewer than pl(c,Wj) approved can-
didates inWj . Thus, |Sc| ≥ n

k ·pl(c,Wj). Together with (3),
this completes the proof.

We are now ready to prove Proposition 4.

Proof of Proposition 4. Consider a committee W such that
|W | = k and Wj ⊆ W . Suppose for the sake of contradic-
tion that W violates EJR. Then there exists an ` > 0 and an
`-large `-cohesive set of voters N ′ such that |Ai ∩W | < `
for each i ∈ N ′. Consequently, there exists a candidate
c ∈ (∩i∈N ′Ai) \W . This candidate is `-plausible with re-
spect to W and hence also with respect to Wj .

Let

Sc = {i ∈ Nc : |Ai ∩Wj | < pl(c,Wj)}.

For each i ∈ Sc we have

pl(c,Wj)− |Ai ∩Wj | − 1

pl(c,Wj)
≥ 0.

As pl(c,Wj) > 0, we can invoke Lemma 4 to obtain∑
i∈Nc

f ji ≥
∑
i∈Sc

f ji

≥
∑
i∈Sc

(
f ji −

pl(c,Wj)− |Ai ∩Wj | − 1

pl(c,Wj)

)
≥ n

k
,

so c would not be a weak candidate after iteration j, a con-
tradiction.

Finally, we prove Proposition 3.

Proof of Proposition 3. Suppose that we have run j itera-
tions, adding a safe candidate to the committee at each it-
eration, and at the end of iteration j no candidate is safe.
Suppose for the sake of contradiction that some candidate
in C \Wj is risky at that point. Let c be a risky candidate
that has the highest plausibility level among all risky can-
didates. To obtain a contradiction, we will identify another
candidate c′ so that either (a) c′ is safe or (b) c′ is risky, but
pl(c′,Wj) > pl(c,Wj).

We will first argue that pl(c,Wj) > 0. We have∑
i∈Nc

f ji ≥
n

k
,

∑
i∈Nc

(
f ji − g

j+1
i (c)

)
<
n

k
.

Suppose for the sake of contradiction that pl(c,Wj) = 0.
For each voter i ∈ Nc with en(i,Wj ∪ {c}) = 0 we have
gj+1
i (c) = 0. Therefore, there has to be a voter i′ ∈ Nc with

en(i′,Wj ∪ {c}) > 0, as otherwise we would have∑
i∈Nc

(
f ji − g

j+1
i (c)

)
=
∑
i∈Nc

f ji ≥
n

k
.

Thus, there is a candidate c′ ∈ Ai′ \ (Wj ∪ {c}) such that
pl(c′,Wj) > 0. Let

Sc′ = {i ∈ Nc′ : |Ai ∩Wj | < pl(c′,Wj)}.

As Sc′ ⊆ Nc′ , from Lemma 4 we conclude∑
i∈Nc′

f ji ≥
∑
i∈Sc′

(
f ji −

pl(c′,Wj)− |Ai ∩Wj | − 1

pl(c′,Wj)

)
≥ n

k
,



so c′ cannot be weak. However, if c′ is safe, we obtain a
contradiction with our assumption that there are no safe can-
didates at the end of iteration j, and if c′ is risky, we have
a contradiction with our choice of c, as pl(c′,Wj) > 0 =
pl(c,Wj).

Thus, assume that pl(c,Wj) > 0. Set

Sc = {i ∈ Nc : |Ai ∩Wj | < pl(c,Wj)}.

Combining Lemma 4 with the fact that c is risky, we obtain∑
i∈Nc

(
f ji − g

j+1
i (c)

)
−

∑
i∈Sc

(
f ji −

pl(c,Wj)− |Ai ∩Wj | − 1

pl(c,Wj)

)
< 0.

By Lemma 3, we can write∑
i∈Nc

(
f ji − g

j+1
i (c)

)
−
∑
i∈Sc

(
f ji −

pl(c,Wj)− |Ai ∩Wj | − 1

pl(c,Wj)

)
≥
∑
i∈Sc

(
pl(c,Wj)− |Ai ∩Wj | − 1

pl(c,Wj)
− gj+1

i (c)

)
.

This implies that for some voter i ∈ Sc we have

1− |Ai ∩Wj |+ 1

pl(c,Wj)
< gj+1

i (c). (4)

Since |Ai ∩Wj | < pl(c,Wj), we have

1− |Ai ∩Wj |+ 1

pl(c,Wj)
≥ 0.

Thus, gj+1
i (c) > 0, which means that en(i,Wj ∪ {c}) >

|Ai ∩ (Wj ∪ {c})| and

gj+1
i (c) = 1− |Ai ∩ (Wj ∪ {c})|

en(i,Wj ∪ {c})
.

Substituting this expression into (4), we obtain

1− |Ai ∩ (Wj ∪ {c})|
pl(c,Wj)

< 1− |Ai ∩ (Wj ∪ {c})|
en(i,Wj ∪ {c})

,

which implies that en(i,Wj ∪{c}) > pl(c,Wj). Thus, there
exists a candidate c′ ∈ Ai \ Wj such that pl(c′,Wj) >
pl(c,Wj) > 0. Again, using Lemma 4, we can argue that
c′ is not weak. Hence, we obtain a contradiction with our
choice of c in this case as well.

Complexity of Testing PJR and EJR
In this section, we settle the complexity of testing PJR by
proving that this problem is coNP-complete. The proof is
inspired by the proof of a similar statement for EJR (Aziz et
al. 2017).
Theorem 3. Given an election (N,C), a target committee
size k, and a committee W , |W | = k, it is coNP-complete to
check whether W provides PJR for (N,C) and k.

Proof. It is easy to see that this problem is in coNP: A set
of voters X ⊂ N such that |X| ≥ `nk , | ∩i∈X Ai| ≥ ` and
|W ∩ (∪i∈XAi)| < ` is a certificate that W violates PJR.

For the hardness proof, we reduce the BALANCED BI-
CLIQUE problem ([GT24] in Garey and Johnson, 1979) to
the complement of our problem. An instance of BALANCED
BICLIQUE consists of a bipartite graph (L,R,E) with parts
L and R and edge set E, as well as an integer `; it is a
“yes”-instance if there exist vertex subsets L′ ⊆ L and
R′ ⊆ R such that |L′| = |R′| = ` and (u, v) ∈ E for
each u ∈ L′, v ∈ R′, and a “no”-instance otherwise.

For each instance 〈(L,R,E), `〉 of BALANCED BI-
CLIQUE with R = {v1, . . . , vs}, we design an instance of
our problem as follows. Assume without loss of generality
that s ≥ 3, ` ≥ 3. We construct three pairwise disjoint sets
of candidates C0, C1 and C2, so that C0 = L, |C1| = `− 1,
|C2| = s` + ` − 3s + (` − 2), and set C = C0 ∪ C1 ∪ C2.
We then construct three sets of voters N0, N1, N2, so that
N0 = {1, . . . , s}, |N1| = s`, |N2| = s`+ `− 3s+ (`− 2);
observe that |N2| ≥ ` − 1 since we assume that ` ≥ 3.
For every i ∈ N0 we set Ai = {uj | (uj , vi) ∈ E},
and for every i ∈ N1 we set Ai = C0 ∪ C1. The can-
didates in C2 are matched to voters in N2: each voter in
N2 approves exactly one candidate in C2, and each candi-
date in C2 is approved by exactly one voter in N2. Denote
the resulting election by F . Finally, we set k = 2` − 2,
and let W = C1 ∪ X , where X is a subset of C2 with
|X| = ` − 1. Note that the number of voters n is given
by s + s` + s` + ` − 3s + (` − 2) = 2(s + 1)(` − 1), so
n
k = s+ 1.

Suppose first that we started with a “yes”-instance of
BALANCED BICLIQUE, and let (L′, R′) be the respective
`-by-` biclique. Let C∗ = L′ and N∗ = R′ ∪ N1. Then
|N∗| = `(s + 1) = `nk , all voters in N∗ approve all candi-
dates in C∗, |C∗| = `, but all voters in N∗ together are only
represented by `− 1 candidates in W . Hence, for this value
of ` the set W fails to provide PJR for F and k.

Conversely, suppose thatW fails to provide PJR forF and
k. Then there exists a value j > 0, a setN∗ of j(s+1) voters
and a set C∗ of j candidates so that all voters in N∗ approve
of all candidates in C∗, but all voters in N∗ together are
only represented by fewer than j candidates inW . Note that,
since s > 1 and j ≥ 1, we haveN∗∩N2 = ∅. Further, since
|N∗| = j(s + 1) ≥ s + 1 and |N0| = s, it follows that N∗
contains one voter fromN1. So, all voters inN∗ together are
represented by exactly ` − 1 candidates in W . This implies
that j ≥ `. As N∗ = j(s + 1) ≥ `(s + 1), it follows that
|N∗ ∩N0| ≥ `. Since N∗ contains voters from both N0 and
N1, it follows that C∗ ⊆ C0. Thus, there are at least ` voters
in N∗ ∩N0 who approve the same j ≥ ` candidates in C0;
any set of ` such voters and ` such candidates corresponds
to an `-by-` biclique in the input graph.

We complement our hardness result by showing that test-
ing PJR and EJR is computationally tractable if one of the
following parameters is bounded: (1) n = |N |; (2) m =
|C|; (3) a = maxi∈N |Ai| (maximum size of approval sets);
(4) d = maxc∈C |Nc| (maximum number of approvals of
a candidate). For the first two parameters, we show that



our problem belongs to the class FPT (fixed-parameter
tractable); for the remaining two parameters we place it in
the class XP.

The proof of the following theorem is omitted due to
space constraints.
Theorem 4. PJR and EJR can be tested

(1) in time O(2nmnk);
(2) in time O(2mm2n);
(3) in time O(ma+2n);
(4) in time O(nd+1mk).

Discussion
Our results show that, surprisingly, EJR and PJR have the
same worst-case complexity: while a committee providing
one of these properties can be computed in polynomial time,
testing whether a given committee provides PJR or EJR is
coNP-complete. One can still argue that PJR is somewhat
more tractable because it is satisfied by a well-established
polynomial-time computable voting rule, namely, the se-
quential version of Phragmén’s rule (Phragmén 1894; Jan-
son 2016; Brill et al. 2017). In contrast, the two polynomial-
time procedures for computing committees that provide EJR
that have been proposed in this paper have been specifically
engineered with the goal of satisfying EJR in mind. Indeed,
it seems that the local swap-based procedure is unlikely to
be popular with voters: it aims to optimize a certain quan-
tity, yet stops before reaching the optimum. In contrast, our
sequential procedure is similar in spirit to existing voting
rules; however, the weight update mechanism is too compli-
cated for an average voter to comprehend.

We note that EJR-Exact is not just a single rule, but a
family of rules. In particular, we can fine-tune the weight up-
date mechanism to derive rules with further desirable prop-
erties; understanding the full power of this family of rules
is a topic for future work. Similarly, we can tweak LS-PAV
by selecting the initial committee in a particular way: for
instance, we can use the output of another polynomial-time
computable voting rule as a starting point. This can both im-
prove the running time and bias the algorithm towards cer-
tain outputs; again, this is a research direction that deserves
further attention.
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