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Abstract. The classical Stable Roommate problem asks whether it
is possible to pair up an even number of agents such that no two non-
paired agents prefer to be with each other rather than with their assigned
partners. We investigate Stable Roommate with complete (i.e. every
agent can be matched with every other agent) or incomplete preferences,
with ties (i.e. two agents are considered of equal value to some agent) or
without ties. It is known that in general allowing ties makes the problem
NP-complete. We provide algorithms for Stable Roommate that are,
compared to those in the literature, more efficient when the input pref-
erences are complete and have some structural property, such as being
narcissistic, single-peaked, and single-crossing. However, when the prefer-
ences are incomplete and have ties, we show that being single-peaked and
single-crossing does not reduce the computational complexity—Stable
Roommate remains NP-complete.

1 Introduction

Given 2 · n agents, each having a preference with regard to how suitable the
other agents are as potential partners, the Stable Roommate problem asks
whether it is possible to pair up the agents such that no two non-paired agents
prefer to be with each other rather than with their assigned partners. We call
such a pairing a stable matching. Stable Roommate was introduced by Gale
and Shapley [17] in the 1960’s and has been studied extensively since then [21–
23, 31, 32]. While it is quite straightforward to see that stable matchings may not
always exist, it is not trivial to see whether an existent stable matching can be
found in polynomial time, even when the input preference orders are complete
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orders without ties (i.e. each agent can be a potential partner to each other
agent, and no two agents are considered to be equally suitable as a partner). For
the case without ties, Irving [21] and Gusfield and Irving [19] provided O(n2)-
time algorithms to decide the existence of stable matchings and to find one if it
exists for complete preferences and for incomplete preferences, respectively. For
the case where the given preferences may have ties, deciding whether a given
instance admits a stable matching is NP-complete [31].

Solving Stable Roommate has many applications, such as pairing up stu-
dents to accomplish a homework project or users in a P2P file sharing network,
assigning co-workers to two-person offices, partitioning players in two-player
games, or finding receiver-donor pairs for organ transplants [16, 24, 26, 28, 33,
34]. In such situations, the students, the people, or the players, which we jointly
refer to as agents, typically have certain structurally restricted preferences on
which other agents might be their best partners. For instance, when assigning
roommates, each agent may have an ideal room temperature and may prefer
to be with another agent with the same penchant. Such preferences are called
narcissistic. Moreover, if we order the agents according to their ideal room tem-
peratures, then it is natural to assume that each agent z prefers to be with an
agent x rather than with another agent y if z’s ideal temperature is closer to x’s
than to y’s. This kind of preferences is called single-peaked [4, 7, 20]. Single-
peakedness is used to model agents’ preferences where there is a criterion, e.g.
room temperature, that can be used to obtain a linear order of the agents such
that each agent’s preferences over all agents along this order are strictly increas-
ing until they reach the peak—their ideal partner—and then strictly decreasing.
Single-peakedness is a popular concept with prominent applications in voting
contexts. It can be tested for in linear time [1, 3, 8, 13] if the input preferences
are complete and have no ties. Another possible restriction on the preferences is
the single-crossing property, which was originally proposed to model individuals’
preferences on income taxation [29, 30]. It requires a linear order (the so-called
single-crossing order) of the agents so that for each two distinct agents x and
y, there exists at most one pair of consecutive agents (the crossing point) along
the single-crossing order that disagrees on the relative order of x and y. Single-
crossingness can be detected in polynomial time [5, 8, 9] if the input preferences
are complete and have no ties. We refer to Bredereck et al. [6] and Elkind et al.
[12] for numerous references on single-peakedness and single-crossingness.

Bartholdi III and Trick [3] studied Stable Roommate with narcissistic and
single-peaked preferences. They showed that for the case with linear orders (i.e.
complete and without ties), Stable Roommate always admits a unique stable
matching and provided an O(n) time algorithm to find this matching. This is
remarkable since restricting the preference domain does not only guarantee the
existence of stable matchings, but also speeds up finding it to sublinear time.
In this specific case, this speed up implies that a stable matching can be found
without “reading” the whole input preferences as long as the input is assumed
to be narcissistic and single-peaked.
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Table 1: Complexity of Stable Roommate for restricted domains: narcissistic,
single-peaked, and single-crossing preferences. Entries marked with ♦ are from
Irving [21]. Entries marked with ♠ are from Gusfield and Irving [19]. Entries
marked with 4 are from Ronn [31]. Entries marked with ♥ are from Bartholdi III
and Trick [3]. Entries marked with ? and boldfaced are new results shown in this
paper. Note that our polynomial-time results also include the existence of a
stable matching and that our hardness result even holds for the more restricted
tie-sensitive single-crossing property.

Complete preferences Incomplete preferences
w/o ties w/ ties w/o ties w/ ties

no restriction O(n2)♦ NP-c4 O(n2)♠ NP-c4

single-peaked & single-crossing O(n2)♦ ? O(n2)♠ NP-c?

narcissistic & single-peaked O(n)♥ O(n2)? O(n2)♠ ?
narcissistic & single-crossing O(n)? O(n2)? O(n2)♠ ?

In this paper, we first discuss natural generalizations of the well-known single-
peaked and single-crossing preferences (that were originally introduced for lin-
ear orders) for incomplete preferences with ties. Then, we investigate how some
structural preference restrictions can help in guaranteeing the existence of stable
matchings and in designing more efficient algorithms for finding one, including
the case when the input preferences are not linear orders. We found that for
complete preference orders, structurally restricted preferences such as being nar-
cissistic and single-crossing or being narcissistic and single-peaked guarantee the
existence of stable matchings. Moreover, we showed that when the preferences
are complete, even with ties, narcissistic and single-crossing or narcissistic and
single-peaked, then the algorithm of Bartholdi III and Trick [3] always finds a
stable matching. The running time for 2· agents increases to O(n2). However,
when the preferences are incomplete and ties are allowed, Stable Roommate
becomes NP-complete, even if the given preferences are single-peaked as well as
single-crossing. Our results on Stable Roommate, together with those from
related work, are summarized in Table 1. Due to space constraints, some proofs
are omitted.

2 Fundamental Concepts and Basic Observations

Let V = {1, 2, . . . , 2 ·n} be a set of 2 ·n agents. Each agent i ∈ V has a preference
order �i over a subset Vi ⊆ V of agents that i finds acceptable as a partner3.
We note that although in our stable roommate problem, an agent cannot be
matched to itself, it may still make sense to include an agent x in its preference
orders, for instance when x represents someone which is very close to its ideal.
The set Vi is called the acceptable set of i and a preference order �i over Vi

3 For technical reasons, an agent may find itself acceptable, which means that {i} ⊆ Vi.
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(a) The underlying acceptability
graph of a Stable Roommate in-
stance with complete preferences,
where each two distinct agents
can be matched to each other.

w1 w2 w3 w4

m1 m2 m3 m4

(b) The underlying acceptability graph of a
classical Stable Marriage instance, which
is bipartite. In such an instance, each woman
from the top row can only be matched with a
man from the bottom row, and the converse.

Fig. 1: Acceptability graphs of two special cases of Stable Roommate.

is a weak order on Vi, i.e. a transitive and complete binary relation on Vi. For
instance, x �i y means that i weakly prefers x over y (i.e. x is better than or
as good as y). We will use �i to denote the asymmetric part of �i (i.e. x �i y
and ¬(y �i x), meaning that i strictly prefers x to y) and ∼i to denote the
symmetric part of �i (i.e. x �i y and y �i x, meaning that i values x and y
equally). We call an agent x a most acceptable agent of another agent y if for all
z ∈ Vy \ {x, y} it holds that x �y z. Note that an agent can have more than one
most acceptable agent.

Let X ⊆ V and Y ⊆ V be two disjoint sets of agents and � be a binary
relation over V . To simplify notation, we write X � Y to denote that for each
two agents x and y with x ∈ X and y ∈ Y it holds that x � y. (We use X � y
as shortcut for X � {y} and X � Y as well as X ∼ Y in an analogous way.)

To model which agent is considered as acceptable in a preference order we
introduce the notion of an acceptability graph G for V . It is an undirected graph
without loops. An edge signifies whether two distinct agents find each other
acceptable. We use V to also denote the vertex set of G. There is an edge {i, j}
in G if i ∈ Vj \ {j} and j ∈ Vi \ {i}. We assume without loss of generality
that G does not contain isolated vertices, meaning that each agent could be
matched to at least one other agent. We illustrate two prominent special cases
of acceptability graphs in Figure 1.

Blocking pairs and stable matchings.Given a preference profile P for a set V
of agents, a matching M ⊆ E(G) is a subset of disjoint pairs of agents {x, y} with
x 6= y (or edges in E(G)), where E(G) is the set of edges in the corresponding
acceptability graph G). For a pair {x, y} of agents, if {x, y} ∈M , then we denote
M(x) as the corresponding partner y; otherwise we call this pair unmatched. We
write M(x) = ⊥ if agent x has no partner, that is, if agent x is not involved in
any pair in M . An unmatched pair {x, y} ∈ E(G) \M is blocking M if the pair
“prefers” to be matched to each other, i.e. it holds that

(M(x) = ⊥ ∨ y �x M(x)) ∧ (M(y) = ⊥ ∨ x �y M(y)).

A matching M is stable if no unmatched pair is blocking M . Note that this
stability concept is called weak stability when we allow ties in the preferences.
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We refer to the textbook by Gusfield and Irving [19], Manlove [27] for two other
popular stability concepts for preferences with ties.

We focus on the following stable matching problem.

Stable Roommate
Input: A preference profile P for a set V = {1, 2, . . . , 2·n} of 2·n agents.
Question: Does P admit a stable matching?

The profile given in Figure 3 admits a (unique) stable matching: {{1, 4},
{2, 3}}. In fact, as we will see in Section 3, a narcissistic and single-peaked
preference profile always admits a stable matching. However, if agent 3 changes
its preference order to 3 � 1 � 2 � 4, then the resulting profile is not single-
peaked anymore, nor does it admit any stable matching: One can check that any
agent i, 1 ≤ i ≤ 3 that is matched to agent 4 will form a blocking pair together
with the agent that is at the third position of the preference order of i.
Preference profiles and their properties. A preference profile P for V is a
collection (�i)i∈V of preference orders for each agent i ∈ V . A profile P may
have the following three simple properties:
1. Profile P is complete if for each agent i ∈ V it holds that Vi ∪ {i} = V ;

otherwise it is incomplete.
2. Profile P has a tie if there is an agent i ∈ V and there are two distinct

agents x, y ∈ Vi with x ∼i y. Note that linear orders are exactly those orders
that are complete and have no ties.

3. Profile P is narcissistic if each agent i strictly prefers itself to every other
acceptable agent, i.e. for each j ∈ Vi it holds that i �i j.

We note that the completeness concept basically means that each two distinct
agents can be matched together. Thus, it does not matter whether Vi = V
or Vi ∪ {i} = V because i cannot be matched to itself anyway. By the same
reasoning, the narcissistic property alone, which reflects the fact that each agent
prefers to be with someone like itself among all alternatives, does not really
restrict the input of our stable roommate problem. However, one can further
restrict single-peaked preferences or single-crossing preferences by additionally
requiring them to be narcissistic and we show that this affects the existence of
stable matchings.

As already discussed in Section 1, the single-peaked and the single-crossing
properties were originally introduced and studied mainly for linear preference
orders (i.e. orders without ties). For preferences with ties, a natural generaliza-
tion is to think of a possible linear extension of the preferences for which the
single-peaked or single-crossing property holds. We consider this variant in our
paper. Profile P is single-peaked if there is a linear order B over V such that the
preference order of each agent i is single-peaked with respect to B:

∀x, y, z ∈ Vi with xB y B z it holds that (x �i y implies y �i z).

Just as for the single-peaked property, the single-crossing property also re-
quires a natural linear order of the agents, the so-called single-crossing order.
However, unlike the single-peaked property which assumes that the preferences
of an agent i over two agents are measured by their “distance” to the peak
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along the single-peaked order, the single-crossing property assumes that the
agents’ preferences over each two distinct agents change (cross) at most once.
In fact, for preferences with ties, two natural single-crossing notions are of in-
terest. To define them, we first introduce a notion which denotes a subset of
voters that have the same preferences over two distinct agents x and y: Let
V [x � y] := {i ∈ V | x �i y} be the subset of voters i that strictly prefer x
to y, and let V [x ∼ y] := {i ∈ V | x ∼i y} be the subset of voters i that find x
and y to be of equal value. We say that profile P is single-crossing if there is a
linear extension of P to a profile P ′ = (�′1,�′2, . . . ,�′2·n) without ties and there
is a linear order B over V such that for each two distinct agents x and y, P ′ is
single-crossing with respect to B, i.e.

V [x ∼′ y] = ∅ and either V [x �′ y]B V [y �′ x] or V [y �′ x]B V [x �′ y].
We also consider a more restricted single-crossing concept which compared

the single-crossing property introduced above requires that the agents that have
ties are ordered in the middle. A profile P is called tie-sensitive single-crossing if
there is a linear order B over V such that each pair {x, y} of two distinct agents
is tie-sensitive single-crossing with respect to B, i.e.
either V [x � y]B V [x ∼ y]B V [y � x] or V [y � x]B V [x ∼ y]B V [x � y].

See Figure 2 for an illustration of the different types of restricted preferences for
the case where the preferences are linear orders.

For partial orders, our two single-crossing concepts are incomparable. In par-
ticular, there are incomplete preferences with ties which are single-crossing but
not tie-sensitive single-crossing, and the converse also holds. For weak orders
and for preferences without ties, however, the following holds. (Notably, a large
part of the observation can be found in a long version of Elkind et al. [11].)

Observation 1. Let P be an arbitrary preference profile: (i) If P is complete,
then P is single-crossing if it is tie-sensitive single-crossing. (ii) If P is without
ties, then P is single-crossing if and only if it is tie-sensitive single-crossing.

Figure 2a demonstrates that the converse of the first statement in Observa-
tion 1 does not hold.

There are many slightly different concepts of single-peakedness and single-
crossingness for partial orders (a generalization of incomplete preferences with
ties) [11, 15, 25]. It is known that detecting single-peakedness or single-crossing-
ness is NP-hard for partial orders under most of the concepts studied in the
literature. For linear orders, all these concepts (including ours) are equivalent to
those introduced by Black [4] and Mirrlees [29] and can be detected in polynomial
time [1, 3, 5, 8, 9, 13]. For incomplete preferences with ties, Lackner [25] showed
that detecting single-peakedness is NP-complete. For complete preferences with
ties, while Elkind et al. [11] showed that detecting single-crossingness is NP-
complete, Fitzsimmons [14] and Elkind et al. [11] provided polynomial-time al-
gorithms for detecting single-peakedness and ties-sensitive single-crossingness.
All these known hardness results seem to hold only when the preferences have
ties. However, we observe that the hardness proof for Corollary 6 by Elkind et al.
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1: 1 � 2 � 3 � 4
2: 2 � 3 � 4 � 1
3: 3 � 2 � 1 � 4
4: 4 � 3 � 2 � 1

(a) A Stable Roommate instance with
narcissistic and single-peaked preferences.
They are not single-crossing since {1, 4}
forces the two agents 1 and 3 (resp. 2 and
4) to be ordered next to each other in a
single-crossing order whereas {2, 3} forces
the two agents 1 and 2 (resp. 3 and 4) to be
ordered next to each other. All these four
conditions, however, cannot be satisfied by
a linear order.

1: 1 ∼ 2 � 3 � 4

2: 1 � 2 � 4 � 3

3: 4 � 2 � 3 � 1

4: 4 � 3 � 2 � 1

1: 1 � 2 � 3 � 4

2: 1 � 2 � 4 � 3

3: 4 � 2 � 3 � 1

4: 4 � 3 � 2 � 1

(b) Top: A Stable Roommate instance
with single-crossing preferences. They
are not tie-sensitive single-crossing
since {2, 3, 4} implies that 1 B 2 B 3 B
4 and its reverse are the only possi-
ble single-crossing orders. But, {1, 2} is
not tie-sensitive single-crossing wrt. ei-
ther B or its reverse. Bottom: A pos-
sible linear extension, showing single-
crossingness.

Fig. 2: Visualization of different restricted profiles.

[11] indeed can be adapted to show NP-completeness for deciding whether an
incomplete preference profile without ties is single-peaked or single-crossing.

Observation 2. Deciding whether an incomplete preference profile without ties
is single-crossing (or equivalently tie-sensitive single-crossing) or single-peaked
is NP-complete.

Barberà and Moreno [2] as well as Elkind et al. [10] noted that for com-
plete preferences without ties, narcissistic and single-crossing preferences are also
single-peaked. We show that the relation also holds when ties are allowed. We
note that Barberà and Moreno [2] also considered complete preferences with
ties. However, their single-crossingness for the case with ties only resembles
our tie-sensitive single-crossing definition, which is a strict subset of our single-
crossingness (Observation 1).

Proposition 1. If a complete, even with ties, and narcissistic preference profile
P has a single-crossing order B, then this order B is also a single-peaked order.

Proof. Suppose for the sake of contradiction that B with a1Ba2B· · ·Ba2·n is not
single-peaked. This means that there exists an agent ai that is not single-peaked
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1: 1 � 2 � 3 � 4
2: 2 � 3 � 1 � 4
3: 3 � 2 � 1 � 4
4: 4 � 3 � 2 � 1

(a) A single-peaked visualization

1: 1 � 2 � 3 � 4

2: 2 � 3 � 1 � 4

3: 3 � 2 � 1 � 4

4: 4 � 3 � 2 � 1

(b) A single-crossing visualization.

Fig. 3: A narcissistic, single-peaked, and single-crossing profile.

wrt. B, and there are three agents aj , ak, a` with j < k < ` such that aj �ai
ak

and a` �ai ak. Together with the narcissistic property, the following holds:
agent ai : ai �ai aj �ai ak and ai �ai a` �ai ak, agent aj : aj �aj ak,
agent ak : ak �ak

aj and ak �ak
a`, agent a` : a` �a`

ak.
On the one hand, the agents’ preferences over the pair {aj , ak} implies that i < k.
On the other hand, the pair {ak, a`} implies that i > k—a contradiction. ut

The profile shown in Figure 3 is narcissistic and single-crossing wrt. the order
1B 2B 3B 4 and it is also single-peaked with respect to the same order B.

3 Complete Preferences

In this section, we consider profiles with complete preferences. It is known that
if ties do not exist, then Stable Roommate can be solved in O(n2) time [21],
while the existence of ties makes the problem NP-hard [31]. For the case of
complete, narcissistic, and single-peaked preferences without ties, Bartholdi III
and Trick [3] showed that Stable Roommate is even solvable in O(n) time.
Their algorithm is based on the following two facts (referred to as Propositions 2
and 3) that are related to the concept of most acceptable agents. We show that
the facts transfer to the case with ties.

Proposition 2. If the given preference profile P is complete (even with ties),
narcissistic, and single-peaked, then there are two distinct agents i, j that are
each other’s most acceptable agents.

Proof. The statement for complete, narcissistic, and single-peaked preferences
without ties was shown by Bartholdi III and Trick [3]. It turns out that this also
holds for the case when ties are allowed. Let V be the set of all 2 · n agents and
consider a single-peaked order B of the agents V with x1 B x2 B · · · B xn. For
each agent x ∈ V , let Mx be the set of all most acceptable agents of x. Towards
a contradiction, suppose that each two distinct agents x and y have x /∈ My
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Algorithm 1: The algorithm of Bartholdi III and Trick [3] for computing
a stable matching with input P being complete, narcissistic, and single-
peaked.
M ← ∅;
while P 6= ∅ do

Find two agents x, y in P that consider each other as most acceptable;
Delete x and y from profile P;
M ←M ∪ {x, y};

return M ;

or y /∈ Mx. By the narcissistic property and single-peakedness, each Mx ∪ {x}
forms an interval in B. This implies that the first agent x1 and the last agent xn

in the order B have x2 ∈ Mx1
and xn−1 ∈ Mxn

. By our assumption, however
x2 ∈Mx1

implies that for each i ∈ {2, . . . , n} the following holds: xi−1 /∈Mx—a
contradiction to xn−1 ∈Mxn . ut

By the stability definition, we have the following for complete preferences.

Proposition 3. Let P be a preference profile and let M be a stable matching
for P. Let P ′ be a preference profile resulting from P by adding two agents x, y
who are each other’s most acceptable agents (and the preferences of other agents
over x, y are arbitrary but fixed). Then, matching M ∪ {{x, y}} is stable for P ′.

Proof. Suppose for the sake of contradiction that M ∪ {{x, y}} is not stable
for P ′. This means that P ′ has an unmatched blocking pair {u,w} /∈ M . It is
obvious that |{u,w}∩{x, y}| = 1 as otherwise {u,w} would also be an unmatched
blocking pair for P. Assume without loss of generality that u = x. Then, by the
definition of blocking pairs, it must hold that w �x y—a contradiction to y being
one of the most acceptable agents of x. ut

Utilizing Propositions 2 and 3 (in more restricted variants), Bartholdi III and
Trick [3] derived an algorithm to construct a unique stable matching when the
preferences are linear orders (i.e. complete and without ties) and are narcissistic
and single-peaked (see Algorithm 1). For 2 · n agents their algorithm runs in
O(n) time. We will show that Algorithm 1 also works when ties are allowed. The
stable matching, however, may not be unique anymore and the running time is
O(n2) since we need to update the preferences of each agent after we match one
pair of two agents.

Theorem 1. Algorithm 1 finds a stable matching for profiles with 2 · n agents
that are complete, with ties, narcissistic and single-peaked in O(n2) time.

Proof. The correctness follows directly from Propositions 2 and 3 and the nar-
cissistic and single-peaked property is preserved when deleting any agent. As
for the running time, there are n rounds to build up M , and in each round we
find two distinct agents x and y whose most acceptable agent sets Mx and My
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include each other: x ∈ My and y ∈ Mx. Note that Proposition 2 implies that
such two agents exist. After each round we need to update the most acceptable
agents of at most 2 · n agents. Thus, in total the running time is O(n2). ut

Now, we move on to (tie-sensitive) single-crossingness.

Corollary 1. Algorithm 1 finds a stable matching for preference profiles with
2 · n agents that are complete, with ties, narcissistic and single-crossing (or tie-
sensitive single-crossing) in O(n2) time. The running time for the case without
ties is O(n).

Proof. By Proposition 1 and Observation 1 (i), the stated profiles are single-
peaked. The result of Bartholdi III and Trick [3] and Theorem 1 imply the
desired statement. ut

4 Incomplete Preferences

Incomplete preferences mean that some agents do not appear in the preferences
of an agent, for instance, because two agents are unacceptable to each other or
they are not “allowed” to be matched to each other. If in this case no two agents
are considered of equal value by any agent (i.e. the preferences are without ties),
then Stable Roommate still remains polynomial-time solvable [19]. However,
once ties are involved, Stable Roommate becomes NP-complete [31] even for
complete preferences. In this section, we consider the case where the input pref-
erences may be narcissistic, single-peaked, or single-crossing. First of all, we note
that these preference restrictions can no longer guarantee the existence of two
consecutive agents that are each other’s most acceptable agent. However, this
guarantee is crucial for the existence of a stable matching and for why the al-
gorithm by Bartholdi III and Trick [3] can work in time linear in the number of
agents. Moreover, for incomplete preferences, even without ties, narcissistic and
single-crossing preferences do not imply single-peakedness anymore.

Proposition 4. For incomplete preferences without ties, the following holds:
Narcissistic and single-crossing preferences are not necessarily single-peaked.
Narcissistic and single-peaked (resp. single-crossing) preferences guarantee nei-
ther the uniqueness nor the existence of stable matchings.

Proof. Consider the following profile with six agents 1, 2, . . . , 6:
agent 1: 1 �1 5 �1 6, agent 3: 3 �3 5 �3 6, agent 5: 5 �5 1 �5 2 �5 3 �5 4,
agent 2: 2 �2 5 �2 6, agent 4: 4 �4 5 �4 6, agent 6: 6 �6 4 �6 2 �6 3 �6 1.
It is single-crossing wrt. the order 1 B 2 B · · · B 6, but it is not single-peaked
because of the last two agents’ preference orders over 1, 2, 3, 4. It does not admit
a stable matching of size three. But it admits a stable matching of size two:
{{1, 5}, {4, 6}}.

The following profile with four agents 1, 2, 3, 4 is narcissistic and single-peaked
wrt. the order 1B 2B 3B 4, and single-crossing wrt. the order 1B′ 3B′ 2B′ 4.
It admits two different stable matchings {{1, 2}, {3, 4}} and {{1, 3}, {2, 4}}.
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agent 1: 1 �1 2 �1 3 �1 4, agent 2: 2 �2 4 �2 1,
agent 3: 3 �3 1 �3 4, agent 4: 4 �4 3 �4 2 �4 1.

The following profile with ten agents 1, 2, . . . , 10 is narcissistic and single-
peaked wrt. the order 4B2B1B3B5B9B7B6B8B10. But, no matching M is
stable for this profile: First, the agents can be partitioned into two subsets V1 =
{1, 2, . . . , 5} and V2 = {6, 7, . . . , 10} such that only agents within the same subset
can be matched together. Since |V1| is odd, at least one agent i ∈ V1 is not
matched by M . But, agent i and the agent at the third position of the preference
order of i would form a blocking pair.
agent 1: 1 �1 4 �1 3, agent 2: 2 �2 5 �2 4, agent 3: 3 �3 1 �3 5,
agent 4: 4 �4 2 �4 1, agent 5: 5 �5 3 �5 2, agent 6: 6 �6 9 �6 8,
agent 7: 7 �7 10 �7 9, agent 8: 8 �8 6 �8 10, agent 9: 9 �9 7 �9 6,
agent 10: 10 �10 8 �10 7. ut

For the case with ties allowed, Ronn [31] showed that Stable Roommate
becomes NP-hard even if the preferences are complete. The constructed instances
in his hardness proof, however, are not always single-peaked or single-crossing. It
is even not clear whether the problem remains NP-hard for this restricted case.
If we abandon the completeness of the preferences, then we obtain NP-hardness,
by another and simpler reduction. Before we state the corresponding theorem,
we prove the following lemma which is heavily used in our preference profile
construction to force two agents to be matched together.

Lemma 1. Let P be a Stable Roommate instance for a given voter set V ,
and let a, b, and c be three distinct agents with the following preferences:

agent a : X � b � c � Va \ (X ∪ {b, c}),
agent b : c � a � Vb \ {a, c}, agent c : a � b � Vc \ {a, b},

where X ⊆ (Va ∩ Vb ∩ Vc) \ {a, b, c} is a non-empty subset. Then, every stable
matching M for P must fulfill that (i) M(a) ∈ X and (ii) {b, c} ∈M .

Proof. Assume towards a contradiction to (i) that P admits a stable matchingM
with M(a) /∈ X. There are three cases: (1) M(a) = b, implying the blocking
pair {b, c}, (2) M(a) = c, implying the blocking pair {a, b}, and (3) M(a) /∈
{b, c}, implying the blocking pair {a, c}. Thus, a must be matched with some
agent from X. For (ii), statement (i) implies that c cannot be matched with a.
Now, if {b, c} /∈M , then {b, c} is a blocking pair. ut

Theorem 2. Stable Roommate for incomplete preferences with ties remains
NP-complete, even if the preferences are single-peaked and single-crossing or
single-peaked and tie-sensitive single-crossing.

Proof. First, the problem is in NP since one can non-deterministically guess a
matching and check the stability in polynomial time. To show NP-hardness, we
reduce from the NP-complete Vertex Cover problem [18], which given an
undirected graph G = (U,E) and a non-negative integer k, asks whether there
is a size-at-most k vertex cover, i.e. a subset U ′ ⊆ U of size at most k such that
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G :

(a) The graph of a Vertex Cover
instance (G, k = 2). The instance
is a yes-instance and admits a ver-
tex cover {u2, u4}, marked in light
red.

u1

u2

u3 u4

a2 b2

c2

a1 b1

c1

s1

s2

(b) The acceptability graph of the corre-
sponding Stable Roommate instance. It
admits a stable matching, marked by thick
dotted lines.

Fig. 4: An illustration of the hardness reduction for Theorem 2.

for each edge e ∈ E, it holds that e ∩ U ′ 6= ∅. Let (G = (U,E), k) be a Vertex
Cover instance with p := |U |. We assume w.l.o.g. that k < p. We will construct
a Stable Roommate instance P with agent set V and show that G has a vertex
cover of size at most k if and only if P admits a stable matching.
Main idea and the constructed agents. To explain the main idea of the
reduction, we first describe the agent set V and the corresponding acceptability
graph of P as illustrated through an example in Figure 4. For each vertex ui ∈ U ,
we introduce a vertex agent ui (for the sake of simplicity, we use the same
symbol for the vertex and the corresponding agent). Additionally, there is a
set of selector agents S := {s1, . . . , sk} as well as three sets of collector agents
A := {a1, a2, . . . , ap−k}, B := {b1, b2, . . . , bp−k}, and C := {c1, c2, . . . , cp−k}.
The agent set V is defined as U ∪ S ∪ A ∪ B ∪ C. For the acceptability graph,
we have that every vertex agent ui accepts every selector agent from S, every
collector agent from A, and every vertex agent uj that corresponds to a neighbor
of uj in the input graph G. For each i ∈ {1, 2, . . . , p − k}, the collector agents
al, bi, and ci pairwisely accept each other. We aim at constructing the agents’
preferences such that in every stable matching only the selector agents from S
and the collector agents from A can be matched to the vertex agents and the
vertex agents matched to the selector agents correspond to a vertex cover (of
size |S| = k). This property is given by the subsequent Claim 1.
Agent preferences. Now, we describe the preferences that realize the idea and
the acceptability graph as described above:

agent ui : [S] � [N(ui)] � a1 � a2 � . . . � ap−k ∀1 ≤ i ≤ p,
agent si : u1 ∼ u2 ∼ . . . ∼ up ∀1 ≤ i ≤ k,

agent ai : [U ] � bi � ci,
agent bi : ci � ai, agent ci : ai � bi ∀1 ≤ i ≤ p− k.

Herein, for each subset X ⊂ S ∪ U , we denote by [X] some arbitrary but fixed
order (e.g. ordered wrt. the names or the indices), called the canonical order. This
completes the construction and can clearly be performed in polynomial time.
Correctness of the construction. First of all, we claim the following:

12



Claim 1. Every stable matching M for P satisfies the following two properties:
1. every vertex agent ui is matched to either a selector agent from S or a

collector agent from A: M(ui) ∈ S ∪A, and
2. no two vertex agents that are both matched to a collector agent are adjacent.

Proof (of Claim 1). Let M be a stable matching for P. For the first statement,
Lemma 1 immediately implies that for every collector agent ai ∈ A, it holds that
M(ai) ∈ U . Thus, there are exactly k vertex agents left that are not matched to
agents from A. Suppose towards a contradiction that some selector agent sj is
not matched to any vertex agent, implying that at least one vertex agent ui is
left with M(ui) /∈ A∪S. This, however, implies that {sj , ui} is a blocking pair for
M—a contradiction. For the second statement, suppose towards a contradiction
that there are two vertex agents ui, uj with {M(ui),M(uj)} ⊆ A as well as
{ui, uj} ∈ E. The preference orders of ui and uj immediately imply that agents
ui and uj form a blocking pair—a contradiction. (of Claim 1) �

Now, we show that G has a vertex cover of size at most k if and only if P
admits a stable matching. The “if” part follows immediately from Claim 1. For
the “only if” part, suppose that U ′ ⊆ U is a vertex cover of size k. Without loss
of generality, assume that U ′ = {u1, u2, . . . , uk} and further assume that the
canonical order is u1 � u2 � · · · � un. It is easy to verify that the following
matching M is stable:
– for each i ∈ {1, 2, . . . , k} set M(ui) := si;
– for each i ∈ {1, 2, . . . , p− k} set M(ui+k) = ai;
– for each i ∈ {1, 2, . . . , p} set M(bi) = ci.

Single-peakedness and (tie-sensitive) single-crossingness. The construc-
ted profile is single-peaked with respect to the following linear order B:

[S]B [U ]B a1 B a2 B · · ·B ap−k B b1 B b2 B · · ·B bp−k B c1 B c2 B · · ·B cp−k.

It is also single-crossing, since each preference order (after resolving all ties in
favor of the canonical order as discussed when constructing the agent preferences)
is a sub-order of one of two different preference orders, and two preference orders
are always single-crossing. More specifically, the profile is single-crossing with
respect to the order B: After resolving all ties in the preferences of the selector
agents in favor of the canonical order, the preference orders of the agents from S∪
U ∪ A are sub-orders of the linear order [S] � [U ] � a1 � b1 � c1 � a2 �
b2 � c2 � · · · � ap−k � bp−k � cp−k, and the preference orders of the agents
from B ∪ C are sub-orders of the linear order [S] � [U ] � c1 � a1 � b1 � c2 �
a2 � b2 � · · · � cp−k � ap−k � bp−k.

The tie-sensitive single-crossing property also holds because ties only occur
between pairs of agents from U and B contains first all agents with ties and then
the agents with the same canonical order among agents from U . ut

The constructed profile in the proof of Theorem 2 cannot be extended to also
satisfy the narcissistic property. However, we conjecture that Stable Room-
mate remains NP-complete even if the input preferences are also narcissistic.
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5 Conclusion

We investigated Stable Roommate for preferences with popular structural
properties, such as being narcissistic, single-peaked, and single-crossing. We
showed the existence of stable matchings and managed to speed up the detection
of such matchings when the preferences are complete, narcissistic, and single-
peaked (or single-crossing). Some of the speed-up (Corollary 1) is even associated
with a sublinear time algorithm. For incomplete preferences with ties, however,
single-peakedness combined with single-crossingness does not help to lower the
computational complexity—Stable Roommate remains NP-complete.

We conclude with some challenges for future research. First, considering the
NP-completeness result, it would be interesting to study the parameterized com-
plexity with respect to the “degree” of incompleteness of the input preferences,
such as the number of ties or the number of agents that are in the same equiv-
alence class of the tie-relation. Second, we were not able to settle the compu-
tational complexity for complete preferences that are also single-peaked and
single-crossing and for incomplete preferences with ties that are also narcissis-
tic and single-peaked. We conjecture, however, that the NP-hardness reduction
by Ronn [31] can be (non-trivially) adjusted to also work for these restricted
domains. Third, for incomplete preferences, we extended the concepts of single-
peaked and single-crossing preferences. However, there are further relevant ex-
tensions in the literature [11, 15, 25], which deserve study within our framework.
Finally, the algorithm of Bartholdi III and Trick [3] strongly relies on the fact
that there are always two agents that consider each other most acceptable. It
would be interesting to know which generalized structured preferences could
guarantee this fact. For instance, the so-called worst-restricted property (i.e. no
three agents exist such that each of them is least preferred by any agent) is a
generalization of the single-peaked property. We could show that the narcissistic
and worst-restricted properties are enough to guarantee this useful property.
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